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Abstract. Circles are frequently used for modelling the growth of par-
ticle aggregates through the Voronoi diagram of circles, that is a special
instance of the Johnson-Mehl tessellation. The Voronoi diagram of a set
of sites is a decomposition of space into proximal regions. The proximal
region of a site is the locus of points closer to that site than to any other
one. Voronoi diagrams allow one to answer proximity queries after locat-
ing a query point in the Voronoi zone it belongs to. The dual graph of
the Voronoi diagram is called the Delaunay graph. In this paper, we first
show a necessary and sufficient condition of connectivity of the Voronoi
diagram of circles. Then, we show how the Delaunay graph of circles (the
dual graph of the Voronoi diagram of circles) can be computed exactly,
and in a much simpler way, by computing the eigenvalues of a two by
two matrix. Finally, we present how the Voronoi diagram of circles can
be used to model the growth of particle aggregates. We use the Poisson
point process in the Voronoi diagram of circles to generate the Johnson-
Mehl tesselation. The Johnson-Mehl model is a Poisson Voronoi growth
model, in which nuclei are generated asynchronously using a Poisson
point process, and grow at the same radial speed. Growth models pro-
duce spatial patterns as a result of simple growth processes and their
visualization is important in many technical processes.
Keywords: Voronoi diagram of circles, Visualization of nucleation and
growth of particles, Johnson-Mehl tessellations, growth models
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1 Introduction

The proximity queries among circles could be effectively answered if the
Delaunay graph for sets of circles could be computed in an efficient and
exact way. This would require the embedding of the Delaunay graph and
the location of the query point in that embedded graph. The embedded
Delaunay graph and the Voronoi diagram are dual subdivisions of space,
which can be stored in a quad-edge data structure [GS85].

The first and most explored Voronoi diagram is the Voronoi dia-
gram for a set of points [Vor07,Vor08,Vor10] in the Euclidean plane or
in the three-dimensional Euclidean space (see Figure 1.1). Voronoi dia-
grams have been generalised in many different ways including by mod-
ifying the space in which they are embedded (see [Auren87,OBSC01]
for a general survey of Voronoi diagrams): higher dimensional Euclidean
spaces, non Euclidean geometries (e.g. Laguerre geometry, hyperbolic ge-
ometry, etc.). Fewer generalisations of Voronoi diagrams correspond to
extending the possible sites from points to circles, i.e., the additively
weighted Voronoi diagram (see Figure 1.2) [AMG98b,AMG98a] and the
Voronoi diagram for circles (set of sites comprising circles, see Figure
1.3) [KKS01b,KKS01a,KKS00]. The definition of the weighted Voronoi
diagram differs from the definition of the ordinary one in that the Eu-
clidean distance is replaced by a weighted distance. In the case of the
additively weighted Voronoi diagram, the weighted distance between a
point and a generator is the Euclidean distance minus the weight of the
generator, but since it must be a distance, it has to be always positive
or zero, and thus the additively weighted distance is not defined in the
interior of the weight circles (circles centred on a generator and of radius
the weight of the generator). The additively weighted Voronoi diagram
has been extensively studied by Ash and Bolker [AB86] and Aurenham-
mer [Auren88] under the name of hyperbolic Dirichlet tessellations and
Power Voronoi diagrams, but till [AMG98b] and [AMG98a], there was no
dynamic algorithm for constructing the additively weighted Voronoi dia-
gram. This work solves the robustness issue in the work of Anton, Mioc
and Gold [AMG98b,AMG98a] and extends it to the Voronoi diagram of
circles. This robustness fix and extension are achieved by providing an
exact conflict locator.

The exact computation of the Additively Weighted Voronoi diagram
has not been addressed until Anton et al. [ABMY02]. That paper ad-
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Fig. 1.1. The ordinary Voronoi diagram (plain lines) of points (squares), and its topol-
ogy expressed by the Delaunay triangulation (dashed lines)
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dressed the exact predicate for the off-line construction of the dual graph
of the Additively Weighted Voronoi diagram from the dual of the Power
Voronoi diagram of spheres by using the relationship between the Ad-
ditively Weighted Voronoi diagram in the plane and the Power Voronoi
diagram4 of spheres in the three-dimensional space. In their independent
work, Karavelas and Emiris [KE02,EK06,KE03] provided several exact
predicates of maximum degree 16 for achieving the same “in-circle/orien-
tation/edge-conflict-type/difference of radii” test as we do in a single
conflict locator presented in this paper. They reduced the degree of their
predicate from 28 to 20 and then to 16 using Sturm sequences and in-
variants. Their work is more limited in scope than ours, because they
compute the Additively Weighted Voronoi diagram (or Appolonius dia-
gram) rather than the Voronoi diagram of circles, and they assume the
circles never intersect (they mention this assumption could be lifted, but
they provide no justification), and they also assume no three circles can
have a common tangent, or equivalently, no empty circle has infinite ra-
dius. The difference between the Additively Weighted Voronoi diagram
(or Appolonius diagram) and the Voronoi diagram of circles is that the
Additively Weighted Voronoi diagram (or Appolonius diagram) is based
on a distance that is not defined in the interior of the (weight) circles,
while the Voronoi diagram of circles is based on a distance that is defined
everywhere. Thus, there can not be a point of the Additively Weighted
Voronoi diagram in the interior of a circle, because its distance to the
enclosing circle is not defined. Thus intersecting circles are not permitted
and circles contained in other circles are not permitted either. Indeed,
a point of the Voronoi diagram in the interior of the enclosing circle
would not have a defined distance to the enclosing circle. The approach
adopted in [KE02,EK06,KE03] is also more complex than ours, because
they compute exactly not only the Delaunay graph, but also the Addi-
tively Weighted Voronoi diagram, which unlike they state, is not required
in the applications. Only the exact computation of the Delaunay graph of
circles is required for practical applications, because the Delaunay graph
gives the topology of circles. Finally, our approach is much simpler, be-
cause we obtain the output of the predicate (in fact a Delaunay graph
conflict loctor) by computing the sign of the eigenvalues of a simple two
by two matrix.

4 The Power Voronoi diagram is a generalised Voronoi diagram where sites are hyper-
spheres and the distance between a point and a site is the power of that point with
respect to that site [Auren87].
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In this paper, we also provide an application of the Voronoi diagram
of circles to the visualisation of the growth of particle aggregates, which
justifies the motivation for not only computing the Additively Weighted
Voronoi (or Appolonius) diagram, but also the Voronoi diagram of circles.
A comprehensive overview of the Delaunay and Voronoi methods for non-
crystalline structures was provided by Medvedev [Med00], and Anishchik
and Medvedev [AM95] were the first ones in 1995 to provide the solution
of Appolonius problem for sphere packing in three dimensions. The ap-
plication of the Additively Weighted Voronoi diagram to visualization of
the growth of particle aggregates is based on particle statistics. Particle
statistics play an important role in many technical processes (in the in-
dustrial production of materials where the phase transition from liquid
to solid is a part of the technical process, for example production of met-
als and ceramic materials) [Stoya98], material science, plant ecology, and
spatial analysis. Due to the lack of efficient algorithms for their visualiza-
tion only the “set-theoretic approach in particle statistics” [Stoya98] has
been used as a method of visualization of spatial growth processes in the
past.

Growth models produce spatial patterns as a result of simple growth
processes operating with respect to a set of n points (nucleation sites),
P = {p1, p2, ...pn} at positions x1, x2, ..., xn, respectively in Rm or a
bounded region of Rm (m = 2, 3). The growth processes such as agglom-
eration, aggregation, packing, etc. lead in a natural way to the Poisson
Voronoi tessellation [OBSC01], [Stoya98] and to the Johnson-Mehl tessel-
lation when the members of the generator set P are not contemporaneous
[OBSC01].

The Johnson-Mehl model has been introduced in [JM39] for modelling
the growth of particle aggregates. The Johnson-Mehl model is a Poisson
Voronoi growth model, in which nuclei are generated asynchronously us-
ing a Poisson point process [OBSC01], and grow at the same radial speed
v. Each generator Pi = (−→pi , ti) has both a planar location (its position
vector) and an associated birth time ti (ti ≥ 0). The Johnson-Mehl tessel-
lation can be considered equivalent to a dynamic version of an additively
weighted Voronoi diagram [AMG98a], in which the weight reflects the
arrival time of the point in R2 [OBSC01].

