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Abstract. In this paper, we show a graph isomorphism between
a dual graph of the Delaunay graph of the sampled points and the
medial axis of the sampled features. This dual graph captures the
fact that two Delaunay triangles share a vertex or an edge. Then,
we apply it to the computation of the medial axis of the features
selected in an image. The computation of the medial axis of images
is of interest in applications such as mapping, climatology, change
detection, medicine, etc. This research work provides a way to
automate the computation of the medial axis transform of the fea-
tures of color 2D images. In color images, various features can be
distinguished based on their color. The features are thus extracted
as object borders, which are sampled in order to compute the me-
dial axis transform. We present also a prototype application for the
completely automated or semi-automated processing of (satellite)
imagery and scanned maps. Applications include coastline extrac-
tion, extraction of fields, clear cuts, clouds, as well as heating or
pollution monitoring and dense forest mapping among others.

Introduction

Popular methods for computation of the medial axis are thinning
using mathematical morphology [8, chap. 9] and skeletonization using
distance transform [2]. This research is concerned with computing
the medial axis using a dual of the Delaunay graph, that captures
the adjacency of internal Delaunay triangles along edges or vertices,
together with the Voronoi diagram.

The work by Amenta et al. [1] leads to the extraction of object
boundary from a set of sufficiently well sampled data points. The
vertices of the Voronoi diagram approximate the medial axis of a set
of sample points from a smooth curve. The vertices of the Voronoi
diagram of the sample points were inserted into the original set of
sample points and a new Delaunay triangulation was computed [1].
The circumcircles of this new triangulation approximate empty circles
between the original boundary of the object and its skeleton. Thus,
any Delaunay edge connecting a pair of the original sample points in

2000 Mathematics Subject Classification. Primary 65D18; Secondary 57M15,
51N05.
Key words and phrases. Voronoi diagram, Delaunay graph, medial axis, graph iso-
morphism, topology.

1
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(a) The Voronoi diagram (b) Anti-crust (c) Skeleton

Figure 1. Skeleton as seen as the anti-crust.

the new triangulation is a part of the border [1]. The work by Amenta
et al. [1] shows that the “crust” or the boundary of a polygon can be
extracted from an unstructured set of points provided the data points
are well sampled. However it requires the additional computation of
the Voronoi diagram after having added the Voronoi vertices of the
original sample points as generators. It is thus a two step process.

Further research by Gold [5] leads to a one-step border (crust) ex-
traction algorithm. In a Delaunay triangulation, each Delaunay edge
is adjacent to two triangles and the circumcircles of these triangles are
the Voronoi vertices. A Voronoi edge connecting these two circumcen-
ters is the dual edge to the Delaunay edge considered here. According
to [5], a Delaunay edge is a part of the border if it has a circle that does
not contain any Voronoi vertex. Furthermore, those Delaunay edges
that are not the part of the border set have their dual Voronoi edges
as being part of the skeleton.

Gold and Snoeyink [6] further simplify their method and show that
the boundary can be extracted in a single step. Gold [5] discusses
about “anti-crust” in the context of skeleton extraction citing a brief
introduction of this term in [1]. The idea behind getting the skeleton
is that a Voronoi edge is a part of the skeleton if its corresponding
dual Delaunay edge is not a part of the border set (crust) and it lies
completely within the selected object. Thus, selecting the Voronoi
edges lying inside the selected object that are dual of the non-crust
Delaunay edges should give us the skeleton (see Figure 1). The Voronoi
edges thus selected form a tree structure called the “anti-crust” [5], that
extends toward the boundary but does not cross it.

The anti-crust of an object, as described above, forms a tree like
structure that contains the skeleton. Once all the Delaunay edges be-
longing to the border set or the crust are identified using the condition
given by [5], it is easy to identify the Voronoi edges belonging to the
anti-crust. In Figure 2, consider the Delaunay triangulation (dashed
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Figure 2. Anti-crust from the crust.

Figure 3. Hair around the skeleton composed of mul-
tiple edges.

edges), the corresponding Voronoi diagram (dotted edges) and the crust
edges (solid thick edges).

