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Abstract This work introduces a new algorithm for sur-
face reconstruction in R

3 from spatially arranged one-
dimensional cross sections embedded in R

3. This is gen-
erally the case with acoustic signals that pierce an object
non-destructively. Continuous deformations (homotopies)
that smoothly reconstruct information between any pair of
successive cross sections are derived. The zero level set of
the resulting homotopy field generates the desired surface.
Four types of homotopies are suggested that are well suited
to generate a smooth surface. We also provide derivation
of necessary higher order homotopies that can generate a
C2 surface. An algorithm to generate surface from acoustic
sonar signals is presented with results. Reconstruction accu-
racies of the homotopies are compared by means of simula-
tions performed on basic geometric primitives.

Keywords Homotopy · Continuous deformations · Surface
reconstruction · Shape preserving · Acoustic signal · Sonar

1 Introduction

Surface reconstruction is a frequently encountered problem
in computer graphics and computer vision. The reconstruc-
tion problem that we address in this paper is the one of gen-
erating a topologically and geometrically convincing sur-
face from a set of acoustic signals acquired using multibeam
echo-sounders.
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The problem of object reconstruction from cross sections
is quite old and has been addressed in different forms. A lot
of work has been done in 3D object reconstruction from
planar cross sections (see, for example, [1–4]). The cross
sections considered in these are generally contours of the
objects that could be parallel or non-parallel as discussed
by Boissonnat and Memari [5], and later by Liu et al. [6].
Hoppe et al. [7] discuss the problem of object reconstruc-
tion from a point cloud which is also of widespread interest.
This problem has been analyzed from different perspectives.
For example, Carr et al. [8] use radial basis functions for re-
construction. Amenta and Bern [9] use Voronoi filtering to
generate surface from point clouds.

In the context of reconstruction from acoustic signals,
most of the work focusses on reconstruction from cross sec-
tion images (see, for example, the work by Zhang et al. [10]).
In fact, acoustic images are obtained by interpolating inten-
sities from planar acoustic beams arranged in a fan. A better
algorithm can be designed to reconstruct the underlying ob-
ject from original signals without relying on a simple inter-
polation based estimate.

Homotopy continuation is a powerful mathematical tool
for robustly solving a complex system of equations (see All-
gower and Georg [11]). Continuation based method sug-
gested for surface reconstruction from planar contours by
Shinagawa and Kunii [12] uses a straight line homotopy to
generate smooth surface. Their method generates a mini-
mal surface by finding optimal path in the toroidal graph
representation. Berzin and Hagiwara [13] analyze mini-
mal area criterion in surface reconstruction using homotopy
and show that such criteria lead to defective surfaces. An
isotopy based reconstruction scheme is proposed by Fu-
jimura and Kuo [14], in which bifurcations are handled
separately. In this paper we present a different reconstruc-
tion algorithm that utilizes continuous deformations of func-
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tions for tracing the reconstruction boundary. We develop
homotopies other than linear homotopies that can generate
smooth surface. The homotopies developed here are built
to take advantage of the spatial arrangement of the sig-
nals.

This paper is organized as follows. In Sect. 2 we re-
view the basic homotopy theory. Section 3 presents a brief
overview of the acoustic signals from which a reconstruction
is desired. Section 4 outlines our approach to reconstruc-
tion using homotopy deformation. We develop various ho-
motopies suited to reconstruction. Section 5 is devoted to the
reconstruction algorithm utilizing the concepts developed so
far. In Sects. 6 and 7 we respectively present the results and
time complexity of the presented algorithm. We conclude
the discussion in Sect. 8.

2 Homotopy continuation

The central idea of the reconstruction algorithm presented
here is homotopy (see Armstrong [15]) or continuous de-
formation. Two continuous functions, f0(x) and f1(x),
x ∈ R

N , are called homotopic if one can be continuously
deformed into the other. Such a deformation is called a ho-
motopy H(x, λ) (in parameter λ ∈ R) between the two func-
tions.

In other words, a family of continuous mappings

hλ : X �→ Y, λ ∈ [0,1] (1)

is called a homotopy if the function

H : X × [0,1] �→ Y (2)

defined by

H(x, λ) = hλ(x), x ∈ X, λ ∈ [0,1] (3)

is continuous. The maps h0 and h1 are called the initial map
and the terminal map of the homotopy hλ. A typical choice
is a linear homotopy such as

H(x, λ) = (1 − λ)f0(x) + λf1(x). (4)

The use of deformations to solve non-linear system of equa-
tions gives robust results. A homotopy tries to solve a dif-
ficult problem with unknown solutions by starting with
a simple problem with known solutions. Stable predictor-
corrector and piecewise-linear methods for solving such
problems exist (see Allgower and Georg [11]). The system
H(x, λ) = 0 implicitly defines a curve or 1-manifold of so-
lution points.