This paper is organised as follows. In Section 2, we present the defi-
nitions of the (generalised) Voronoi diagram of a set of sites and its dual
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Delaunay graph of a set of sites, and the Delaunay graph conflict locator.
In Section 3, we provide necessary and sufficient conditions for construc-
tion of the Delaunay graph of circles and for connectivity of the Voronoi
diagram of circles. In Section 4, we present the Delaunay graph conflict
locator, both in the case of the Additively Weighted Voronoi diagram,
and the Voronoi diagram of circles. In Section 5, we present the appli-
cation of the Voronoi diagram to the modelling and the visualisation of
the growth of particle aggregates. Finally, we present the conclusions and
future work in Section 6.

Fig. 1.2. An additively Weighted Voronoi diagram, its dual graph and the empty cir-
cumcircles

2 Preliminaries

Voronoi diagrams are irregular tessellations of the space, where space
is continuous and structured by discrete objects [AK00,OBSC01]. The
Voronoi diagram [Vor07,Vor08,Vor10] (see Figure 1.1) of a set of sites is a
decomposition of the space into proximal regions (one for each site). Sites
were points for the first historical Voronoi diagrams [Vor07,Vor08,Vor10],
but in this paper we will explore sets of circles. The proximal region cor-
responding to one site (i.e. its Voronoi region) is the set of points of the
space that are closer to that site than to any other site of the set of sites
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Fig. 1.3. The Voronoi diagram, the Delaunay graph and the empty circumcircles of
circles

[OBSC01]. We will recall now the formal definitions of the Voronoi dia-
gram and of the Delaunay graph. For this purpose, we need to recall some
basic definitions.

Definition 21. (Metric) Let M be an arbitrary set. A metric on M is a
mapping d : M×M → R+ such that for any elements a, b, and c of M , the
following conditions are fulfilled: d (a, b) = 0 ⇔ a = b, d (a, b) = d (b, a),
and d (a, c) ≤ d (a, b) + d (b, c). (M,d) is then called a metric space, and
d (a, b) is the distance between a and b.

Remark 22. The Euclidean space RN with the Euclidean distance δ is a
metric space

(
RN , δ

)
.

Let M = RN , and δ denote a distance between points. Let S =
{s1, ..., sm} ⊂ M,m ≥ 2 be a set of m different subsets of M , which we
call sites. The distance between a point x and a site si ⊂ M is defined as
d (x, si) = infy∈si {δ (x, y)}.

Definition 23. (Bisector) For si, sj ∈ S, si )= sj, the bisector B (si, sj)
of si with respect to sj is: B (si, sj) = {x ∈ M |d (x, si) = d (x, sj)}.

Definition 24. (Influence zone) For si, sj ∈ S, si )= sj, the influence
zone D (si, sj) of si with respect to sj is: D (si, sj) = {x ∈ M |d (x, si) <
d (x, sj)}.
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Definition 25. (Voronoi region) The Voronoi region V (si,S) of si ∈ S
with respect to the set S is: V (si,S) =

⋂
sj∈S,sj "=si

D (si, sj).

Definition 26. (Voronoi diagram) The Voronoi diagram of S is the union
V (S) =

⋃
si∈S ∂V (si,S) of all region boundaries (see example on Figure

1.3).

Definition 27. (Delaunay graph) The Delaunay graph DG (S) of S is
the dual graph of V (S) defined as follows:

– the set of vertices of DG (S) is S,
– for each (N − 1)−dimensional facet of V (S) that belongs to the com-

mon boundary of V (si,S) and of V (sj,S) with si, sj ∈ S and si )= sj,
there is an edge of DG (S) between si and sj and reciprocally, and

– for each vertex of V (S) that belongs to the common boundary of
V (si1,S),. . . ,V

(
siN+2,S

)
, with ∀k ∈ {1, ...,N + 2} , sik ∈ S all dis-

tinct, there exists a complete graph KN+2 between the sik , and recip-
rocally.

The one-dimensional elements of the Voronoi diagram are called Vo-
ronoi edges. The points of intersection of the Voronoi edges are called
Voronoi vertices. The Voronoi vertices are points that have at least N +
1 nearest neighbours among the sites of S. In the plane, the Voronoi
diagram forms a network of vertices and edges. In the plane, when sites are
points in general position, the Delaunay graph is a triangulation known
as the Delaunay triangulation. In the plane, the Delaunay graph satisfies
the following empty circle criterion: no site intersects the interior of the
circles touching (tangent to without intersecting the interior of) the sites
that are the vertices of any triangle of the Delaunay graph.

Once the Voronoi region a query point belongs to has been identified,
it is easy to answer proximity queries. The closest site from the query
point is the site whose Voronoi region is the Voronoi region that has
been identified. The Voronoi diagram defines a neighbourhood relation-
ship among sites: two sites are neighbours if, and only if, their Voronoi
regions are adjacent, or alternatively, there exists an edge between them
in the Delaunay graph.

The exact computation of the Delaunay graph is important for two
reasons. By exact computation, we mean a computation whose output
is correct. First, unlike the Voronoi diagram, the Delaunay graph is a
discrete structure, and thus it does not lend itself to approximations.
Second, the inaccurate computation of this Delaunay graph can induce
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inconsistencies within this graph (see Section 4.2), which may cause a
program that updates this graph to crash. This is particularly true for
the randomised incremental algorithm for the construction of the Voronoi
diagram of circles. In order to maintain the Delaunay graph after each
addition of a site, we need to detect the Delaunay triangles that are not
empty any longer, and we need to detect which new triangles formed
with the new site are empty, and thus valid. In the reminder, sites are
generators of the Voronoi diagram or the Delaunay graph, while points
are any location in the plane unless specified otherwise. The algorithm
that certifies whether the triangle of the Delaunay graph whose vertices
are 3 given sites is empty (i.e. does not contain any point of a given site
in its interior) or not empty is used for checking which old triangles are
not empty any longer and which new triangles formed with the new site
are empty, and thus valid. This algorithm is called the “Delaunay graph
conflict locator” in the reminder of this paper.

When the old triangles are checked, its input is a 4-tuple of sites,
where the first three sites define an old triangle, and the fourth site is the
new site being inserted. When the new triangles are checked, its input is
also a 4-tuple of sites, where the first three sites define a new triangle, the
first two sites being linked by an existing Delaunay edge, and the fourth
site forms an old Delaunay triangle with the first two sites. Its output
is the list of all the Voronoi vertices corresponding to the 1−dimensional
facets of the Delaunay graph having the first 3 sites as vertices whose
circumcircles contain a point of the fourth site in their interior, and a
value that certifies the presence of each Voronoi vertex in that list. The
fact that a circumcircle (the circle that is externally tangent to three
given circles) is not empty is equivalent to the triangle formed by those
three circles being not Delaunay, and this is called a conflict. Thus, it
justifies the name of “Delaunay graph conflict locator”. In the context of
the ordinary Voronoi diagram of points in the plane, the concept that is
analogous to the Delaunay graph conflict locator is the Delaunay graph
predicate, which certifies whether a triangle of the Delaunay triangulation
is such that its circumcircle does not contain a given point.

The exact knowledge of the Delaunay graph for curved objects may
sound like a purely theoretical knowledge that is not central in practical
applications. This is not always the case in some applications. These appli-
cations include material science, metallography, spatial analyses and VLSI
layout. The Johnson-Mehl tessellations (which generalise several weighted
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Voronoi diagrams) [OBSC01] play a central role in the Kolmogorov-
Johnson-Mehl-Avrami [JM39,Kol37] nucleation and growth kinetics the-
ory. The Kolmogorov theory provides an exact description of the ki-
netics during the heating and cooling processes in material science (the
Kolmogorov equation [JM39,Kol37]). The exact knowledge of the neigh-
bourliness among molecules is central to the prediction of the formation
of particle aggregates. In metallography, the analysis of precipitate sizes
in aluminium alloys through Transmission Electronic Microscopy [Des03,
Section 1.2.2] provides an exact measurement of the cross sections of these
precipitates when they are “rodes” with a fixed number of orientations
[Des03, Section 1.2.2]. In VLSI design, the second order Voronoi diagram
of the layout is used in the computation of the critical area, a measure
of a circuit layout’s sensitivity to spot defects [CPX02, Section 1]. An
important concern on critical area computation is robustness [CPX02,
Section 1].

