

An Asynchronous Floating-Point Multiplier

Basit Riaz Sheikh and Rajit Manohar
Computer Systems Lab
Cornell University
http://vlsi.cornell.edu/ The person that

did the work!

Motivation
• Fast floating-point computation is important for scientific computing

.... and increasingly, for commercial applications

• Floating-point operations use significantly more energy than integer
operations

• Can we use asynchronous circuits to reduce the energy requirements for
floating-point arithmetic?

IEEE 754 standard for binary floating-point arithmetic

• Number is

• Interesting cases
❖ Denormal numbers (exponent is all zeros)

❖ Special numbers: not-a-number (NaN), infinity (exponent is all ones)
❖ Signed zeros

S Exponent Significand

1 11 52

(�1)s(1.SIG)� 2E�1023

(�1)s(0.SIG)� 2�1022

Datapath for floating-point multiplication

1%5%
5%

8%

76%

1%4%

Front-end/exponent Misc. Logic
Array mult CPA
Carry/sticky Round/Norm
Pack

Multiplier core
• Multiplier core bits are synchronized in time
• Opportunity to use more aggressive circuit styles rather than QDI

❖ Keep large timing margin in any timing assumptions
❖ Study using a small 8x8 multiplier core
❖ Internal protocol: single track

Four-Phase Handshake Protocol

Single-Track Handshake Protocol

Circuit style

• Basic idea
❖ Multi-stage domino, partially weak-conditioned
❖ Parallel precharge (timing assumption)
❖ Single-track signaling

Energy-Efficient Pipeline Templates for High-Performance Asynchronous Circuits A:11

Fig. 6. N-Inverter pipeline template

circuits [Schuster and Cook 2003] [Cheng 1998]. To reduce the cycle time back to 18
transitions, we use wide NOR gates based completion detection circuitry as proposed
in [Cheng 1998], but with a couple of optimizations to make the circuitry feasible for
our proposed pipeline templates. These optimizations include the use of only one out-
put from the set of outputs destined for the same next pipeline block for neutrality
detection and the addition of enP and enN transistors in the pull-up stacks of DONE
and RST circuits as seen in Figure 8. These optimizations and their benefits are out-
lined in detail towards the end of this section.

The Ack signals are generated using static NOR gates as previously. The validity of
the outputs is signaled by the setting of Done. To ensure that the Done signal is only
set once all Acks have gone low, the pull-up path resistance of the Done circuit is set
to be at least 4 times as big the pull-down path resistance when only one pull-down
transistor is conducting. To prevent a direct path between VDD and GND, the Ack
from one of the latest (slowest) outputs is used in the pull-up stack.

The RST signal is used to sense the reset of all outputs. The various R.t and R.f
signals correspond to the actual dual-rail outputs being produced. The latest (slowest)
signal to reset is put in the pull-up stack. The pull-up path resistance of the RST
circuit is set to ensure that it only goes high once all pull-down transistors in the RST
circuit have turned off i.e. all output signals have reset. The RST circuit has two pull-
down transistors for each dual-rail output and four pull-down transistors for each 1-of-
4 output. As the number of outputs increase, the RST rise time suffers significantly.

ACM Journal on Emerging Technologies in Computing Systems, Vol. , No. , Article A, Pub. date: December 2011.

For more details: B. Sheikh, R. Manohar. “Energy-efficient pipeline templates for high-performance asynchronous
circuits.” ACM JETC, special issue on asynchrony in system design, 7(4), December 2011.