Given smooth H and existence of u0 ∈ R
N+1 such that

H(u0) = 0 and rank(H′(u0)) = N , there exists a smooth
curve α ∈ J �→ c(α) ∈ R

N+1 for some open interval J

containing zero such that for all α ∈ J (Allgower and
Georg [11])

1. c(0) = u0,
2. H(c(α)) = 0,
3. rank(H′(c(α))) = N ,
4. c′(α) �= 0.

The map H deforms f0 to f1 in a smooth fashion via the
path c.

We use these concepts in Sect. 4 where we define non-
linear, spline and shape preserving homotopies. Next sec-
tion introduces the nature of acoustic signals and their spa-
tial arrangement.

3 Acoustic signals

Multibeam sonar data acquisition results in huge amount of
data in small time. The data is in the form of multiple beams
of signals that are arranged in a particular geometry for an
instrument. The MS70 Multibeam echo-sounder from Sim-
rad is a 3D sonar where a total of 500 beams are arranged in
a fashion such that an angular cone of 45◦ by 60◦ is spanned
by a matrix of 20 × 25 beams. The echo-sounder operates
on a frequency range of 75 to 112 kHz (see Ona et al. [16]
for details).

Multibeam echo-sounders sample the space non-uni-
formly since the linear spacing between individual beams
increases with distance along the beams. As a result, the
objects far away from the instrument have a very coarse res-
olution in the sampled volume. Figure 1(a) shows a typical
arrangement of the MS70 echo-sounder. A volume render-
ing of a single ping capturing a moving school of Sprat fish
is shown in Fig. 1(b).

In order to reconstruct a surface representation of the
objects imaged by the sonar, we formulate homotopies for
beams. These are discussed in the next section.

4 Homotopic reconstruction

Consider a signal S and its piecewise constant representation
G. In other words, G is a segmentation of S with classes
(or levels) C0,C1, . . . , and Cn−1. Let us denote by χk the
characteristic function of S for class Ck , such that

χk =
{

1 if G = Ck,

0 otherwise.
(5)

The main idea behind reconstruction for any level Ck using
continuous deformations is to trace the path c = ker(H) =
{(x, λ) : H = 0} between functions defined on any two con-
secutive signals (as shown in Fig. 2 in R

2).
In order to be able to define homotopies between pairs of

beams, we need to associate functions with each beam. Such
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Fig. 1 The MS70
echo-sounder. (a) MS70 beam
configuration. (b) Volume
rendering of sample data (high
intensities in red)

a beam function should completely describe the bound-
ary, interior and exterior of regions belonging to any class
Ck along the respective beam. These regions are inter-
vals in one-dimensional cross sections. The rest of the dis-
cussion applies to any class, therefore we drop the sub-
script k for sake of simplicity of notation. Given roots

ri , i ∈ [0,p − 1] of the characteristic function χ of a
beam, we define its beam function as a piecewise polyno-
mial. This can be done by selecting slopes at the roots of
the desired piecewise polynomial and enforcing continu-
ity at borders of adjacent polynomials. The simplest piece-
wise polynomial exhibiting C1 continuity is a piecewise
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Fig. 2 Homotopy path between two beams

Fig. 3 Piecewise quadratic function representing a beam

quadratic

f (r) =
p−2∑
i=0

αi(−r2 + r(ri + ri+1) − riri+1))

(ri+1 − ri)
, (6)

where r is the distance along the beam, and αi is the positive
gradient

∣∣ df
d r

∣∣
r=ri

defined as

αi = (−1)i+1α0, (7)

with α0 being a chosen positive slope at r0. A quadratic
polynomial also keeps the system simple to solve. Figure 3
illustrates such a beam function.

With this background, we define various homotopies in
the following subsections.

4.1 Linear homotopy

Consider beam functions fj (r) and fj+1(r) for two con-
secutive beams with angles θj and θj+1 respectively in the
polar plane (r, θ). We define a homotopy H : R

2 �→ R of
smooth transition from fj (r) to fj+1(r) using a real para-
meter λ ∈ [0,1] as

Hj (r, λ) = (1 − λ)fj (r) + λfj+1(r), (8)

where the parameter λ is related to the angle θ as

λ = θ − θj

θj+1 − θj

. (9)

Such an H is a linear homotopy that transforms fj (r)

to fj+1(r) using a linear combination of these functions in
parameter λ. We can now define a set of homotopies that

Fig. 4 Reconstruction using linear homotopy. Reconstructed object
(with more than one connected components) boundary connects the
end points of radial cross sections (in gray)

reconstructs the underlying object from a set of beams as
the set H = {Hj } where each homotopy Hj is defined for a
pair of beam signals Sj and Sj+1.