Another limitation of approximative algorithms for the computation
of the Delaunay graph is that when approximate computations are per-
formed on objects defined approximately (within some geometric toler-
ance), the propagation of the errors can be critical, especially if the final
computation involves approximate intermediary computations.

Finally, the exact computation of the Delaunay graph participates to
the recent move in the development of numerical and simulation software
as well as computer algebra systems to exact systems [BCSS98].

3 The necessary and sufficient conditions of construction
of the Delaunay graph of circles and of connectivity of
the Voronoi diagram of circles

In this section, we will examine how the Delaunay graph conflict locator
can be used to maintain the Voronoi diagram of circles in the plane as
those circles are introduced one by one. Finally, we will give a necessary
and sufficient condition for the connectivity of the Voronoi diagram of
circles in the projective plane that has a direct application in the repre-
sentation of spatial data at different resolutions.

Knowing the Voronoi diagram V (S) of a set S={s1, . . . , sm} ⊂ R2 of
at least two circles (m > 1) and its embedded Delaunay graph DG (S)
stored in a quad-edge data structure, we would like to get the Voronoi
diagram V (S ∪ {sm+1}), where sm+1 is a circle of R2. In all this section,
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we will say that a circle C touches a circle si if, and only if, C is tangent
to si and no point of si is contained in the interior of C.

The Voronoi edges and vertices of V (S) may or may not be present
in V (S ∪ {sm+1}). Each new Voronoi vertex w induced by the addition
of sm+1 necessarily belongs to two Voronoi edges of V (S), because two
of the three closest sites to w necessarily belong to S. The new Voronoi
edges induced by the addition of sm+1 will clearly connect Voronoi ver-
tices of V (S) to new Voronoi vertices induced by the addition of sm+1 or
new Voronoi vertices between themselves.

Any of these later Voronoi edges e′ must be incident to one of the
former Voronoi edges at each extremity of e′ (because the Voronoi ver-
tex at each extremity of e′ belongs to only one new Voronoi edge, i.e.
e′). Any of the former Voronoi edges e must be a subset of a Voronoi
edge of V (S), since e must be a new Voronoi edge between sites of S
(otherwise the Voronoi vertex belonging to V (S) at one of the extremi-
ties of e by the definition of e would be a new Voronoi vertex). Thus, to
get V (S ∪ {sm+1}), we need to know which Voronoi vertices and edges
of V (S) will not be present in V (S ∪ {sm+1}), which Voronoi edges of
V (S) will be shortened in V (S ∪ {sm+1}) and which new Voronoi edges
will connect new Voronoi vertices between themselves.

We can test whether each Voronoi vertex v of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that v is a Voronoi vertex of si, sj and
sk. v will remain in V (S ∪ {sm+1}) if, and only if, no point of sm+1 is
contained in the interior of the circle centred on v that touches si, sj and
sk. This is a sub-problem of the Delaunay graph conflict locator that can
be tested by giving si, sj, sk and sm+1 as input to the Delaunay graph
conflict locator, and then retain only the solutions where the Voronoi ver-
tex is v.

We can test whether each Voronoi edge e of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that e is a locus of points having si and
sj as closest sites. e will disappear entirely from V (S ∪ {sm+1}) if, and
only if, a point of sm+1 is contained in the interior of each circle centred
on e and touching si, sj and each common neighbour sk to si and sj in
DG (S) in turn. This can be tested by giving si, sj, sk and sm+1 as input
to the Delaunay graph conflict locator and then retaining only the solu-
tions where the Voronoi vertex belongs to e. e will be shortened (possibly
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inducing one or more new Voronoi edges) in V (S ∪ {sm+1}) if, and only
if, there exists Voronoi vertices of si, sj and sm+1 on e and there is no
point of any common neighbour sk to si and sj in DG (S) in the interior
of a circle centred on e and touching si, sj and sm+1. The centre of each
one of such circles will be a new Voronoi vertex in V (S ∪ {sm+1}). This
can be tested by giving si, sj, sm+1 and sk as input to the Delaunay graph
conflict locator and then retaining only the solutions where the Voronoi
vertex belongs to e.

The Delaunay graph conflict locator is sufficient to maintain the Voro-
noi diagram of circles. Tests might be limited to edges and vertices on the
boundaries of the Voronoi regions V (si,S) , si ∈ S that intersect sm+1

and of the Voronoi regions V (sj,S) , sj ∈ S adjacent to a Voronoi region
V (si,S). Indeed, a point (and thus a circle) can steal its Voronoi region
only from the Voronoi region it belongs to and the adjacent Voronoi re-
gions.

We will finish this section with a necessary and sufficient condition
for the connectivity of the Voronoi diagram of connected circles in the
projective plane. This result allows the characterisation of dangling edges
in the Delaunay graph corresponding to the presence of closed edges in
the Voronoi diagram. In order to proceed, let us recall some notations
used in point set topology: let s denote the closure of s, and

◦
s denote the

interior of s in the sense of the point set topology in R2. Note that if s
bounds a closed domain then the interior of s is meant to be the interior
of the closed domain bounded by s.

Proposition 31. (Connectivity of the Voronoi diagram in the plane) The
Voronoi diagram V (S) of a set S = {s1, . . . , sm} ⊂ R2 of at least two
connected circles (m > 1) considered in P2 is not connected if, and only
if, there exist a subset I of [1, . . . ,m] and one index j of [1, . . . ,m] such
that ∀i ∈ I, si ⊂

◦
sj and ∀k ∈ [1, . . . ,m] \ I, si ∩ sk = sj ∩ sk = ∅.

Proof. If: Assume there exist a subset I of [1, . . . ,m] and one index j

of [1, . . . ,m] such that ∀i ∈ I, si ⊂ ◦
sj and ∀k ∈ [1, . . . ,m] \ I, si ∩ sk =

sj ∩ sk = ∅. Let sl ∈ S with l ∈ [1, . . . ,m] \ I. Let S =
⋃

i∈I si. Since
S ⊂ ◦

sj, any circle touching both a si, i ∈ I and sj must be contained in sj.
Since S∩sl = sj∩sl = ∅, no circle can touch each of an si, i ∈ I, sj and sl.
Thus, there is no point that has a si, i ∈ I, sj and sl as nearest neighbours.
Thus, there is no Voronoi vertex of a si, i ∈ I, sj and sl. Since there is no
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Voronoi vertex of a si, i ∈ I, sj and an sl with l ∈ [1, . . . ,m] \ I, there are
no Voronoi vertices on the bisector of S and sj. Since S ∩ sl = S ∩ sl = ∅,
any circle centred on the bisector of S and sj and touching both S and sj

does not intersect any site sk with k ∈ [1, . . . ,m] \ I. Thus, the bisector
of S and sj is contained in V (S). Since sj is connected and S ⊂ ◦

sj, the
bisector of S and sj is a closed curve. Thus, the Voronoi diagram of S is
not connected in P2.

Only if: Assume the Voronoi diagram of S is not connected in P2.
Then, V (S) has at least two connected components. Thus, at least one
of these connected components does not have points at infinity. Let us
consider the connected component (let us call it C1) that does not have
points at infinity. Since C1 is composed of Voronoi edges5, each edge in C1

must end at either a Voronoi vertex or a point at infinity. Since C1 does
not have any point at infinity, all Voronoi edges in C1 connect Voronoi
vertices. Thus C1 is a network of vertices and edges linking those vertices.
The regions that this network defines are Voronoi regions. Let D be the
union of the closure of those Voronoi regions. D is a closed set by its
definition. Let us consider now the circles sl, l ∈ L whose Voronoi regions
are contained in D. Let S =

⋃
l∈L sl. Thus S is a union of circles.

