Self Synchronous Circuits for Error Robust Operation in Sub-100nm Processes

Benjamin Devlin¹, Makoto Ikeda ^{1,2}, Kunihiro Asada ^{1,2}

¹ Dept. of Electronic Engineering, University of Tokyo

² VLSI Design and Education Center (VDEC), University of Tokyo

Overview

- Motivation
- Self Synchronous Circuits
 - Self Synchronous Circuit Failure Modes
 - Self Synchronous FPGA Architecture
- Error Robustness Techniques and Measurements
 - 65nm Watchdog error detection
 - 40nm Pipeline disabling after error detection
 - Programmable Redundancy
- Analysis of Robustness to SEUs
- Conclusions

Motivation – Low Power Designs

- ITRS report shows need for low power designs
 - Still 2x over target with techniques such as frequency islands, low voltage, power aware software, many core development software
 - Process scaling and Voltage scaling are popular

Motivation – Coping with Variation

- Low voltage synchronous systems require large design effort
 - "A 280mV-to-1.2V Wide-Operating-Range IA-32 Processor in 32nm CMOS"
 ISSCC 2012
 - o Programmable delay
 - o Programmable level shifters
 - All devices <2x minimum gate width removed
 - "A 200mV 32b Sub-threshold Processor with Adaptive Supply Voltage Control"
 ISSCC 2012
 - o Control loops
 - o Voltage regulators
 - o Configurable ring oscillators

(65nm Post-layout simulation results of a self synchronous buffer)

Motivation - SEU Increase

- Single event upsets (SEU) causes logic errors [1]
 - Which is becoming worse with process and voltage scaling

[1] A. Dixit, A. Wood, "The impact of new technology on soft error rates", IEEE Reliability Physics Symposium 2011

Overview

- Motivation
- Self Synchronous Circuits
 - Self Synchronous Circuit Failure Modes
 - Self Synchronous FPGA Architecture
- Error Robustness Techniques and Measurements
 - 65nm Watchdog error detection
 - 40nm Pipeline disabling after error detection
 - Programmable Redundancy
- Analysis of Robustness to SEUs
- Conclusions

Self Synchronous Circuits

- Self synchronous circuits are asynchronous circuits with bit-level completion detection circuits for qdi operation
 - Gate Level Self Synchronous circuits can provide reliable operation within PVT (Process, Voltage, Temperature) variations compared to Synchronous circuits
 - No need for timing margins, ideal for low voltage operation
 - Dynamic circuits, dual rail, 2 phase signaling

Dynamic Self Synchronous Circuits

- DCVSL for high throughput
- Precharge and Evaluation cycle Evaluation is fast but precharging takes time!
 - o Can we conceal this time wastage??

Self Synchronous Dual Pipeline

- Gate-level pipeline stages controlled with completion detection (CD) circuits
- Dual pipeline increases throughput
- Dual rail returns to zero due to CD_{x+1}

Precharge delay and Dual Rail encoding delay concealed in time

Circuit Diagram of Dual Pipeline and CD

- + Precharge time is concealed
- + Small CD delay
- + No explicit latches
- Area overhead (~66%)

Vdd

P_{out0,x}

 $N_{out0,x}$

Vdd

reset

CD Circuit

P_{out1,x}

⊸ N_{out1,x}

Self Synchronous Failure Modes (N)

- Dual-rail dual-pipeline circuits are almost self-checking [1], some cases where SEU could occur are:
 - Depending on timing CD_x will toggle, freezing operation, or undetected "10", "01" will pass (not self checking)
 - **2** "11" error
 - 3 Blocked
 - Operation freezes

[1] I. David, R. Ginosar, and M. Yoeli, "Self-timed is self-checking," *Journal of Electronic Testing*, vol. 6, pp. 219–228, 1995.

Undetectable error in 1

- a. If a SEU causes

 N_{out} to toggle
 before CD_{x-1,x-2},
 the pipeline will
 freeze
- b. If a SEU causes

 N_{out} to toggle after

 CD_{x-1,x-2}, the

 pipeline will not

 freeze and an

 error can

 propagate

 undetected

Implemented Architecture - Self Synchronous FPGA

- Self Synchronous Switch Block (SSSB)
- Self Synchronous Configurable Logic Block (SSCLB)
- Self Synchronous MUX's are used as gate-level buffers
- All blocks are dual pipeline DCVSL
- Used as base for robustness circuits

Overview

- Motivation
- Self Synchronous Circuits
 - Self Synchronous Circuit Failure Modes
 - Self Synchronous FPGA Architecture
- Error Robustness Techniques and Measurements
 - 65nm Watchdog error detection
 - 40nm Pipeline disabling after error detection
 - Programmable Redundancy
- Analysis of Robustness to SEUs
- Conclusions

Watchdog Circuit

- '11' and '00' Error detection
- Error propagation prevented
- Operation is autonomously reperformed
- Watchdog circuit monitors number of errors in each gate-level stage
- Conventional method in black, additional circuits in red

[1] Devlin, B.; Ikeda, M.; Asada, K., "Gate-Level Autonomous Watchdog Circuit for Error Robustness Based on a 65nm Self Synchronous System," ICECS 2011

Chip Implementation

 Watchdog implemented in every SSFPGA block with 140 inverter noise source

(Row and column address decoders for error count readout)

65nm Fabricated Chip

- 2mm x 4mm chip fabricated in 65nm 12ML CMOS process
- Internal operating speed measured by frequency divider
- Input and Output Interfaces with 256bit SRAM FIFO
- Hand layout + some automatic wire routing
- Base SSFPGA + Watchdog SSFPGA