A reconstruction from H is then given by the curve c =
ker(H) = ⋃

j∈J ker(Hj ). Figure 4 shows part of the recon-
struction of a set of radial beams.

Proposition 1 H defined in (8) results in a piecewise non-
linear curve c that is only C0 in θ .

Proof We prove this by showing that

1. c is C0 at (ri , θj+1)
1, and

2. c is not C1 at (ri , θj+1).

For part 1, it is sufficient to show that Hj (ri , θj+1) =
Hj+1(ri , θj+1). From (8),

Hj (ri , θj+1) = fj+1(ri), and

Hj+1(ri , θj+1) = fj+1(ri).

Therefore, c is C0.
For part 2, consider the tangent at any point (r, θ) for Hj :

Tj =
(

∂Hj

∂r
,
∂Hj

∂θ

)

=
(

(1 − λ)f ′
j (r) + λf ′

j+1(r),
−fj (r) + fj+1(r)

�θj

)
, (10)

where �θj = (θj+1 − θj ). At r = ri , we note that

lim
θ→θ−

j+1

Tj+1 =
(

f ′
j+1(ri),

−fj (ri) + fj+1(ri)

�θj

)
and

(11)

lim
θ→θ+

j+1

Tj+1 =
(

f ′
j+1(ri),

−fj+1(ri) + fj+2(ri)

�θj+1

)
.

1This point belongs to c since ri is a zero of fj+1(r) by construction.
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Therefore, limθ→θ−
j+1

Tj+1 �= limθ→θ+
j+1

Tj+1, and c is not

C1. This shows that c is only C0 in θ . �

Therefore, we seek a homotopy that preserves tangent
slopes at the joins. This leads us to the introduction of non-
linear homotopy.

4.2 Non-linear homotopy

The curve c = ker(H) resulting from (8) is a piecewise
smooth curve in R

2. We are interested in at least a C1 con-
tinuous curve generated by a homotopy function. Let us con-
sider the following non-linear homotopy in λ:

Hj (r, λ, η) = (1 − λ)ηfj (r) + ληfj+1(r). (12)

Figure 5 shows a reconstruction using the non-linear homo-
topy defined by (12).

Proposition 2 For η > 1, ker(H) generates at least a C1

curve in θ for constant angular spacing of beams.

Proof We prove this by showing that

1. c is C0 at (ri , θj+1), and
2. c is C1 at (ri , θj+1) for uniform angular spacing of

beams.

As before, we can prove part 1 using (8) by showing that
Hj (ri , θj+1) = Hj+1(ri , θj+1).

For part 2, we again consider the tangent at any point
(r, θ) for Hj :

Tj =
(

∂Hj

∂r
,
∂Hj

∂θ

)

=
(

(1 − λ)ηf ′
j (r) + ληf ′

j+1(r),

−η(1 − λ)η−1fj (r) + ηλη−1fj+1(r)

�θj

)
.

Fig. 5 Reconstruction using non-linear homotopy (η = 2) from the
same set of radial cross sections. Staircase effect is prominent in this
reconstruction

At r = ri , we note that

lim
θ→θ−

j+1

Tj+1 =
(

f ′
j+1(ri),

ηfj+1(ri)

�θj

)
and

(13)

lim
θ→θ+

j+1

Tj+1 =
(

f ′
j+1(ri),

−ηfj+1(ri)

�θj+1

)
.

If �θ = �θj = �θj+1 is the constant angular spacing
between the beams, then

lim
θ→θ−

j+1

Tj+1 = lim
θ→θ+

j+1

Tj+1.

This shows that c is at least C1 in θ . Further, it can also be
shown that the slope at beam end is normal to the radial line
at angle θj+1. This is left as an exercise to the reader. �

A non-linear homotopy is a general case of the linear
homotopy. This class of deformations can be extended to
higher dimensions in a straightforward manner. A formula-
tion in R

3 for an arrangement of beams shown in Fig. 6 can
be made as a two-parameter homotopy in α and β as

Hj,k(r, α,β,η, ζ ) = fj,k(r)(1 − α)η(1 − β)ζ

+ fj,k+1(r)(1 − α)ηβζ

+ fj+1,k(r)α
η(1 − β)ζ

+ fj+1,k+1(r)α
ηβζ , (14)

where α and β are linearly related to the inclination θ and
azimuth φ in a spherical coordinate system (r, θ,φ) (simi-
larly to (9) in R

2). The two-parameter homotopy (14) can
also be written as a tensor product of one-parameter homo-
topies.

For the Hj,k defined above, it can be shown that the sur-
face H = 0 is C1 continuous for η > 1, ζ > 1. For η = 1
and ζ = 1, Hj,k reduces to a linear homotopy.

