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Motivation

¢ Fast floating-point computation is important for scientific computing
.... and increasingly, for commercial applications

¢ Floating-point operations use significantly more energy than integer
operations

e Can we use asynchronous circuits to reduce the energy requirements for
floating-point arithmetic?
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IEEE 754 standard for binary floating-point arithmetic

e Number is

(—1)%(1.81G) x 251023

® |Interesting cases
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<+ Denormal numbers (exponent is all zeros)

(=1)%(0.SIG) x 27102

<+ Special numbers: not-a-number (NaN), infinity (exponent is all ones)

< Signed zeros

= . .
] Cornell University
&,

AVLS|



Datapath for floating-point multiplication
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Multiplier core

e Multiplier core bits are synchronized in time

e Opportunity to use more aggressive circuit styles rather than QDI
< Keep large timing margin in any timing assumptions
< Study using a small 8x8 multiplier core

% Internal protocol: single track

1-0f-4 data
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Single-Track Handshake Protocol
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Circuit style
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¢ Basic idea

< Multi-stage domino, partially weak-conditioned
+ Parallel precharge (timing assumption)
< Single-track signaling

For more details: B. Sheikh, R. Manohar. “Energy-efficient pipeline templates for high-performance asynchronous
circuits.” ACM JETC, special issue on asynchrony in system design, 7(4), December 2011.
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Comparison to QDI stage
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e Two styles
% Logic followed by inverter (N-inverter)
% Logic followed by logic (N-P)

e Reduction in energy and area while preserving most of the throughput
% Tightest timing requirement: 7 FO4 v/s 2.5 FO4
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Multiplier core

e Radix 4 Booth v/s Radix 8
<+ Radix 4: 0, zY, £2Y
<+ Radix 8: 0, Y, £2Y, +3Y, £4Y
e Often, the cost of the 3Y calculation out-weighs benefits
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Carry-chain length statistics (radix 4 ripple)
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3Y adder

® Ripple carry adder with interleaving hides most stalls
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e Much cheaper in energy compared to a full high-performance adder
(Kogge-Stone + carry select)

% 68.1% lower energy

+ 8.3% less latency
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Multiplier core
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Normalized to Radix-4 Multiplier FPM

Energylop Latency

e 3:2 compressor trees
e Latency: higher (= +6%) due to 3Y adder

W FPM with Radix-4 Multiplier
W FPM with Radix-8 Multiplier

Throughput

e Energy: lower (= -20%) due to fewer partial product bits
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Denormal arithmetic

¢ Two scenarios

% Inputs are denormal

+ Inputs are small, and result is denormal (“underflow”)
e Separate datapath to handle these cases

<+ Slow, iterative shifter
% QOutput of final adder is re-directed to either the normal datapath or denormal

datapath
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Denormal arithmetic penalty
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e Throughput drop is negligible for benchmarks
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Zero-bypass datapath

e For some applications, a non-trivial number of operands are zero

e Example: matrices with a small number of non-zero elements

< Efficient sparse matrix codes use “mostly dense” sub-matrices
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e Can avoid most of the energy required
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Results

e 65nm process (1T, 1V)
% 92.1 pJ/op, 1.5 GHz (leakage: 1.6mW @ 90C)
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e Synchronous FPM by Quinnell (65nm SOlI, 1.2V)
< 280 pJd/op, 0.67 GHz, 701ps latency @ 1.3V
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For reference: Synopsys Designware FPM: 9.5x higher latency
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Summary

¢ \We have designhed a double-precision floating-point multiplier

e Techniques used to reduce energy
% Radix 8 array with simpler 3Y adder
< Circuits modified to reduce handshake energy
< Slow denormal arithmetic
< Zero bypass
e Future work
<+ Fused multiply-add

<+ New techniques to reduce multiplier energy?
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