We will now consider S as a site instead of each one of the sl, l ∈ L.
The influence zone of S =

⋃
l∈L sl is clearly

◦
D, because the influence zone

of a union of circles is clearly the closure of the union of the Voronoi
regions of those circles. Let e = ∂D. It is a portion of the bisector of S
and another circle. Let us call it sj . If not all the bisector of S and sj was
contained in V (S), then e would end at Voronoi vertices (a point on the
Voronoi diagram has at least two closest sites) or the point at infinity,
a contradiction with e not being connected. Thus, the bisector of S and
of sj is contained in V (S), and it is equal to e. By the definition of e, e
must be a closed curve. Assume the positions of S and sj with respect to
e are not always the same. Then, S and sj must intersect. The bisector of
S and sj must have two branches near the intersection points (see Figure
3.1). Since e is a closed curve and S is contained in the interior of e, sj

must be closed, and the other branches must be unbounded (a contra-
diction with e not being connected in P2). Thus, the positions of S and
sj with respect to e are always the same along e. Since sj is connected,
S is contained in the interior of e and the positions of S and sj with

5 a one-dimensional component of the Voronoi diagram, which is also the locus of
points having two nearest sites
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respect to e are always the same along e, S ⊂ ◦
sj. Since e is the bisector

of S and sj and belongs to V (S), any circle centred on e and touching
both S and sj does not intersect any site sk with k ∈ [1, . . . ,m]\ I. Thus,
∀k ∈ [1, . . . ,m] \ I, si ∩ sk = sj ∩ sk = ∅.

Fig. 3.1. The relative position with respect to the bisector must be constant

The only cases of disconnected (considered in P2) Voronoi diagrams
correspond to one or more sites (circles) contained in the interior of an-
other site. This property has a direct application in Geographic Informa-
tion Systems. When the same region R bounded by a circle S is repre-
sented at different scales, the representation of the details inside R does
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not change the Voronoi diagram outside R. The edges of the Delaunay
graph corresponding to a disconnected Voronoi diagram (considered in
P2) are respectively dangling edges or cut edges (the Delaunay graph is
not bi-connected and removing a cut edge induces two connected compo-
nents). It is possible to detect if there exists one or more sites si, i ∈ I
contained in the interior of another site sj by checking that there exists
no Voronoi vertex of si, sj and any sk ∈ S distinct from si and sj. This
is again a subproblem of the Delaunay graph conflict locator.

4 The exact symbolic Delaunay graph conflict locator for
circles

We will first present the exact symbolic Delaunay graph conflict locator
for additively weighted points when weighted points are introduced one
by one, and then introduce what changes for circles. For this purpose,
we will present some preliminaries about Additively Weighted Voronoi
diagrams.

4.1 Preliminaries

Let N be the set of integers, R be the set of real numbers, and R2 be the
Euclidean plane. Let P = {P1, ..., PN} be the set of generators or sites,
where Pi is the weighted point located at pi ∈ R2 and of weight wi ∈ R.
Let Ci be the circle centred at pi and of radius wi, which we call weight
circle hereafter.

The definitions of bisector, influence zone, Voronoi region and Voronoi
diagram presented in Section 2 generalise to the case where the set of sites
S is a set of weighted points P, and the distance d (M,Pi) (called additive
distance) between a point M and a site Pi is d (M,Pi) = δ (M,pi) − wi,
where δ is the Euclidean distance between points.

The Voronoi region of Pi with respect to the set P is defined by:
V (Pi,P) =

{
M ∈ R2|∀j )= i : δ (M,pi) − wi < δ (M,pj) − wj

}
.

The Additively Weighted Voronoi diagram of P is defined by:
V (P) =

⋃
Pi∈P ∂V (Pi,P). The Additively Weighted Voronoi diagram

is illustrated in Figure 4.1: the weight circles are drawn as plain disks with
small holes at their centres, the Additively Weighted Voronoi diagram
is drawn in plain thick hyperbola segments, and the Delaunay graph is
drawn in dashed lines.
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Fig. 4.1. The Additively Weighted Voronoi diagram

The Additively Weighted Voronoi diagram defines a network com-
posed of edges (loci of points having two nearest neighbours), and vertices
(loci of points having three nearest neighbours).

The Additively Weighted Voronoi diagram is related to the Apollo-
nius Tenth problem. The Apollonius Tenth problem is to find a circle Γ
tangent to three given circles C1, C2, C3 (see Figure 4.2). For additively
weighted points, we will see later in this section that only the circles that
are either externally tangent to each of three given circles C1, C2, C3

or internally tangent to each of C1, C2, C3, are relevant to the Delau-
nay graph conflict locator. The centres of the circles that are solutions
to the Apollonius Tenth problem are the first example encountered in
this paper of generalised Voronoi vertices (a concept that we introduced
in [Anton04]). Informally, generalised Voronoi vertices are the centres of
circles tangent to N + 1 sites, where N is the dimension of the Euclidean
space.

Hereafter we will call the solutions of the Apollonius Tenth problem
Apollonius circles. The centres of the Apollonius circles that are either
externally tangent to each of three given circles C1, C2, C3 or internally
tangent to each of C1, C2, C3 are the first example encountered in this
paper of true Voronoi vertices (i.e. centres of circles that touch N +1 sites
where N is the dimension of the Euclidean space).
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Fig. 4.2. The Apollonius Tenth problem

4.2 The Delaunay graph conflict locator for additively
weighted points

In this subsection, we present an exact algebraic conflict locator for the
Delaunay graph of additively weighted points (i.e. the dual graph of the
Additively Weighted Voronoi diagram). The maximum degree of the poly-
nomials which need to be evaluated to compute this Delaunay conflict
locator is 16 (thus, we say that the degree of the conflict locator is 16).
This Delaunay graph conflict locator would be the core of a randomised
incremental algorithm for constructing the Additively Weighted Voronoi
diagram since the Additively Weighted Voronoi diagram is an abstract
Voronoi diagram [Kle89], and thus, it can be constructed with the ran-
domised incremental algorithm of Klein [Kle89].

The motivation for an exact conflict locator lies in the fact that with-
out an exact computation of the Delaunay graph of additively weighted
points, some geometric and topologic inconsistencies may appear. This is
illustrated with an example. The starting configuration is shown on Figure
4.3. There are three weighted points (whose corresponding weight circles
are drawn). The Delaunay graph is drawn in dashed lines. The Apollonius
circles tangent to the weight circles have been drawn in dotted lines. The
real configuration after addition of a fourth weighted point is shown on
Figure 4.4. The configuration that might have been computed by an ap-
proximate algorithm is shown on Figure 4.5: the difference between real
and perceived situations has been exaggerated to show the difference. The
old Apollonius circles have been adequately perceived to be invalid with
respect to the newly inserted weighted point. About the new Voronoi ver-
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tices, while on the right of the figure two new Voronoi vertices have been
identified as valid with respect to their potential neighbours, on the left of
the figure, only one Voronoi vertex has been identified as being valid with
respect to its potential neighbours. While the new Voronoi edge between
the middle and bottom weighted points can be drawn between the two
new Voronoi vertices of the new, middle and bottom weighted points;
the Voronoi edge between the top and new weighted points cannot be
drawn, because there is no valid Voronoi vertex on the left. There is an
inconsistency within the topology: there is one new Voronoi vertex (the
Voronoi vertex of the top new and middle weighted points) that cannot be
linked by a new Voronoi edge to any other new Voronoi vertex and thus,
that Voronoi vertex is incident to only two Voronoi edges. This additively
weighted Voronoi diagram might have been computed by an approxima-
tive algorithm that is not an additively weighted Voronoi diagram. Thus,
even if we perturbate the input weighted points, we will never get this
additively weighted Voronoi diagram.

Fig. 4.3. The starting configuration



19

Fig. 4.4. The real configuration after addition of the fourth weighted point (bold weight
circle)

We consider the maintenance of the Delaunay graph of additively
weighted points in an incremental way: we check the validity of all the
triangles of the Delaunay graph whose vertices are P1, P2, P3 with re-
spect to a newly inserted weighted point P4 [AKM02] or the validity of
all the triangles of the Delaunay graph whose vertices are P1, P2, where
the edge between P1 and P2 exists in the Delaunay graph, and the newly
inserted weight point P3 with respect to an existing point P4. Thus, the
input of the conflict locator is constituted by four points: the first three
are supposed to define a triangle in the Delaunay graph, and the last one
is the tested point. Let (xi, yi) be the coordinates of pi, for i = 1, 2, 3, 4.
There are two possible outcomes to the above test of validity: either the
triangles are valid with respect to the fourth weighted point and the tri-
angles must appear in the Delaunay graph, or one or two triangles are not
valid with respect to the fourth weighted point and those triangles will
not be present in the Delaunay graph. We can see an example of the later
case in Figure 4.6. A triangle having P1P2P3 as vertices is not valid with
respect to the weighted point P4, because the circle externally tangent to
both the weight circles C1, C2 and C3 (of weighted points C1, C2 and C3)
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VertexNo vertex

Fig. 4.5. The configuration computed by an approximate algorithm

contains a point of the weight circle C4 (of the weighted point P4). Thus,
it must not appear in the Delaunay graph.