A non-linear homotopy is continuous at joins and sat-
isfies all the required criteria; however, the reconstruction
looks unnatural due to the fact that the tangents at the joins
are always orthogonal to the respective beams (see Fig. 5).
This constrains the solution to a small class of possible re-
constructions. In the next subsection, we relax the tangent
constraint that gives rise to the cubic spline homotopy.

Fig. 6 Top view of beam
arrangement in R

3. Each dot
represents a beam orthogonal to
the plane of the paper
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4.3 Cubic spline homotopy

Consider N radial beam functions {fj (r)}, j ∈ [0,N − 1] in
the polar plane (r, θ). While deriving the necessary condi-
tions, we replace the local parameter λ by its global coun-
terpart θ . These two are related by (9). We construct ho-
motopies Hj between fj and fj+1 such that the following
conditions are met:

1. For any homotopy, the initial and terminal maps are sat-
isfied:

Hj (r, θj ) = fj (r), and Hj (r, θj+1) = fj+1(r), (15)

for j ∈ [0,N − 2].
2. The first derivatives ∂H(r, θ)/∂θ at the boundary of any

two successive homotopies match

lim
θ→θ−

j+1

∂Hj (r, θ)

∂θ
= lim

θ→θ+
j+1

∂Hj+1(r, θ)

∂θ
, (16)

for j ∈ [0,N − 3].
3. The second derivatives ∂2H(r, θ)/∂θ2 at the boundary of

any two successive homotopies match

lim
θ→θ−

j+1

∂2 Hj (r, θ)

∂θ2
= lim

θ→θ+
j+1

∂2 Hj+1(r, θ)

∂θ2
, (17)

for j ∈ [0,N − 3].
We start with a general cubic homotopy in θ of the form

Hj (r, θ) =
3∑

i=0

gj,i(r)(θ − θj )
i, (18)

with unknown coefficient functions gj,i . We note the follow-
ing partial derivatives of Hj (r, θ) w.r.t θ :

∂Hj (r, θ)

∂θ
=

3∑
i=1

igj,i(r)(θ − θj )
i−1, and (19)

∂2 Hj (r, θ)

∂θ2
=

3∑
i=2

i(i − 1)gj,i(r)(θ − θj )
i−2. (20)

Note that in the above conditions, we are not concerned with
the derivatives of H w.r.t. r since these have no influence on
continuity of c w.r.t. θ . Continuity of c w.r.t. r depends on
the choice of beam functions f (r). Conditions (15), (16) and
(17) result in the following linear system (argument r of g’s
and f ’s is removed for space consideration):

gj,0 = fj , for j ∈ [0,N − 2],
gj,0 + gj,1� + gj,2(�θj )

2 + gj,3(�θj )
3 = fj+1,

for j ∈ [0,N − 2],

Fig. 7 Reconstruction using spline homotopy using same set of radial
cross sections. Spline reconstruction clearly shows smoothness of the
reconstruction

(21)
gj,1 + 2gj,2�θj + 3gj,3(�θj )

2 = gj+1,1,

for j ∈ [0,N − 3],
gj,2 + 3gi,3�θj = gj+1,2, for j ∈ [0,N − 3].

Since system (21) is devoid of two conditions, we enforce
free boundary condition ∂2 H(r, θ)/∂θ2 = 0 at θ0 and θN−1.
This yields the following two linear equations:

g0,2 = 0 and gN−2,2 + 3gN−2,3�θj = 0. (22)

The system formed by (21) and (22) has the form Ax = B .
The coefficients gj,i are functions of fj . The homotopy
(18) can be rewritten in terms of the local homotopy vari-
able λ. Figure 7 shows a reconstruction using the developed
cubic spline homotopy. It is possible to extend the single-
parameter cubic spline homotopy to a two-parameter spline
homotopy for a reconstruction in R

3 via the tensor product.
With the cubic homotopy it is possible to have a con-

tinuous reconstruction with no restriction on tangents at the
beam ends; however, the resulting surface suffers from un-
desirable extremum points between places of high difference
in radial distance between beam boundaries (see Fig. 8).
This is due to the fact that it is not always possible to have
C2 continuity while maintaining monotonicity [17, 18]. To
overcome this problem, we introduce a shape preserving
C1 homotopy in the next subsection.

4.4 Shape preserving homotopy

Monotonicity preserving splines overcome the problem as-
sociated with cubic splines. Späth [19] introduced general-
ized exponential splines in tension that were further studied
by Pruess [20] and others. These splines are piecewise ex-
ponential curves joining together to form a smooth curve in
tension. The tension parameters, however, must be selected
by some heuristic based on the gradient of the data points or



Homotopy-based surface reconstruction with application to acoustic signals 379

Fig. 8 Cubic spline reconstruction of a circle from a set of radial cross
sections showing undesirable bulge on the sides

otherwise. Further, computation of tension splines is expen-
sive due to evaluation of hyperbolic functions. The compu-
tation is also sensitive to the choice of tension parameters.
This is specially true for very small tension parameters caus-
ing underflow of machine precision and for very large ten-
sion parameters causing overflow of machine precision [21].