Comparison to QDI stage

• Two styles
❖ Logic followed by inverter (N-inverter)
❖ Logic followed by logic (N-P)

• Reduction in energy and area while preserving most of the throughput
❖ Tightest timing requirement: 7 FO4 v/s 2.5 FO4

Multiplier core
• Radix 4 Booth v/s Radix 8

❖ Radix 4: 0, ±Y, ±2Y
❖ Radix 8: 0, ±Y, ±2Y, ±3Y, ±4Y

• Often, the cost of the 3Y calculation out-weighs benefits

TABLE I
ARRAY MULTIPLIER

Multiplier Type Partial Product Bits Reduction Stages
Radix-2 Bitwise 2809 9
Radix-4 Booth 1539 7
Radix-8 Booth 1056 6

V. 53X53-BIT RADIX-8 ARRAY MULTIPLIER

A. 3Y Adder
The highly operand dependent nature of the 3Y multiple

computation makes it a strong potential target for asyn-
chronous circuit optimizations. The application profiling re-
sults in Figure 3 show that the longest carry chain in a radix-4
3Y ripple-carry addition is limited to 3 ripple positions for over
90% of the operations across most floating-point application
benchmarks. The delay of an adder depends on how fast the
carry reaches each bit position. For input patterns that yield
such small carry chain lengths on average, we need not resort
to an expensive tree adder topology designed for the worst-
case input pattern of carry propagating through all bits.

Fig. 3. Radix-4 3Y Adder Longest Carry Length

The interleaved adder topology provides an energy efficient
solution for computing the bottleneck 3Y multiple term re-
quired in radix-8 Booth multiplication. It comprises two 53-
bit radix-4 ripple-carry adders, where each 3Y block shown
in Figure 4 computes the 3Y multiple for the corresponding Y
input. The first arriving data tokens YRs are forwarded to the
right 3Y adder. In standard PCeHB reshuffling, the interleave
split stage has to wait for the acknowledge signal from ripple-
carry adder before it can enter neutral stage and accept new
tokens. However, this would cause the pipeline to stall in
case of a long carry chain. The interleaved adder topology
circumvents this problem by instead issuing the next arriving
data tokens to the left 3Y adder. Hence, the two ripple-carry
adders could be in operation at the same time on different
input operands. The interleave merge stage receives outputs
from both right and left adders and forwards them to the next
stage in the same interleaved order. With our pipeline cycle
time of approximately 18 logic transitions (gate delays), the
next data tokens for the right adder are scheduled to arrive
after 36 transitions of the first one. This gives ample time to
quite rare inputs with very long carry-chains to ripple through
as well without causing any throughput stalls.

For inputs patterns observed in our various floating-point
application benchmarks, the forward latency of computing the
3Y term using the interleaved adder is less than that attained
with power-intensive tree adders, which are frequently used
in synchronous designs to guarantee low latency computa-
tion. Compared to a 53-bit hybrid Kogge-Stone carry-select
tree adder implementation, the interleaved adder consumes
approximately 68.1% less energy at 8.3% lower latency for
the average case input patterns shown in Figure 3. We exploit
this data dependent adder design topology, not possible within

Fig. 4. Interleaved 3Y Adder

synchronous domain, to design an energy-efficient radix-8
Booth-encoded multiplier for our asynchronous FPM datapath.

B. Pipeline Design
Although, the radix-8 multiplier reduces the number of

partial products bits by 31.3% compared to a radix-4 im-
plementation, it still needs to produce and sum over 1050
partial product bits. As discussed by Sheikh et al. [25],
the standard PCeHB pipelines, though very robust, consume
considerable power in handshake circuitry, which gets worse
as the complexity of PCeHB templates increases with more
input and output bits. The handshake overhead, in a two-bit
full adder PCeHB pipeline implementation, is as high as 69%
of the total power consumption [25]. Therefore, for circuits
with large number of inputs, intermediate and final outputs,
such as a multiplier array, the PCeHB pipelines represent a
non-optimum choice from energy efficiency perspective.