When the old triangles are checked, the conflict locator consists of de-
termining which of the additively weighted Voronoi vertices of P1, P2 and
P3 will not remain after the insertion of P4. When the new triangles are
checked, the conflict locator consists of determining which new Voronoi
vertices of weighted points P1, P2 and the newly inserted weighted point
P3 will appear, where P1P2 is an old Delaunay edge. When the new trian-
gles are checked, this conflict locator tests the new triangle P1P2P4 with
respect to any point P4 such that P1P2P4 is an old Delaunay triangle.
In both cases, the Delaunay graph conflict locator is equivalent in turn
to the additive distance from which of the additively weighted Voronoi
vertices of P1, P2 and P3 to P4 is smaller than the additive distance of
that Voronoi vertex to P1 (or P2 or P3 (see Figure 4.6).

Any additively weighted Voronoi vertex I of P1, P2, and P3 with co-
ordinates (x, y) can be obtained algebraically by computing the common
intersection of the three circles C ′

1, C ′
2 and C ′

3 expanding (see Figure 4.7),
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Fig. 4.6. The Delaunay graph conflict locator for the Additively Weighted Voronoi
diagram: only the weight circles Ci or the weighted points Pi for i = 1, ..., 4 are shown.
Up: there is only one Voronoi vertex to check; down: there are two Voronoi vertices to
check

or shrinking (see Figure 4.8) from the three first circles C1, C2 and C3 all
at the same rate. The common signed expansion of the first three circles is
denoted by r. Each circle C ′′ centred on (x, y) and of radius r is either ex-
ternally tangent to the first three circles (if the expansion r is positive) or
internally tangent to the first three circles (if the expansion r is negative).

The centres coordinates x, y and radii r of the circles C ′′ centred on
the intersections I = C ′

1 ∩ C ′
2 ∩ C ′

3 and either externally or internally
tangent to each of C1, C2, and C3 can be computed algebraically as the
solutions of the following system of three quadratic equations in the vari-
ables x, y and r:
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Fig. 4.7. The Additively Weighted Voronoi vertex as the common intersection of three
expanding circles
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Fig. 4.8. The Additively Weighted Voronoi vertex as the common intersection of three
shrinking circles






c′1 (x, y, r) = (x − x1)2 + (y − y1)2 − (w1 + r)2 = 0
c′2 (x, y, r) = (x − x2)2 + (y − y2)2 − (w2 + r)2 = 0
c′3 (x, y, r) = (x − x3)2 + (y − y3)2 − (w3 + r)2 = 0

Subtracting one of the equations (say c′1 (x, y, r) = 0) from the remain-
ing two (c′2 (x, y, r) = 0 and c′3 (x, y, r) = 0) results in a system of 2 linear
equations, from which x and y may be expressed as linear functions of r.
Substitution in the first equation c′1 (x, y, r) = 0 then leads to a quadratic
equation in r. This means that the unknown quantities x, y, r can be ex-
pressed with quadratic radicals as functions of the given centres and radii.

Though the simplest thing to do now would be to compute the two
Voronoi vertices and use their computed coordinates and corresponding
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signed expansion in the computation of the values certifying the output
of the Delaunay graph conflict locator, it is not desirable because this
method would not guarantee the topology of the Voronoi diagram of
circles, nor its generalisation to conics or higher degree algebraic curves.
We will detail hereafter only the computation of the values certifying the
presence of Voronoi vertices in the output list.

To get the exact Delaunay graph conflict locator in a more elegant
and generalisable way, we evaluated the values certifying the conflict lo-
cator output without relying on the computation of the Voronoi vertices
as an intermediary computation. This is done by evaluating the values
taken by the polynomial function expressing the relative position of C4

with respect to C ′′ on the set of solutions of the system (i.e. the common
zeroes of the three polynomials c′1, c

′
2 and c′3). This is possible due to the

translation that exists between geometry and algebra.

More specifically, to the geometric set X of the set of common zeroes
of the three polynomials c′1, c

′
2 and c′3 in K3, where K is an algebraically

closed field [Lan02, Definition before Theorem 1, Section 2, Chapter VII],
we can associate the set of all polynomials vanishing on the points of X,
i.e., the set of polynomials f1c′1 + f2c′2 + f3c′3 where the fi, i = 1, 2, 3 are
polynomials in the three variables x, y, r with coefficients in K. This set
is the ideal [GP02, Definition 1.3.1] 〈c′1, c′2, c′3〉. The set of polynomials
with coefficients in K, forms with the addition and the multiplication of
polynomials, a ring: the ring of polynomials [GP02, Definition 1.1.3]. A
polynomial function g (x, y, r) on K3 is mapped to a polynomial function
on X if we recursively subtract from g any polynomial in g belonging to
〈c′1, c′2, c′3〉 until no monomial in g can be divided by each one of the lexico-
graphically highest monomials in c′1, c

′
2 and c′3. The result of this mapping

gives a canonic representative of the remainder of the Euclidean division
of the polynomial g by the polynomials c′1, c

′
2 and c′3. The image of the

ring of polynomials by this mapping is called the quotient algebra [Lan02,
Section 3, Chapter II] of the ring of polynomials by the ideal 〈c′1, c′2, c′3〉.
Moreover, 〈c′1, c′2 − c′1, c

′
3 − c′1〉=〈c′1, c′2, c′3〉. Finally, if we recursively sub-

tract from g any polynomial in g belonging to 〈c′1, c′2 − c′1, c
′
3 − c′1〉 till the

only monomials in g are 1 and r, we get the same result as the preceding
mapping. The polynomials c′1, c

′
2 − c′1, c

′
3 − c′1 constitute what is called a

Gröbner basis [GP02, Definition 1.6.1] of the ideal 〈c′1, c′2, c′3〉.

Gröbner bases are used in Computational Algebraic Geometry in or-
der to compute a canonic representative of the remainder of the division
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of one polynomial by several polynomials generating a given ideal I. This
canonic representative belongs to the quotient algebra of the ring of poly-
nomials by the ideal I. The Gröbner basis for this system provides a set of
polynomials that define uniquely the algebraic relationships between vari-
ables for the solutions of the system. The initial (largest with respect to
some monomial order [CLO98]) monomials of each one of the polynomials
of the Gröbner basis form an ideal. The monomials that do not pertain
to this ideal form a basis for the representatives of the equivalence class
of the remainders of the division of a polynomial by the polynomials of
the system in the quotient algebra. These monomials are called standard
monomials. For the above Gröbner basis, the standard monomials are 1
and r. The size of this basis equals the dimension [GP02, see definition
on page 414] of the quotient algebra and the number of solutions of the
system counted with their multiplicity [Lan02]. In the case of the conflict
locator for the additively weighted Voronoi diagram, there are two solu-
tions.

The polynomial g = (x4 − x)2 + (y4 − y)2 − (r + r4)2 expresses the
relative position of C4 with respect to C ′′. Indeed C ′′ is tangent to C4

if, and only if, the Euclidean distance between the centres of C ′′ and
of C4 (i.e., (x, y) and p4) equals the sum of the radii r and r4, i.e.
(x4 − x)2 + (y4 − y)2 − (r + r4)2 = 0. The open balls bounded by C ′′

and C4 intersect if, and only if, the Euclidean distance between the
centres of C ′′ and of C4 is smaller than the sum of the radii r and
r4, i.e. (x4 − x)2 + (y4 − y)2 − (r + r4)2 < 0. The circles C ′′ and C4

are disjoint if, and only if, the Euclidean distance between the centres
of C ′′ and of C4 is greater than the sum of the radii r and r4, i.e.
(x4 − x)2 + (y4 − y)2 − (r + r4)2 > 0. We considered the operation of
multiplication of polynomials by the polynomial g. This multiplication op-
erator is a linear mapping. The operation of this mapping on the canonic
representative of the reminder of the division of a polynomial by c′1, c

′
2

and c′3 is also a linear mapping that can be expressed by a matrix since
the quotient algebra has a finite dimension.