Monotonicity can be attained by sacrificing smoothness
while still using polynomials. We develop a C1 homotopy
based on the monotonic splines of Hyman [17]. This re-
quires availability of derivatives ∂Hj (r, λ)/∂λ at λ = 0.
A monotone homotopy can be written in terms of Hermite
basis functions as

Hj (r, λ) = (
1 − 3λ2 + 2λ3)fj (r) + (

3λ2 − 2λ3)fj+1(r)

+ (
λ − 2λ2 + λ3)[∂Hj (r, λ)

∂λ

]
λ=0

+ (
λ3 − λ2)[∂Hj+1(r, λ)

∂λ

]
λ=0

. (23)

The derivatives ∂Hj /∂λ appearing in (23) enforce piece-
wise monotonicity in c. The de Boor and Swartz [22] piece-
wise monotonicity range can be extended for functions as

0 ≤ ḟj ≤ 3 min(�fj ,�fj+1), (24)

where �fj = (fj+1 − fj−1) and ḟj denotes the required
derivative. Starting with an approximation of the derivatives
(either from a spline representation or differencing), these
are then projected into the monotonicity region defined by
(24) according to

ḟj =
{

min
(
max(0, ḟj ),3 min(|�fj |, |�fj+1|)

)
max

(
min(0, ḟj ),−3 min(|�fj |, |�fj+1|)

)
.

(25)

The reader is referred to work by Hyman [17] for a detailed
discussion on this. The constrained derivatives can be used
in (23). The derivatives can only be computed numerically.
Other procedures outlined by Costantini and Morandi [23]
and Wolberg and Alfy [18] employ optimizations to com-
pute the derivatives. A two-parameter family of monotone
shape-preserving homotopy can be formulated, as before,
via tensor product. The result of monotone reconstruction
is shown in Sect. 6.

A reconstruction algorithm based on the developed ho-
motopies is presented next.

5 Reconstruction algorithm

The MS70 sonar gives a 3D view of the ensonified vol-
ume as shown in Fig. 1(b). The received signal represents
the raw acoustic backscatter from the seabed and the fish
school. In order to infer useful object information from the
signals, these must first be corrected for spreading and ab-
sorption losses during acoustic wave propagation (see Sim-
monds and MacLennan [24] for details). The resulting Vol-
ume backscattering strength Sv values can then be used for
analysis.

5.1 Characteristic function generation

To generate a good segmentation, anisotropic diffusion by
Perona and Malik [25] may be performed on the Sv signals.
The usual practice is to binary-segment the signals by choos-
ing a suitable threshold value depending on the species of
the schooling fish seen in the volume. The threshold should
be chosen so as to eliminate as much of the background and
instrument noise as possible (see Simmonds and MacLen-
nan [24]).

Following is the general procedure adopted to generate
characteristic signals from raw acoustic signals:

1. Perform anisotropic diffusion filtering on the input vol-
ume Vi to generate Vdiff.

2. Generate a binary volume Vbin by using a threshold value
Sthres.

3. Close holes in Vbin by 3D morphological closing (see
Soille [26]). Isolated voxels are eliminated by a morpho-
logical opening.

4. Label the resulting volume, as Vseg, into different con-
nected components (see Gonzalez and Woods [27]).

5. Select a component or combine several components from
Vseg into Vχ that represent the object to reconstruct. This
is a binary volume representing the characteristic signal
of the desired object.
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Fig. 9 Handling cross-overs in the homotopy solution. Radial cross
sections are shown in gray with location of roots along each radial line
marked in green. A root on any radial line is projected onto adjacent
radial lines for clarity. (a) Singularity in the path. (b) Avoiding singu-
larity by perturbation of roots

5.2 Solution of homotopy

Starting with a binary volume Vχ of size M ×N ×R, where
R is the number of samples along a signal beam, we asso-
ciate beam functions with all MN beams according to (6).
A system of (M − 1) × (N − 1) homotopies is formulated.

The reconstruction H = 0 traces the homotopy path with-
out any problem except at places where the path encounters
a singularity (self-intersection) in between the initial and ter-
minal maps for λ ∈ (0,1). In such a case, the path becomes a
non-manifold, as illustrated in Fig. 9(a). Such a case can be
avoided by first identifying a root rk of any one of the beam
functions that causes a singularity, and perturbing it in such
a way that the singularity in the path is avoided, as shown in
Fig. 9(b).