Once the anti-crust is identified, an appropriate pruning method can
be applied to get rid of the unwanted edges, that are the main problem
of this kind of approach. The “hairs” around the skeleton result from
the presence of three adjacent sample points whose circumcircle does
not contain any other sample point - either near the end of a main
skeleton branch; or at locations on the boundary where there is minor
perturbation because of raster sampling [5] (see Figure 3). The problem
of identifying skeleton edges now reduces to reasonably pruning the
anti-crust. A skeleton retraction scheme suggested by [7] gets rid of
the hairs and also results in smoothing of the boundary of the object.
Ogniewicz [10] presents an elaborate skeleton pruning scheme based on
various residual functions. Thus a hierarchic skeleton is created which
is good for multiscale representation.

In this paper, we show the graph isomorphism between the medial
axis of a 2D object and dual of the Delaunay graph. The dual of the
Delaunay graph considered here is the the one with faces of the De-
launay triangles replaced by their isobarycenters. An edge in the dual
graph joins two such isobarycenters of two adjacent triangles. Every
vertex of the Delaunay triangulation has a corresponding polygon in
the dual graph formed by the dual edges. We formulate rules to ad-
dress singularities in computation of skeletons. The rules also handle
degenerate cases where more than three vertices in the Delaunay graph
are cocircular. Application of these rules gives rise to a valid and ro-
bust skeleton. We apply these rules to generate skeletons of various
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objects. The resulting skeletons are correct up to the raster sampling
of the object concerned.

1. Preliminaries

Definition 1. (Medial axis) The medial axis of a closed and bounded
set X ⊂ R2 is the set of all centers of maximal radius circles inscribed
in X.

Let P = {pi, i = 1, ...,m} be a set of points of R2.

Definition 2. (Voronoi region) The Voronoi region V (pi,P) of pi ∈ P
with respect to the set P is: V (pi,P) = {x ∈ R2|∀pj ∈ P , pj 6= pi →
d (x, pi) < d (x, pj)}.

Definition 3. (Voronoi diagram) The Voronoi diagram of P is the
union V (P) =

⋃
pi∈P ∂V (pi,P) of all Voronoi region boundaries.

Definition 4. (Delaunay graph) The Delaunay graph DG (P) of P is
the dual graph of V (P) defined as follows:

• the set of vertices of DG (P) is P ,
• for each edge of V (P) that belongs to the common boundary

of V (pi,P) and of V (pj,P) with pi, pj ∈ P and pi 6= pj, there
is an edge of DG (P) between pi and pj and reciprocally, and
• for each vertex of V (P) that belongs to the common bound-

ary of V (pi1 ,P),. . . ,V (pi4 ,P), with ∀k ∈ {1, ..., } , pik ∈ P all
distinct, there exists a complete graph K4 between the pik , k ∈
{1, ..., 4}, and reciprocally.

2. Our medial axis approach

This is our main contribution where we exhibit the graph isomor-
phism between the dual graph of the Delaunay graph and the medial
axis.

Since the vertices of the Delaunay graph are sample points located
on the boundary of the object, the boundary of the objects is a subset
of the Delaunay graph. Let us now consider the subgraph IDG of the
Delaunay graph DG that lies in the interior or the boundary of the
objects. Now consider the following dual graph DIDG of the graph
IDG, constructed by applying the following rules in order:

• the vertices of DIDG are the isobarycenters of the vertices of
each one of the triangles of IDG that do not belong to a com-
plete subgraph of at least 4 vertices of IDG (that are cocircular)
(see Fig 4(a));
• for each complete subgraph of at least 4 vertices of IDG (that

are cocircular), the corresponding subgraph of DIDG is re-
duced to a point (see Fig 4(b));
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• for each set E of edges e1...ek, k > 2 of the boundary of IDG
that share one common vertex v that is a vertex of a complete
subgraph K of at least 4 vertices of IDG, there is a set of edges
of DIDG that link v to each one of the isobarycenters of the
triangles t1...tj such that ti ∈ IDG and ti has two of its edges
in E that are not edges of K, and there is one edge of DIDG
that links v to the center of the circumcircle of the vertices of
K (see Fig 4(c));
• for each set E of edges e1...ek, k > 2 of the boundary of IDG

that share one common vertex v that is not a vertex of a com-
plete subgraph of at least 4 vertices of IDG, there is a set of
edges of DIDG that link v to each one of the isobarycenters
of the triangles t1...tj such that ti ∈ IDG and ti has two of its
edges in E (see Fig 4(d));
• for each edge e that is not on the boundary of IDG and that

does not link two vertices of a complete subgraph of at least 4
vertices of IDG, there exists an edge of DIDG that links the
isobarycenters of the vertices of each one of the triangles that
share e (see Fig 4(e));
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Figure 4. Rules.
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Proposition 5. The graph DIDG is isomorphic to the medial axis of
the boundary of IDG.