We use N-Inverter pipeline templates, first proposed in [25],
to implement the multiplier array. An N-Inverter pipeline
reduces the total handshake overhead by packing multiple
stages of logic computation within a single pipeline block, in
contrast to PCeHB template which contains only one effective
logic computation per pipeline. The handshake complexity is
amortized over a large number of computation stacks within
the pipeline stage. Sheikh et al. [25] showed that compared to
a PCeHB pipelined implementation the N-Inverter pipelines
can reduce the overall energy consumption by 52.6% while
maintaining the same throughput. These improvements come
at the cost of some timing assumptions and require the
use of single-track handshake protocol. The design trade-offs
associated with N-Inverter templates are discussed extensively
in [25].

The block-level pipeline breakdown of our radix-8 mul-
tiplier array is depicted in Figure 5 . The granularity at
which the array is split is critical from both performance
and energy efficiency perspective. The N-Inverter templates
allow us to pack considerable logic within each stage, which
helps to reduce the handshake associated power consumption
significantly. However, as the number of logic computations
within a pipeline block increase, so do the number of outputs.
With more outputs, although the number of transitions per
pipeline cycle remain the same with the use of wide NOR
completion detection logic, each of these transitions incur a
higher latency [25]. The choice of 8x4 pipeline blocks, with
15 outputs per each stage, was made to provide a good balance
of low power and high throughput. The pipeline block labeled
8x4 Sign is identical to an 8x4 block except that it includes
a sign bit for each partial product row. The sign bit acts as
an input of one in the least significant position for any of the
cases involving a complemented partial product multiple of -
Y, -2Y, -3Y, or -4Y. The pipeline blocks labeled 10x4 Sign Ext

Carry-chain length statistics (radix 4 ripple)

3Y adder
• Ripple carry adder with interleaving hides most stalls

• Much cheaper in energy compared to a full high-performance adder
(Kogge-Stone + carry select)
❖ 68.1% lower energy
❖ 8.3% less latency

TABLE I
ARRAY MULTIPLIER

Multiplier Type Partial Product Bits Reduction Stages
Radix-2 Bitwise 2809 9
Radix-4 Booth 1539 7
Radix-8 Booth 1056 6

V. 53X53-BIT RADIX-8 ARRAY MULTIPLIER

A. 3Y Adder
The highly operand dependent nature of the 3Y multiple

computation makes it a strong potential target for asyn-
chronous circuit optimizations. The application profiling re-
sults in Figure 3 show that the longest carry chain in a radix-4
3Y ripple-carry addition is limited to 3 ripple positions for over
90% of the operations across most floating-point application
benchmarks. The delay of an adder depends on how fast the
carry reaches each bit position. For input patterns that yield
such small carry chain lengths on average, we need not resort
to an expensive tree adder topology designed for the worst-
case input pattern of carry propagating through all bits.

Fig. 3. Radix-4 3Y Adder Longest Carry Length

The interleaved adder topology provides an energy efficient
solution for computing the bottleneck 3Y multiple term re-
quired in radix-8 Booth multiplication. It comprises two 53-
bit radix-4 ripple-carry adders, where each 3Y block shown
in Figure 4 computes the 3Y multiple for the corresponding Y
input. The first arriving data tokens YRs are forwarded to the
right 3Y adder. In standard PCeHB reshuffling, the interleave
split stage has to wait for the acknowledge signal from ripple-
carry adder before it can enter neutral stage and accept new
tokens. However, this would cause the pipeline to stall in
case of a long carry chain. The interleaved adder topology
circumvents this problem by instead issuing the next arriving
data tokens to the left 3Y adder. Hence, the two ripple-carry
adders could be in operation at the same time on different
input operands. The interleave merge stage receives outputs
from both right and left adders and forwards them to the next
stage in the same interleaved order. With our pipeline cycle
time of approximately 18 logic transitions (gate delays), the
next data tokens for the right adder are scheduled to arrive
after 36 transitions of the first one. This gives ample time to
quite rare inputs with very long carry-chains to ripple through
as well without causing any throughput stalls.