The set of homotopies can be solved to find points be-
longing to ker(H) that lie on the boundary of the reconstruc-
tion. An analytical solution to H = 0 is not always possible,
and a computational solution for all λ ∈ [0,1] is not realiz-
able. Therefore, we construct a scalar field of H on a sam-
pled grid. The homotopy path is then found by tracing zero
level set of the scalar field.

6 Results

We present results of our reconstruction algorithm here. Al-
though the reconstruction algorithm operates in the beam
space, for sake of clarity we show all the 2D illustrations
in polar coordinates. It must be noted that a coordinate
transformation from beam space to spherical coordinates is
needed only before the level set extraction and not before.

The raw data is shown in Fig. 1(b) where the high inten-
sity regions of the ensonified volume are rendered in red.
These regions are mainly the fish school, seabed and noise
at the top. We show a slice of the raw volume in Fig. 10(a).

Fig. 10 Intensity correction on raw volume. (a) Sector of the volume
showing raw intensities. (b) Volume corrected for spreading and ab-
sorption losses

Note that the intensity of the target diminishes as the dis-
tance from the transducer (located at the tip of the sec-
tor) increases. Figure 10(b) shows volume compensated for
acoustic losses due to spreading and absorption. The intensi-
ties after compensation are distributed evenly (for example,
typical fish school echo strength values are around −60 dB).

A threshold of −62 dB removes much of the background
noise in this case. Combined characteristic functions of the
seabed and the fish school are shown in Fig. 11. In the figure,
thick black lines show the ranges where the characteristic
function takes a value of 1.

A full reconstruction in R
3 is shown in Fig. 12. Here, dif-

ferent connected components are colored differently and the
noise component is not considered during reconstruction.
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Fig. 11 Combined characteristic signal for seabed and fish school.
Complete radial lines are shown in gray while the cross section is
shown in black

The seabed is shown in brown, while the fish school is col-
ored in light blue. The difference in the reconstructions com-
puted via the four homotopies is apparent and shows that the
shape preserving monotone homotopy outperforms the oth-
ers. A linear homotopy renders the reconstruction piecewise
C0 that does not look natural, while the non-linear homo-
topy introduces staircase like artifacts. The cubic homotopy
on the other hand produces large variations in the surface at
the sides causing undesired bumps.

With the real signals, it is not possible to quantify accu-
racy of the suggested homotopies. Therefore, we perform
simulation tests described next.

6.1 Accuracy comparison

In order to evaluate the relative performance of the sug-
gested homotopies, we reconstruct various simple geomet-
ric primitives. We compare the reconstructed surfaces with
the respective primitives by means of certain measures. In
all the simulations, we use a set of 20 × 25 beams of length
100 units and spanning an angular volume of 45◦ × 60◦ (see
Fig. 13). A primitive is placed symmetrically in the spanned
volume such that the center of the primitive is halfway from
the apex of the sonar. With the given beam density, it must
be noted that any primitive is sampled sparsely (i.e., not fol-
lowing the Nyquist criterion), and therefore it is not possible
to completely recover an object with all details. This rep-
resents the practical case with acoustic instruments where
beam density is constrained by various physical factors and
cannot be arbitrarily increased. Also, beneath the water, ob-
jects to be mapped have unknown geometry and location.
In our analysis, we use several parameters for shape com-
parison. Two simple parameters are ratio of the two surface
areas Ar/Ao and ratio of the two volumes Vr/Vo. Further,

we measure the reconstruction error by means of the sym-
metrical Hausdorff distance which is a good measure of the
distance between two manifolds (see Aspert et al. [28]).

Symmetrical Hausdorff distance, dH , between two sur-
faces M0 and M1 is given by

dH (M0,M1)

= max
{

sup
x0∈M0

inf
x1∈M1

d(x0, x1), sup
x1∈M1

inf
x0∈M0

d(x0, x1)
}
,

(26)

where d(·, ·) is an appropriate metric for measuring distance
between two points in a metric space. dH (M0,M1) mea-
sures the maximum possible distance that will be required
to travel from surface M0 to M1. We compute this metric
and use it to quantify the error in reconstruction of a phan-
tom surface. Similarly, a mean Hausdorff error dH [28] can
also be defined as

dH (M0,M1) = max

{
1

AM0

∫ ∫
x0∈M0

d(x0,M1) dM0,

1

AM1

∫ ∫
x1∈M1

d(x1,M0) dM1

}
,

(27)

where AM0 and AM1 denote the area of M0 and M1 respec-
tively and dM0 and dM1 denote a differential area element
on M0 and M1 respectively. In the following tables, a %
refers to the relative Hausdorff distance measured as the per-
centage of the model bounding box diagonal.