First, we compute the matrix Mg =
(

m00 m01

m10 m11

)
of the following mul-

tiplication operator on the quotient algebra:
mg : [f ] −→ [gf ].
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The eigenvalues of Mg are the values of g taken on X (see Theorem
4.5, page 54 in [CLO98]). The eigenvalues of Mg are the solutions of
det (Mg − λI) = 0, where I denotes the 2 × 2 identity matrix, i.e. the
roots of

λ2 − λ (m00 + m11) + (m00m11) − (m01m10) = 0 (4.1)

The values certifying the presence of Voronoi vertices in the list output
by the Delaunay graph conflict locator are the signs of the values taken by
g, and they are determined by the sign of the roots of Equation 4.1 (which
are the eigenvalues of Mg). If there is only one eigenvalue and it is 0 then
the fourth circle is tangent to the circle externally tangent to the first three
circles. The sign of ∆ (where ∆ = (m00 + m11)2 − 4 (m00m01 − m01m10)
) cannot be negative when the first three sites of the input correspond to
a Delaunay triangle, because this would be equivalent to the fact there
would be no triangle with vertices C1, C2 and C3 in the old Delaunay
graph (because of the absence of real Voronoi vertex, see Figure 4.9).
Thus, if sign (∆) is negative that means we have one circle contained in
another circle, and then we just need to link them by a Delaunay edge.
Otherwise, sign (∆) is 0 or positive, and we have to evaluate the sign of
the roots of the quadratic equation.

C2

C1

C3

Fig. 4.9. There is no such triangle in the old Delaunay graph because of the absence
of a real Voronoi vertex
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When there is only one double root of Equation 4.1 then we have the
following two possibilities. Either the value of the root of Equation 4.1 is
positive or 0 and the triangle will exist in the new Delaunay graph, or
the value of the root of Equation 4.1 is negative and the triangle will not
exist in the new Delaunay graph (see Figure 4.6). When there are two
real roots of Equation 4.1, we have two triangles to consider (see Figure
4.10). The triangles that correspond to the roots with a negative value
will disappear in the new Delaunay graph (see Figure 4.10).

+
2

4

r4

+

r
r1

+
C

2C

1

C3

C

Fig. 4.10. Two triangles can possibly disappear simultaneously by the addition of a
single weighted point

There is not much interest in showing the elements of the matrix of
the multiplication operator here, but the Macaulay 2 [GS] code is pre-
sented in Appendix 6. The exact algebraic computation of the Delaunay
graph conflict locator we have presented in the previous paragraph is not
generalisable to the other proper conics or higher degree algebraic curves.
Indeed, the size of the multiplication operator matrix is greater than 4
for the other proper conics and for higher degree algebraic curves, and
an algebraic equation of degree 5 or more is not necessarily solvable by
radicals (see [BB96, Theorem 8.4.8]). Even if we can obtain the matrix of
the multiplication operator symbolically, we will need numerical methods
for computing the eigenvalues of that matrix, which give the answer to
the Delaunay graph conflict locator.

We will now present the Delaunay graph conflict locator for circles,
emphasising the changes with respect to the Delaunay graph of additively
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weighted points presented in this subsection.

4.3 The Delaunay graph conflict locator for circles

Let C = {C1, ..., CN} be the set of generators or sites, with all the Ci

being circles in R2. Let pi be the centre of Ci and ri be the radius of Ci.

The definitions of bisector, influence zone, Voronoi region and Voronoi
diagram presented in Chapter 2 generalise to the case where the set of
sites S is a set of circles C, and the distance d (M,Ci) between a point M
and a site Ci is the Euclidean distance between M and the closest point
on Ci from M , i.e. d (M,Ci) = |δ (M,pi) − ri|, where δ is the Euclidean
distance between points. Observe that assuming Ci is centred on pi and
ri = wi for i = 1, ..,N , this distance is the absolute value of the additive
distance used in the previous subsection. The Voronoi region of Ci with
respect to the set C is thus defined by:
V (Ci, C) =

{
M ∈ R2|∀j )= i : |δ (M,pi) − ri| < |δ (M,pj) − rj|

}
.

The Voronoi diagram of C is defined by: V (C) =
⋃

Ci∈C ∂V (Ci, C).
In the previous subsection, we observed that two Apollonius circles

centres are true Voronoi vertices of the Additively Weighted Voronoi dia-
gram (the circles that are either externally or internally tangent to three
given circles). When the sites are circles, up to seven of the eight Apol-
lonius circles may be relevant to the Delaunay graph conflict locator (see
Figure 4.11).

We consider the maintenance of the Delaunay graph of circles in an
incremental way: we check first the validity of all the old triangles of the
Delaunay graph whose vertices are a given triple of circles with respect to
a given newly inserted circle. When old triangles are checked, four circles
C1, C2, C3 and C4 are given: the first three are supposed to define one
or more triangles in the Delaunay graph, and the last one is the newly
inserted circle. Let (xi, yi) be the coordinates of pi for i = 1, 2, 3, 4. There
are two possible outcomes to the above test of validity. Either the trian-
gles are valid with respect to the newly inserted weighted point and the
triangles remain in the new Delaunay graph, or there is at least one tri-
angle that is not valid with respect to the newly inserted weighted point
and these triangles will not be present in the Delaunay graph any longer.
We also need to check the validity of new triangles C1C2C3 with respect
to a circle C4, where C1C2C4 is an old Delaunay triangle and C3 is the
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3C1

C2

C

Fig. 4.11. Seven Apollonius circles centres that are true Voronoi vertices (first case)

newly inserted circle. There are two possible outcomes to this test of va-
lidity. Either the triangles formed with an old Delaunay edge C1C2 and
the newly inserted weighted point C3 are valid with respect to any circle
C4, where C1C2C4 is an old Delaunay triangle, and the triangles will ap-
pear in the new Delaunay graph, or there is at least one triangle that is
not valid and these triangles will not be added in the Delaunay graph. In
both cases, we check the validity of a triangle C1C2C3 with respect to a
circle C4.

The Apollonius circles of C1, C2 and C3 can be obtained algebraically
by computing the common intersection of the three circles C ′

1, C ′
2 and C ′

3

(see Figure 4.7) expanding or shrinking from the three first circles C1, C2

and C3 all with the same absolute value of the rate. The common unsigned
expansion of the first three circles is denoted by r. The coordinates of the
intersection I of C ′

1, C ′
2 and C ′

3 are denoted (x, y). The circle C ′′ centred
on (x, y) and of radius r is tangent to the first three circles.

Thus, the Apollonius circles are the solutions of one of the eight fol-
lowing systems (I) of three quadratic equations in three unknowns x, y, r:




(x − x1)2 + (y − y1)2 − (r1 ± r)2 = 0
(x − x2)2 + (y − y2)2 − (r2 ± r)2 = 0
(x − x3)2 + (y − y3)2 − (r3 ± r)2 = 0

.

By replacing r by −r in one of the preceding systems of equations,
we still get another one of the preceding systems of equations. Thus, let
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us suppose r is the signed expansion of C1. Then, we can reformulate the
preceding systems of equations as the following systems (II) of equations:





(x − x1)2 + (y − y1)2 − (r1 + r)2 = 0
(x − x2)2 + (y − y2)2 − (r2 ± r)2 = 0
(x − x3)2 + (y − y3)2 − (r3 ± r)2 = 0

Now let us consider for each system (II) the set X of solutions of the
system (II) of equations in K3, where K is an algebraically closed field.

Subtracting one of the equations from the remaining two results in a
system of 2 linear equations, from which x and y may be expressed as
linear functions of r. Substitution in the first equation then leads to a
quadratic equation in r. This means that the unknown quantities x, y, r
can be expressed with quadratic radicals as functions of the given centres
and radii for each one of the systems of equations above.

As before, though the simplest thing to do now would be to compute
the two Voronoi vertices and use their computed coordinates and corre-
sponding signed expansion in the computation of the values certifying the
output of the Delaunay graph conflict locator, it is not desirable because
this method would not be generalisable to conics or higher degree curves.