For inputs patterns observed in our various floating-point
application benchmarks, the forward latency of computing the
3Y term using the interleaved adder is less than that attained
with power-intensive tree adders, which are frequently used
in synchronous designs to guarantee low latency computa-
tion. Compared to a 53-bit hybrid Kogge-Stone carry-select
tree adder implementation, the interleaved adder consumes
approximately 68.1% less energy at 8.3% lower latency for
the average case input patterns shown in Figure 3. We exploit
this data dependent adder design topology, not possible within

Fig. 4. Interleaved 3Y Adder

synchronous domain, to design an energy-efficient radix-8
Booth-encoded multiplier for our asynchronous FPM datapath.

B. Pipeline Design
Although, the radix-8 multiplier reduces the number of

partial products bits by 31.3% compared to a radix-4 im-
plementation, it still needs to produce and sum over 1050
partial product bits. As discussed by Sheikh et al. [25],
the standard PCeHB pipelines, though very robust, consume
considerable power in handshake circuitry, which gets worse
as the complexity of PCeHB templates increases with more
input and output bits. The handshake overhead, in a two-bit
full adder PCeHB pipeline implementation, is as high as 69%
of the total power consumption [25]. Therefore, for circuits
with large number of inputs, intermediate and final outputs,
such as a multiplier array, the PCeHB pipelines represent a
non-optimum choice from energy efficiency perspective.

We use N-Inverter pipeline templates, first proposed in [25],
to implement the multiplier array. An N-Inverter pipeline
reduces the total handshake overhead by packing multiple
stages of logic computation within a single pipeline block, in
contrast to PCeHB template which contains only one effective
logic computation per pipeline. The handshake complexity is
amortized over a large number of computation stacks within
the pipeline stage. Sheikh et al. [25] showed that compared to
a PCeHB pipelined implementation the N-Inverter pipelines
can reduce the overall energy consumption by 52.6% while
maintaining the same throughput. These improvements come
at the cost of some timing assumptions and require the
use of single-track handshake protocol. The design trade-offs
associated with N-Inverter templates are discussed extensively
in [25].

The block-level pipeline breakdown of our radix-8 mul-
tiplier array is depicted in Figure 5 . The granularity at
which the array is split is critical from both performance
and energy efficiency perspective. The N-Inverter templates
allow us to pack considerable logic within each stage, which
helps to reduce the handshake associated power consumption
significantly. However, as the number of logic computations
within a pipeline block increase, so do the number of outputs.
With more outputs, although the number of transitions per
pipeline cycle remain the same with the use of wide NOR
completion detection logic, each of these transitions incur a
higher latency [25]. The choice of 8x4 pipeline blocks, with
15 outputs per each stage, was made to provide a good balance
of low power and high throughput. The pipeline block labeled
8x4 Sign is identical to an 8x4 block except that it includes
a sign bit for each partial product row. The sign bit acts as
an input of one in the least significant position for any of the
cases involving a complemented partial product multiple of -
Y, -2Y, -3Y, or -4Y. The pipeline blocks labeled 10x4 Sign Ext

Multiplier core

• 3 : 2 compressor trees
• Latency: higher (≈ +6%) due to 3Y adder
• Energy: lower (≈ -20%) due to fewer partial product bits

are similar in design to the frequent 8x4 block, except that it
provides support for sign extension bits required for supporting
complemented multiples. The 8x2 block is a reduced version of
an 8x4 block with only two booth rows. The similarity between
these different pipeline blocks and the frequent use of the 8x4
pipeline block provides us with great design modularity, which
helped to reduce the overall design effort required to optimize
the multiplier array for throughput and energy efficiency.