The first primitive we consider is a sphere of radius 10
units. The reconstructions are shown in Fig. 14 with the
sphere drawn in wireframe. It can be seen that linear and
monotone reconstructions produce satisfactory results, since
both are shape preserving. Non-linear reconstruction pro-
duces the ringing effect while the cubic homotopy produces
bumps in the surface at the sides. Table 1 shows the three
shape measures for these reconstructions. The reconstructed
volume and surface area for cubic reconstruction are larger
than that of the sphere. The best ratios are obtained for the
shape preserving C1 reconstruction with an exception of the
volume ratio for cubic reconstruction. The Hausdorff dis-
tances (both maximum and mean) are very high for the cu-
bic reconstruction indicating that the reconstructed surface
has regions of high deviation from the phantom sphere sur-
face. The minimum error is obtained for the monotone re-
construction indicating that the two surfaces are closest to
each other.

Next we consider a cube of side length 20 units. A cube
is an interesting primitive since the surface is only C0, there-
fore a linear reconstruction gives a shape that is closest to it
(see Fig. 15). The surface area ratio shown in Table 2 indi-
cates that a better reconstruction is monotone. The volume
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Fig. 12 Homotopy reconstruction of moving school of Sprat. (a) Linear homotopy. (b) Non-linear homotopy with η = 2. (c) Spline homotopy.
(d) Shape preserving homotopy

ratios show that the reconstructed surface is an underesti-
mation of the primitive except for the cubic reconstruction
that has overhangs in the reconstruction. The Hausdorff er-
ror gives a clear indication that the cubic reconstruction de-
viates most from the phantom surface while the monotone
reconstruction deviates the least.

Next we experiment with a cone of semi-angle 30◦ and
height 20 units, and a cylinder of radius 10 units and height
20 units. The reconstructions for these primitives are shown
in Figs. 16 and 17, respectively. These surfaces have both

planar and curved sections. As seen in the previous cases,
the linear and monotone reconstructions perform better in
this case as well with area and volume ratios closest to one,
and the least Hausdorff errors for the monotone reconstruc-
tion (as shown in Tables 4 and 3).

So far the primitives considered here are convex in geom-
etry. Lastly, we consider a torus for reconstruction to show
that a non-convex geometry with holes can be reconstructed
in a similar fashion and poses no limitation on the algorithm
developed here. Here again, the accuracy measures indicate
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Fig. 13 The simulation test bed consisting of a set of simulated sonar
beams (20 × 25) in a frustum of angular volume of 45◦ × 60◦. The
sonar beams emerge from the origin denoted by the intersection of the
coordinate axes

Fig. 14 Homotopy reconstruction of a sphere. (a) Linear homotopy.
(b) Non-linear homotopy with η = 2. (c) Spline homotopy. (d) Shape
preserving homotopy

that the monotone reconstruction is closest to the original
torus model. Also looking at the results, the cubic recon-
struction shows the presence of unwanted peaks.

The simulations shown here clearly indicate superiority
of the monotone reconstruction compared to other homo-
topies. This is supported by the least Hausdorff errors in case
of monotone homotopic reconstruction. The main advan-
tage comes with suppression of bumps while still remaining
smooth. The volume ratio does not seem to be the best indi-

Table 1 Reconstruction performance with sphere

Reconstruction Ar/Ao Vr/Vo dH (%) dH (% )

Linear (C0) 0.963 0.865 4.340 0.896

Non-linear (Cη−1) 0.988 0.885 4.686 0.920

Cubic (C2) 1.384 1.051 8.933 1.467

Monotone (C1) 1.011 0.932 3.891 0.659

Fig. 15 Homotopy reconstruction of a cube. (a) Linear homotopy.
(b) Non-linear homotopy with η = 2. (c) Spline homotopy. (d) Shape
preserving homotopy

Table 2 Reconstruction performance with cube

Reconstruction Ar/Ao Vr/Vo dH (%) dH (% )

Linear (C0) 0.880 0.902 6.206 0.778

Non-linear (Cη−1) 0.899 0.916 6.596 0.975

Cubic (C2) 1.116 1.038 13.467 1.173

Monotone (C1) 0.912 0.957 4.754 0.647

cator of the geometry of the reconstructed surface. Depend-
ing on the arrangement of intersecting beams, in some cases
the deviation of this measure from one is less than such a de-
viation in other methods. This indicates that in those cases
the cubic method performs better than other methods, which
is clearly not the case as shown by the area ratio and the
Hausdorff error metrics. If the geometry of the original ob-
ject is known a priori, a suitable homotopy can be chosen. It
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Fig. 16 Homotopy reconstruction of a cone. (a) Linear homotopy.
(b) Non-linear homotopy with η = 2. (c) Spline homotopy. (d) Shape
preserving homotopy

Fig. 17 Reconstruction of a cylinder. (a) Linear homotopy.
(b) Non-linear homotopy with η = 2. (c) Spline homotopy. (d) Shape
preserving homotopy

must be noted that an increase in beam density will increase
the accuracy of reconstruction.