65nm Throughput and Energy Results

- Correct operation from 1.6V to 0.37V
 - 7% area, 15% throughput and 16% energy overhead measured on a 16-NAND chain loop @ 25°C (operation also confirmed 0°C to 120°C)
 - 2.4GHz pipeline to pipeline operation @ 1.2V

External Noise Injection

 Inject sine wave noise with varying amplitude and frequency, and measure resulting errors

65nm Robustness Comparison to Base SSFPGA

- 16-NAND circuit loop at maximum throughput @ 25°C
- 500MHz sine-wave noise
- 24% improvement over base-SSFPGA @1.2V

Pipeline disabling

- Autonomous disabling of a faulty pipeline
 - For example if watchdog error counter > x
 - Seamless operation with throughput decrease

(b) Proposed method

Disabling Circuits

- Add a Precharge Generator (PG), Error Detector (ED), multiplexors to each stage
- Logic in stage x+1 to stop error propagation

Disabling Circuits

 Pulse generator generates precharge when error occurs

40nm Fabricated Chip

- 20u x 20u 40nm 7ML CMOS
- 2-input LUT 2x2 channel SSFPGA block
- Internal frequency divider
- Design standard cells, automatic place and route flow

Measured Results

- Correct operation from 1.2V to 0.7V
 - 33% overhead when pipeline is disabled by using internal circuit to simulate error
 - 1.2GHz @ 1.1V

Time-interleaved Programmable Redundancy

- Can correct for incorrect "01" or "10" error by trading off throughput for robustness
- PR can be built from m-input LUT

Overview

- Motivation
- Self Synchronous Circuits
 - Self Synchronous Circuit Failure Modes
 - Self Synchronous FPGA Architecture
- Error Robustness Techniques and Measurements
 - 65nm Watchdog error detection
 - 40nm Pipeline disabling after error detection
 - Programmable Redundancy
- Analysis of Robustness to SEUs
- Conclusions

SEU Analysis of Synchronous Circuits

Monte-carlo SEU simulations performed

- 10,000 simulations, SEU rate is SEU per time cycle
- 40% error rate improvement over canary FF using watchdog circuit
- 50% error rate improvement with programmable redundancy

Conclusions

- Investigation of "self checking" behavior of dual pipeline self synchronous circuits and proposed circuits for complete coverage
- Fabrication in 65nm and 40nm shows operational circuits
 - 2.4GHz operation @ 1.2V in 65nm
 - Seamless operation to 370mV, 83% power bounce tolerance @ 1.2V in 65nm
 - Correctly detect and disable faulty pipelines in 40nm
- Robust techniques are also evaluated with SEU simulations
 - Up to 50% improvement over canary FF approach
- This research shows Self Synchronous Circuits can offer High Performance Reliable Operation in nano-meter node processes for future VLSI systems

This research was performed by the author for STARC as part of the Japanese Ministry of Economy, Trade and Industry sponsored "Next-Generation Circuit Architecture Technical Development " program.

The VLSI chips in this study have been fabricated in the chip fabrication program of VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with STARC, e-Shuttle, Inc., and Fujitsu Ltd.

Appendix

Programming Flow

- Quartus to convert verilog to LUT blocks
- ABC [1] and SSFPGAS to convert to 4-input LUTs, pipeline alignment, fanout modification

Modified VPR [2] for place and route with pipeline

alignment aware routing

Bitmap translator

Noise Robustness

 Frequency locking is responsible for throughput degradation

Note on Area Overhead

Area overhead is 44% compared to a single pipeline 4-input LUT

[17] E. Ahmed and J. Rose "The effect of LUT and cluster size on deep-submicron FPGA performance and density", Trans. VLSI 2004

SSFPGA Configurable Logic Block

- SSCLB is composed of 3 gate level pipeline stages
 - 4 Input Self Synchronous Mux (SSMUX) and 3 output copy locations
- Pipeline stages eliminate timing overhead from Self Synchronous operation

SSMUX and Completion Detection

- Gate-level pipeline stage and programmab le MUX combined
- Because of 2 phase CD, the CD overhead is very small

Self Synchronous LUT

4 input LUT, split into decoder-tree architecture

Interfaces

- Synchronous interfaces are used on core boundaries
- 256 bit FIFO to maximize use of high speed SSFPGA

Measurement Setup

- Target circuit is converted into bitstream by SSFPGA software tool chain
- Bit-steam written into SSFPGA SRAM memory by pattern generator
- Thermostream keeps constant temperature
- Frequency divider output used to measure throughput

Lower data rates

Near-threshold Operation

- Near-threshold operation is attractive to reduce static and dynamic power
 - But delay variation increases with near-threshold operation [1]

$$\tau_{PD} = \frac{c_L}{I_{DS}} \cdot \frac{V_{DD}}{2}$$

$$\left(\frac{\sigma_{I_{DS}}}{\mu_{I_{DS}}}\right)^2 \approx \left(\frac{\sigma_W}{\mu_W}\right)^2 + \left(\frac{\sigma_{V_{TH}}}{\mu_{V_{TH}}}\right)^2 \cdot \left(\frac{\mu_{V_{TH}}}{\nu_{DD} - \mu_{V_{TH}}}\right)^2$$

[1] Alioto, M.; Palumbo, G.; Pennisi, M.; , "Understanding the Effect of Process Variations on the Delay of Static and Domino Logic," JVLSI 2010.