Fig. 5. Radix-8 Multiplier Array
Due to the similarity between different pipeline blocks, we

only present the details of the 8x4 block. Each 8x4 pipeline
block receives Booth-control, Y and 3Y input tokens. The eight
bits of Y and 3Y inputs are encoded as four 1-of-4 tokens each.
Figure 6 shows the intermediate and final logic outputs within
an 8x4 pipeline. It also shows the corresponding mapping
of these outputs to a simplified circuit level depiction of an
N-Inverter pipeline template. The NMOS stacks in the first
stage compute four rows of eight bit partial product terms in
inverted sense. These inverted outputs drive the inverters in the
second stage of the pipeline block to produce corresponding
partial product, PP, outputs. The next stage of NMOS stacks
implements carry-save addition logic [27] to sum and reduce
these four rows of partial products to two rows of inverted
sum and carry outputs. These inverted outputs drive the PMOS
transistors in the last stage to produce sum and carry outputs,
SS and CC, in correct sense for the following pipeline blocks.

Fig. 6. 8x4 Multiply Logic Block
For array multiplication, all pipeline blocks have to be in

operation in parallel. The parallel operation requires multiples
copies of input tokens to be consumed simultaneously by mul-
tiple pipeline blocks. For example, each booth control token
is required in seven different pipeline blocks. To facilitate
this, we include multiple copy stages prior to initiating the
array computation. These copy blocks generate the desired
number of copies for each input token. These tokens are
then forwarded to the pipeline blocks which consume them
to produce sum and carry outputs.

The next computation step is the summation of the large
number of SS and CC outputs that are produced in parallel.
This summation step is commonly referred to as reduction tree
in arithmetic literature. A reduction tree basically employs
3:2 counters, often referred to as carry-save-adders (CSAs),
to sum and reduce three inputs to two outputs at each stage
of the tree. Within a few stages, the large number of tokens
spanning over many partial product rows are reduced to mere
two 106-bit long rows, which are finally summed using a
carry-propagation adder. We implemented a full 3:2 counter
reduction tree [27] using multiple N-Inverter pipeline blocks.
The NMOS stacks within each block implement carry-save
addition logic. In terms of logic density, each pipeline block
was restricted to produce no more than 15 outputs to maintain
cycle time similar to 8x4 pipeline blocks.

The N-Inverter templates use single-track handshake pro-
tocol. As a result, the input tokens are first converted from
four-phase handshake protocol into single-track protocol using
conversion templates. This adds an additional logic stage to the
FPM datapath latency. Since the final carry-propagation adder
uses four-phase handshake protocol, the output tokens from
the reduction tree are converted back to four-phase protocol.
We hide the latency of this conversion stage by implementing
the final stage of the reduction tree within these conversion
templates.

The energy, latency, and throughput estimates of FPM
implementations with radix-4 and radix-8 array multipliers
are presented in Figure 7. The results are normalized to FPM
datapath with a radix-4 multiplier. The 31.3% reduction in the
number of partial product bits translates into 19.8% reduction
in energy per operation. But this improvement in energy
efficiency comes at a cost of 5.9% increase in the FPM latency
because of the 3Y partial product computation that needs to
determined prior to initiating the multiplier array logic. A
part of the 3Y computation latency is masked within booth
control token-generation and copy pipelines. Since the radix-4
multiplier requires one extra computation stage in the reduc-
tion tree compared to a radix-8 multiplier implementation, the
latency overhead of the 3Y computation can be further hidden.
The 5.9% latency increase is attributed to the 3Y multiple
computation part which is not masked. Despite the increase in
latency, the throughput for both implementations remains the
same due to sufficient slack availability within the interleaved
3Y computation block. The choice of a particular multiplier
implementation represents a design trade-off. Since our goal
was to optimize for energy consumption and throughput, we
chose the radix-8 multiplier implementation in our final FPM
design.

Fig. 7. Radix-4 Multiplier vs. Radix-8 Multiplier

Denormal arithmetic
• Two scenarios

❖ Inputs are denormal
❖ Inputs are small, and result is denormal (“underflow”)

• Separate datapath to handle these cases
❖ Slow, iterative shifter
❖ Output of final adder is re-directed to either the normal datapath or denormal

datapath

FPM designs [16,28] do not fully support these operations
in hardware. Instead, these operations are implemented in
software via traps. This yields very long execution time [23].
It also means that the FPM hardware is no longer fully IEEE
compliant.