Proof. We call ramification vertices, the vertices of DIDG that have a
degree greater than 2. We call dangling vertices, the vertices of DIDG
that have degree 1.

• The dangling vertices of DIDG correspond to triangles of IDG
that have two of their edges on the boundary of DIDG (which
are therefore adjacent). The corresponding vertices of the me-
dial axis are the centers of maximal circles that touch two ad-
jacent edges of the boundary of IDG (see Fig 5(a)).
• The ramification vertices of DIDG correspond either to the

common vertex of a set E of edges e1...ek, k > 2 of the bound-
ary of IDG, or to the isobarycenters of the triangles of DIDG
that have no edge in the boundary of IDG. The later kind of
ramification vertices (that we will call type I ramification ver-
tices) correspond to Voronoi vertices that are at the same dis-
tance with respect to 3 distinct vertices on 3 distinct portions of
the boundary of IDG. The earlier kind of ramification vertices
(that we will call type II ramification vertices) correspond to
singular points of the boundary of IDG (see Fig 5(b)).
• The internal vertices on the paths between two type I ramifi-

cation vertices of DIDG correspond to triangles of IDG that
have one edge in the boundary of IDG. The edges in such paths
link isobarycenters of triangles of IDG that have their edge in
the boundary of IDG on different portions of the boundary
of IDG. These edges correspond to edges of the medial axis,
whose points are the centers of maximal circles that touch two
different portions of the boundary of IDG (see Fig 5(c)).
• The internal vertices on paths between one type I ramification

vertices of DIDG and a dangling vertex of DIDG correspond
to triangles of IDG that have one edge in the boundary of
IDG. Again, the edges in such paths link isobarycenters of
triangles of IDG that have their edge in the boundary of IDG
on different portions of the boundary of IDG. Again, these
edges correspond to edges of the medial axis, whose points are
the centers of maximal circles that touch two different portions
of the boundary of IDG (see Fig 5(d)).
• The internal vertices on paths between a type II ramification

vertex and a type I ramification vertex correspond (like inter-
nal vertices between type I ramification vertices) to triangles of
IDG that have one edge in the boundary of IDG, except for the
vertex that is connected to the type II ramification vertex by
a single edge, which corresponds to a triangle of IDG that has
two of its edges on the boundary of DIDG (which are therefore
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adjacent). Again, the edges in such paths link isobarycenters
of triangles of IDG that have their edge in the boundary of
IDG on different portions of the boundary of IDG, or link
the isobarycenter of a triangle that has two of its edges on the
boundary of IDG. Again, these edges correspond to edges of
the medial axis, whose points are the centers of maximal cir-
cles that touch either two different portions of the boundary
of IDG, or two portions of the boundary of IDG that have a
common singular vertex (see Fig 5(e)).
• The internal vertices on paths between a type II ramification

vertex of DIDG and a dangling vertex of DIDG correspond
(like internal vertices between type I ramification vertices) to
triangles of IDG that have one edge in the boundary of IDG,
except for the vertex that is connected to the type II ramifi-
cation vertex by a single edge, which corresponds either to a
triangle of IDG that has two of its edges on the boundary of
DIDG (which are therefore adjacent), or to the circumcircle of
the vertices of a complete subgraph K of 4 or more cocircular
vertices of IDG. Again, the edges in such paths link isobarycen-
ters of triangles of IDG that have their edge in the boundary
of IDG on different portions of the boundary of IDG, or link
the isobarycenter of a triangle that has two of its edges on the
boundary of IDG, or link a singular vertex of IDG with the
center of a circumcircle of at leat 4 cocircular vertices of IDG.
Again, these edges correspond to edges of the medial axis, whose
points are the centers of maximal circles that touch either two
different portions of the boundary of IDG, or two portions of
the boundary of IDG that have a common singular vertex (see
Fig 5(f)).