To our knowledge, we presented an algorithm for direct
reconstruction of a surface from one-dimensional cross sec-

Table 3 Reconstruction performance with cylinder

Reconstruction Ar/Ao Vr/Vo dH (%) dH (%)

Linear (C0) 0.917 0.913 4.511 0.544

Non-linear (Cη−1) 0.944 0.926 4.862 0.731

Cubic (C2) 1.192 1.063 15.674 1.094

Monotone (C1) 0.954 0.975 4.104 0.377

Table 4 Reconstruction performance with cone

Reconstruction Ar/Ao Vr/Vo dH (%) dH (% )

Linear (C0) 0.859 0.858 8.012 0.950

Non-linear (Cη−1) 0.885 0.876 7.640 0.998

Cubic (C2) 1.460 1.186 19.049 2.509

Monotone (C1) 0.901 0.944 6.979 0.641

Table 5 Reconstruction performance with torus

Reconstruction Ar/Ao Vr/Vo dH (%) dH (% )

Linear (C0) 0.967 0.820 4.309 0.860

Non-linear (Cη−1) 0.984 0.842 4.514 0.782

Cubic (C2) 1.632 1.092 8.852 1.818

Monotone (C1) 1.000 0.889 3.847 0.625

tions embedded in 3D and the existing methods of surface
reconstruction from acoustic cross sections rely on inter-
polation to first compute an acoustic image/volume before
deriving a surface. Methods like the level set method oper-
ate on such a volume to reconstruct an object using a de-
formable surface. A comparison of volume-based methods
with the proposed method will be not be justified due to dif-
ferent input types of these methods. In the next section we
present the complexity of the presented algorithm.

7 Time complexity

The time complexity of the homotopy reconstruction al-
gorithm depends on the number of linear cross sections
nsec = MN . The cost of assigning beam functions is O(nr)

per beam, where nr is the number of roots along the beam.
Since nr depends on the object–beam intersection, it de-
pends on the complexity of the objects considered. The com-
plexity of formulating homotopies for the beams is O(nsec)

for linear and non-linear homotopies. In case of spline ho-
motopy, there is an additional one-time cost of inverting a
matrix that amounts to a complexity of O((4(nsec −1))2.376)

using the Coppersmith–Winograd algorithm [29]. Such a
computational cost can be drastically reduced by formu-
lating a B-spline homotopy where every homotopy de-
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Fig. 18 Homotopy reconstruction of a torus. (a) Linear homotopy.
(b) Non-linear homotopy with η = 2. (c) Spline homotopy. (d) Shape
preserving homotopy

pends only on its four neighboring beam functions. Com-
plexity of formulating the monotone homotopy is simi-
lar to the linear homotopy once the derivatives are com-
puted (thereby suggesting the local nature). Computation
of derivatives is an image space operation and therefore
it is O(V ), where V is the number of voxels in the grid
of discretized space. Complexity of computing the solution
path of the homotopy H = 0 using isosurface extraction
is O(V ).

To get a notion of actual computation times for the re-
construction, a scene composed of two primitive objects
(a cuboid and a sphere) is reconstructed from its intersec-
tion with sonar beams. The computational resource con-
sisted of a 32-processor AMD Quad-Core machine with
256 GB of memory and an OpenMP implementation of
the reconstruction algorithm running with 32 threads. Ta-
ble 6 shows computation times in seconds for all the four
reconstruction methods. Here, Tbf is the time taken in as-
signing beam functions to all the sonar beams, Tinv is the
time taken in inverting the coefficient matrix (in case of
cubic homotopy reconstruction), TH is the time taken in
evaluating the homotopy over a grid of volume, and Tiso

is isosurface computation time. For monotone reconstruc-
tion method, TH includes computation time of derivatives.
The reconstruction is computed over a volume grid of size
154 × 201 × 201.

Table 6 Computation times (in seconds) for reconstruction. The scene
composed of a cuboid and a sphere with the reconstruction performed
on a raster volume grid of size 154 × 201 × 201.

Tbf Tinv TH Tiso

Linear 0.001328 1.071854 1.052210

Non-linear 0.001322 1.022518 1.307745

Cubic 0.001258 0.000247 4.100427 1.361817

Monotone 0.001273 3.801818 1.169319

8 Conclusion

We have developed a reconstruction algorithm based on ho-
motopy continuation. Different formulations of homotopies
suitable for smooth surface generation were presented. The
resulting surface is of good quality both topologically and
geometrically. The presented algorithm associates piecewise
quadratic functions with the initial and terminal maps. In
general, any smooth function that satisfies the design criteria
can be used as a beam function. Furthermore, the results are
readily extensible to higher dimensions. We conclude that
homotopy-based methods are quite powerful in predicting
the information from the initial and the terminal maps.
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