For the Delaunay graph of additively weighted points, the true Voronoi
vertices are the solutions of one system of algebraic equations. Unlike the
previous case, for the Delaunay graph of circles, the true Voronoi vertices
are not all the solutions of one system of algebraic equations, but a subset
of the solutions of four systems of algebraic equations. The solutions of
the algebraic equations are the Apollonius circles, whose centres are gen-
eralised Voronoi vertices (a concept that was introduced in [Anton04]).
We thus need to determine which Apollonius circles centres are poten-
tially true Voronoi vertices (only the real Apollonius circles centres can
be true Voronoi vertices).

There are four possible determinations of the true Voronoi vertices
from Apollonius circles centres of C1, C2 and C3:

first case if C1, C2 and C3 mutually intersect, then the real circles among
the seven Apollonius circles that are not internally tangent to each of
C1, C2 and C3 correspond to true Voronoi vertices (their centres are
true Voronoi vertices, see Figure 4.11), and reciprocally.

second case if one circle (say C1) intersects the two others (C2 and
C3) which do not intersect, then only the real Apollonius circles that
are either externally tangent to each of C1, C2 and C3, or internally
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tangent to C1 and externally tangent to C2 and C3 correspond to true
Voronoi vertices (their centres are true Voronoi vertices, see Figure
4.12).

3

2

C1

C

C

Fig. 4.12. Four Apollonius circles centres that are true Voronoi vertices (second case)

third case if two circles (say C1 and C2) intersect the interior of the
third one (C3) and at least one of them (say C1) is contained in the
interior of C3, then only the real Apollonius circles that are externally
tangent to C1 and C2 and internally tangent to C3 correspond to true
Voronoi vertices (their centres are true Voronoi vertices, see Figure
4.13).

fourth case otherwise (if none of the three situations above apply), only
the real Apollonius circles that are externally tangent to C1, C2 and
C3 correspond to true Voronoi vertices (their centres are true Voronoi
vertices, see Figure 4.14).

When the old Delaunay triangles are checked, the case where one cir-
cle (say C1) lies in the interior of a second circle (say C2), which lies in
the interior of the third circle (C3), or only one circle (say C1) lies within
the interior of one of the other ones (say C2) cannot happen because then,
there would be no Voronoi vertices and the triangle C1C2C3 would not
exist in the Delaunay graph. If we check new triangles, we can check if
the situation described just above happens by computing the sign of the
determinant of the multiplication matrix for the fourth case.
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Fig. 4.13. Two Apollonius circles centres that are true Voronoi vertices (third case)
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Fig. 4.14. Two Apollonius circles centres are true Voronoi vertices (fourth case)
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Now that we have seen the different cases of true Voronoi vertices,
we will see how we can test in which case we are and which solutions of
the systems of equations (II) described above correspond to true Voronoi
vertices.

first case C1, C2 and C3 mutually intersect if, and only if, d (p1, p2) −
r1 − r2 ≤ 0 and d (p1, p3) − r1 − r3 ≤ 0 and d (p2, p3) − r2 − r3 ≤
0. The computation of this test can be done exactly, since the only
variables that are not input to the Delaunay graph conflict locator are
the distances, and these distances are expressed by radicals. Indeed,
we need to test the sign of the difference of a radical and a number
which do not depend on intermediary computations. The true Voronoi
vertices are the real solutions of all the systems of equations (II) such
that r > 0.

second case C1 intersects C2 and C3, and C2 and C3 have no point of
intersection if, and only if, d (p1, p2)− r1 − r2 ≤ 0 and d (p1, p3)− r1−
r3 ≤ 0 and d (p2, p3) − r2 − r3 > 0. The computation of this test can
be done exactly for the same reasons as the previous case. The true
Voronoi vertices are the real solutions of the system of equations:




(x − x1)2 + (y − y1)2 − (r1 ± r)2 = 0
(x − x2)2 + (y − y2)2 − (r2 − r)2 = 0
(x − x3)2 + (y − y3)2 − (r3 − r)2 = 0

with r < 0.
third case C1 lies in the interior of C3 and C2 intersects the interior of

C3 if, and only if, d (p1, p3) + r1 − r3 < 0 and d (p2, p3) − r2 − r3 < 0
and (x1 − x3)2 +(y1 − y3)2−r2

3 < 0. The computation of this test can
be done exactly for the same reasons as the previous case. The true
Voronoi vertices are the real solutions of the system of equations:




(x − x1)2 + (y − y1)2 − (r1 + r)2 = 0
(x − x2)2 + (y − y2)2 − (r2 + r)2 = 0
(x − x3)2 + (y − y3)2 − (r3 − r)2 = 0

such that r > 0.
fourth case this is the case if all the previous three tests failed. The true

Voronoi vertices are the real solutions of the system of equations:




(x − x1)2 + (y − y1)2 − (r1 + r)2 = 0
(x − x2)2 + (y − y2)2 − (r2 + r)2 = 0
(x − x3)2 + (y − y3)2 − (r3 + r)2 = 0

with r > 0.

As before, we used the same algebraic machinery to compute the val-
ues of polynomials that are taken by the true Voronoi vertices without
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solving any intermediate system of equations. We computed the Gröbner
basis of the ideal of X for each one of the systems (II) encountered. Each
one of these Gröbner bases consists of the earlier mentioned quadratic
equation in r and linear equations in x, y and r.

For the Delaunay graph of additively weighted points, we observed
that evaluating the signs of a single polynomial (g = (x4 − x)2+(y4 − y)2−
(r + r4)2) taken on the real points of X was enough to provide the values
certifying the presence of Voronoi vertices in the list output by the con-
flict locator. As before, we can check for the existence of real solutions by
evaluating the sign of the discriminant of the characteristic polynomial.
We will suppose the real solutions to the systems (II) have been tested.
Unlike in the previous case, here we need to evaluate the signs taken by
both g and r on each one of the points of X. Indeed, we need not only
to check the relative position of C4 with respect to the Apollonius cir-
cles, but we need for each Apollonius circle, to check the relative position
of C4 with respect to that Apollonius circle, and to check whether that
Apollonius circle corresponds to a true Voronoi vertex.

As before, we considered the operation of multiplication of polynomi-
als by the polynomial g, whose sign expresses the relative position of C4

with respect to C ′′. We also considered the operation of multiplication of
polynomials by the polynomial r, whose sign allows one to check whether
the solutions correspond to true Voronoi vertices. These operations are
linear mappings. The operations of these mappings on the canonic repre-
sentative of the remainder of the Euclidean division of a polynomial by
the three polynomials of the system are also linear mappings that can be
expressed by a matrix.

We need to be able to associate the signs of the values of g with the
signs of the values of r taken on the (real) solutions of each system (II).
For a given system (II), let Mg and Mr be the matrices of the result of the
multiplication by g and by r respectively on the canonic representative
of the remainder of the division of a polynomial by the three polynomials
of the system. Since these multiplication maps commute, it is possible to
use the transformation matrix obtained during the computation of the
Jordan form of one of these matrices to triangularise the other matrix by
a simple multiplication of matrices [CLO98]. Indeed, the computation of
the Jordan form for Mg gives the triangular matrix P−1MgP of the Schur
form of that matrix where P is a unitary matrix called the transformation
matrix; and P−1MrP is triangular. Finally, we can obtain the solutions
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by reading the diagonal entries in turn in each one of the Jordan forms of
these matrices (the diagonal entries of the Jordan form of a matrix are its
eigenvalues). The row number on each one of these matrices corresponds
to the index of the solution. By evaluating the signs of the diagonal en-
tries in the Jordan forms of Mg and of Mr on the same line, we associate
the signs of the values of g with the signs of the values of r taken on the
solutions of each system (II).

5 The application to the visualization of the nucleation
and growth of particles

The dual graph of the additively weighted Voronoi diagram is a triangu-
lation. Now, we will examine the events that affect this triangulation (see
Figure 5.1).

Pj wj

P

w

P
w

w Pk

l

k

l

i

i

Fig. 5.1. The event that changes the topology

Proposition 51. (The empty circumcircle criterion for the AW-Voronoi’s

dual graph): A triangle
&

PiPjPk exists in the triangulation if, and only if,
the circle tangent to the weight circles C (Pi, wi), C (Pj , wj), and C (Pk, wk),
does not intersect properly (non tangentially) any other circle C (Pl, wl),
l /∈ {i, j, k}.