Thus, the graph DIDG is isomorphic to the medial axis of the bound-
ary of IDG. �

3. Segmentation

The segmentation method adopted here is the one provided by [3]
which is based on feature space analysis.

Feature space analysis is used extensively in image understanding
tasks. [3] provide a comparatively new and efficient segmentation al-
gorithm that is based on feature space analysis and relies on the mean-
shift algorithm to robustly determine the cluster means. A feature space
is a space of feature vectors. These features can be object descriptors
or patterns in the case of an image. As an example, if we consider a
color image having three bands (red, green, and blue), then the image
we see as intensity values plotted in Euclidean XY space is said to be in
image space. Consider a three dimensional space with the axes being
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Figure 5. Proposition.

the three bands of the image. Each color vector corresponding to a
pixel from the image can be represented as point in the feature space.

4. Automated approach to skeletonization

The general approach adopted here is:

(1) Segment a color image into prominent objects.
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(2) Ask the user if he or she wants to process all the objects inde-
pendently (automatic process) or select an object (semi-automatic
process).

(3) Collect sample points for each object to be processed.
(4) Construct the Delaunay triangulation and its dual from the

sample points.
(5) Extract the medial axis using rules provided in section 2.

Once objects are defined as homogeneous regions by the segmenter,
the next step is to either select them all or some of them. To achieve
this, the user is allowed to select a region on the image. If an object
is composed of more than one regions then multiple object selection
can be made and regions combined to form a single object. A wrongly
selected region can be removed from the selection. The user input is
processed and the selected region is highlighted and selected for next
processing.

Once we have an object or all the objects chosen from an image, the
next step is to sample its boundary in order to generate points used to
construct the Delaunay triangulation. The Delaunay triangulation of
the sample points is computed using the incremental algorithm given
by [9] which is stored in the quad-edge data structure. This is followed
by computation of the Voronoi vertices for all faces of the triangulation.
The boundary of the object is extracted using the criteria given by [5].
The dual of the Delaunay graph mentioned in Section 2 is computed.
The medial axis is obtained by replacing the edges of the dual of the
Delaunay graph by corresponding edges of the Voronoi diagram.

5. Time Complexity

Comaniciu [4, p. 21] shows that the complexity of the probabilistic
mean shift type algorithm that is employed in the segmentation algo-
rithm [3] is O(mn), with m � n where n is the number of pixels in
the input image (or the number of feature vectors in the feature space)
and m is the number of vectors in the initial feature palette or clusters.
Comaniciu [4, p. 29] claims that the segmentation algorithm is linear
with the number of pixels in the image. The complexity of the com-
putation of the Delaunay graph IDG, the dual DIDG and the medial
axis is O(l log l) where l is the number of sampled pixels. Overall, the
time complexity can be said to be O(max{mn, l log l}).

6. Results

We present the result of the computation medial axis on different
kinds of images: a photograph (selected objects, see Figure 6), a remote
sensing image (selected objects, see Figure 7) and a scanned map (all
the objects, see Figure 8).
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(a) Original image (b) The boundaries of the selected ob-
jects, the dual graph and the medial
axis

(c) The boundaries, the Delaunay
graph, the dual graph and the medial
axis of a small portion of the image

Figure 6. The medial axis of a photograph of the first author

7. Conclusions

We have shown in this paper how the medial axis of an object can
be derived by following simple rules to avoid disconnected and degen-
erate skeletons. We showed that the resulting skeleton extracted using
these rules are isomorphic to the medial axis. Further we design an
effective methodology for automated vectorization and simplification
of features in color images and implement our medial extraction in it.
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(a) Original image (b) The border (blue) of the selected
object, the dual graph (red) and the
skeleton (black)

(c) The border (blue), the Delaunay
graph (magenta), the dual graph (red)
and the skeleton (black) of a small por-
tion of the image

Figure 7. The medial axis of a scanned image of the
map of the North of Denmark

The methodology enables the automated extraction of the boundaries
and the medial axis of an object in a single step.

The applicability of the methodology to color images has been shown
by on several kinds of images. Coastline delineation, snow cover map-
ping, cloud detection, and dense forest mapping are a few areas where
satisfactory results can be obtained.
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