Proof. If a fourth circle C (Pl, wl) happens to be tangent to the circle
Ct{i,j,k} , that is tangent to C (Pi, wi), C (Pj , wj), and C (Pk, wk), then the
vertex v{i,j,k} (intersection of Bij, Bik, and Bjk) is 4-valent, and the tri-
angle exists in the Delaunay graph.
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Otherwise, if the intersection of C (Pl, wl) and Ct{ijk} was constituted
by two different points, then Ct{i,j,l} and Ct{j,k,l} would be tangent to
C (Pi, wi), C (Pj , wj), and C (Pl, wl); and C (Pj , wj), C (Pk, wk), and C (Pl, wl)

respectively. Then we would have the triangles
&

PiPjPk,
&

PiPjPl, and
&

PjPkPl,
which would contradict the fact that the dual graph of the additively
weighted Voronoi diagram is a triangulation (see Figure 5.2).

We should therefore make a triangle switch: replace
&

PiPjPk and
&

PiPkPl

by
&

PiPjPl and
&

PjPkPl. Proposition 1 implies that the triangulation men-
tioned above obeys the Delaunay triangulation “empty circumcircle crite-
rion”. This follows the algorithm of Guibas and Stolfi [GS85] for the ordi-
nary Voronoi diagram, extending it to this case of a generalized Dirichlet
tessellation. This proposition is the basis of the incremental algorithm
that we implemented for the dynamic construction and maintenance of
additively weighted Voronoi diagrams. When a new point is added, we
locate the triangle T in which it lies, then we connect this new point to
the triangulation by replacing T by three new triangles whose vertices are
the vertices of T and the new point. Then we check every circle tangent to
the weight circles of the points of every new triangle. If a triangle switch
(see Figure 5.2) has to be performed (see end of the Proof of Proposition
51), we perform the same check for all the tangent circles correspond-
ing to the triangles generated by the triangle switch (see Figure 2 where

the triangle switch is shown: replacing
&

PiPjPk and
&

PiPkPl by
&

PiPjPl and
&

PjPkPl).
When an existing point is deleted, we locate its nearest neighbour,

then we transfer all its neighbours to the nearest neighbour and we remove
it and its topological relationships from the triangulation. Then we check
every circle tangent to the weight circles of the points of every modified
triangle. If a triangle switch has to be performed (see end of the Proof
of Proposition 51), we perform the same check for all the tangent circles
corresponding to the triangles generated by the triangle switch. This is
the basis of the incremental algorithm [AMG98a], that we implemented
for the dynamic construction and maintenance of additively weighted
Voronoi diagrams.

Our algorithm proceeds in a fashion analogous to the algorithm of
Devillers, Meiser, and Teillaud [DMT90] for the dynamic Delaunay trian-
gulation based on the Delaunay tree. They proved using the Delaunay tree
that each insertion and point location has an expected running time of
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O (log n), and each deletion has an expected running time of O (log log n).
Our algorithm has an efficiency of O (log n).

5.1 THE JOHNSON-MEHL TESSELLATION

The algorithm for the construction of the dynamic additively weighted
Voronoi diagram is the basis of the incremental algorithm we implemented
for the construction and maintenance of the Johnson-Mehl model. After
each arrival of a new nucleus, the Johnson-Mehl tessellation changes, and
we recompute it as follows. The new nucleus is inserted in the Johnson-
Mehl tessellation (a new Voronoi region appears), and the neighbouring
Voronoi cells are changed. The size of the spheres is then increased by the
growth corresponding to the time interval between the previous insertion
and this one (ti − tj). Consequently, the spheres will be increased for this
time interval (see Figures 5.2 and 5.3). This type of spatial growth uses a
Poisson point process [OBSC01], and we will now introduce two different
cases of radial speed for spatial growth processes.

Time homogeneous Poisson point process The uniform radial growth of
the nuclei and appearance of their Voronoi regions at two different times
is shown in Figures 5.2 and 5.3. On Figures 5.2 and 5.3, we can see the
growth of the spheres between two time units. We notice that the Voronoi
regions are changed only when a new particle appears.

Fig. 5.2. The growth of particles at t = 93

We assume [Stoya98] that the radial growth speed is the same for
all the spheres, and the growth of the spheres in the portion of contact
is stopped (see Figures 5.2 and 5.3). In the early stages of growth and
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Fig. 5.3. The growth of particles at t = 163

nucleations spheres do not overlap, but after a certain time a sphere may
touch another sphere [OBSC01].

Time inhomogeneous Poisson point process The Johnson-Mehl model has
been generalized [OBSC01] in three different ways: changing the spatial
location process for the generators (nuclei), changing the birth rate of the
generators, or both. The most extensively studied generalization is the
generalization corresponding to the change of the nuclei birth rate as a
function of time without changing the spatial location process (the homo-
geneous Poisson point process). This generalization is known as the time
inhomogeneous Johnson-Mehl model. The algorithm for the construction
and maintenance of the Johnson-Mehl model is also applied in the case of
a time inhomogeneous Poisson point process. In that case, all the nuclei
grow at the same radial speed for each time interval and therefore, as long
as a new nucleus does not arrive, the difference between the weights of
neighbouring nuclei is constant, and the Johnson-Mehl tessellation does
not change.

5.2 THE VORONOI GROWTH MODEL

The Additively Voronoi diagram reduces to the ordinary Voronoi dia-
gram when all the wi are equal to some constant. In that type of particle
growth, nucleation occurs simultaneously. In Figure 5.4 we can see the
simultaneous appearance of the nuclei that are all of the same size. Fig-
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ure 5.5 shows the growth of these particles after 65 time units (shown in
increased weights). We notice that the tessellation has not changed.

Thus, for the nucleation sites that are appearing simultaneously we
have a non-Poisson point process [Stoya98] and we can apply our algo-
rithm that reduces the Johnson-Mehl model to the Voronoi growth model.

Fig. 5.4. The Voronoi growth model at t = 31

Fig. 5.5. The Voronoi growth model at t = 96

6 Conclusions

We have provided a predicate for the incremental construction of the
Delaunay graph and the Voronoi diagram of circles that amounts to com-
puting the sign of the eigenvalues of a two by two matrix. Unlike other
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independent research, our work proposes a single predicate that can com-
pute the Delaunay graph even in the case of one circle being entirely in
another circle or intersecting circles. We have also provided an application
of the Voronoi diagram of circles to the modelling and the visualisation
of the growth of crystal aggregates. We have been also working on the
Delaunay graph of conics and of semi-algebraic sets (see [Anton04]), and
future work include the Delaunay graph and Voronoi diagram of quadrics
and its applications.
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The Macaulay 2 program for the exact Delaunay graph conflict locator
for circles

gbTrace 4
dim FractionField := F -> 0
P = frac(QQ[a,b,c,d,e,f,g,h,i,j,k,l])
R = P[x,y,t]
cercle1 = (x-a)^2+(y-b)^2-(c+t)^2
cercle2 = (x-d)^2+(y-e)^2-(f+t)^2
cercle3 = (x-g)^2+(y-h)^2-(i+t)^2
emptycircle = ideal(cercle1,cercle2,cercle3)
ecgb = gb emptycircle
print ecgb
eckb = basis cokernel gens ecgb
print eckb
kl = sort(flatten(entries(eckb)))
kmind = splice {0..#kl - 1}

scan(kl,entry->print ring entry);
hashlist = pack(2,mingle(kl,kmind));
feetmon = applyKeys(hashTable hashlist, key->toString(key));

compmat = f -> (htl=apply(kl,be->
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hashTable(pack(2,mingle(apply(flatten(entries((coefficients((f*be)
%ecgb))#0)),
item -> feetmon#(toString(item))),flatten(entries((coefficients
((f*be)%ecgb))#1))))));
matrix(table(#kl,#kl,(i,j)->if (htl#i)#?j then (htl#i)#j else
0)));
matp2 = compmat((x-j)^2+(y-k)^2-(t+l)^2);
m00 = matp2_(0,0)
m01 = matp2_(0,1)
m10 = matp2_(1,0)
m11 = matp2_(1,1)
cm00 = coefficients m00
cm000 = cm00#0
cm001 = cm00#1
cm01 = coefficients m01
cm010 = cm01#0
cm011 = cm01#1
cm10 = coefficients m10
cm100 = cm10#0
cm101 = cm10#1
cm11 = coefficients m11
cm110 = cm11#0
cm111 = cm11#1