We use serial shifters to provide full hardware support for
these special case inputs. Using conditional split pipelines,
the output bits from the CPA are directed to either Normal
or Denormal/Underflow logic path. The Normal datapath
includes single-bit normalization shift block and rounding
logic. The Denormal/Underflow unit comprises serial left and
right shift blocks and a combined rounding block. For input
tokens diverted to the Normal datapath, no dynamic power is
consumed within the Denormal/Underflow block and likewise
for input tokens headed for Denormal/Underflow block, there
is no dynamic power consumption in the Normal datapath.
In contrast, synchronous design requires significant control
overhead to attain fine-grain clock gating.

Once the mantissa has been correctly aligned using variable
left or right shift block, a subsequent rounding operation may
be required to increment the 53-bit mantissa by one. We utilize
ripple-carry 1-of-4 encoded increment logic to implement
rounding. An expensive increment logic topology would have
been futile since the output from variable shift blocks arrives
in bitwise fashion. The rounding logic is shared between the
Denormal and Underflow datapaths as shown in Figure 10
to further minimize the area overhead of supporting these
special case operations. The Rnd block receives incoming
guard, round, sticky, and rounding mode bits from both special
case datapaths. It selects the correct set of inputs to determine
whether to increment the mantissa or not.

Fig. 10. Unified rounding hardware for denormal/underflow cases

Prior to the final Pack pipeline, there is a merge pipeline
stage, which selects the output from either the Normal or
the Denormal/Underflow datapath. Since these special case
inputs happen very infrequently as shown in Figure 11, the
throughput degradation due to the use of serial shifters does
not effect the average FPM throughput.

A. Zero-input Operands
Operand profile of floating-point multiplication instructions

reveals that a few application benchmarks have a significant
proportion of zero input operands. These primarily include ap-
plications with sparse matrix manipulations, such as 447.deal
and 437.leslie3d [2], despite their use of specialized sparse ma-
trix libraries. For other benchmarks, the zero-input percentage
varies widely as shown in Figure 11. In most state-of-the-art
synchronous FPM designs that we came across [21,26,28], the
zero-input operands flow through the full FPM datapath. They

yield similar latency and consume same power as any other
non-zero operand computation. This is highly non optimum
since if one or both of the FPM operands are zero, the final
zero output could be produced much earlier and at much
reduced energy consumption by skipping most of the compute
intensive power consuming logic blocks such as the multiplier
array, carry propagation adder, normalization, and rounding
unit.

Fig. 11. Operand profile of floating-point multiplication instructions

We provide a zero bypass path in the FPM datapath to
optimize its latency and energy consumption in the case of
zero operands. To activate the bypass path, the FPM utilizes
the zero flag control output from Unpack stage, which checks
if any of the input operands is zero. But this information is not
available in time before the start of pipeline stages pertaining
to Booth control and 3Y multiple generation. One possible
solution was to delay these pipeline stages until the zero flag
is computed and then use it to divert the tokens to either
the regular or the bypass path. Since this solution incurs a
latency hit for non-zero operands, it was discarded. In our
design, instead of delaying the multiplier array, we inhibit the
flow of tokens much deeper in the datapath. As a result, in
our design the energy footprint of zero operand computations
includes the overhead of computing Booth control token as
well as some parts of the 3Y multiple computation. But this
still yields roughly 82% reduction in energy consumption for
each zero operand computation, while preserving same latency
and throughput for non-zero operand operations.

VIII. FLOATING-POINT MULTIPLIER EVALUATION

This section presents the SPICE simulation results of our
proposed FPM datapath. The transistors in the FPM were sized
using standard transistor sizing techniques [27]. To meet high
performance targets and to minimize charge sharing problems,
each NMOS stack was restricted to a maximum of four
transistors in series. Since HSIM/HSPICE simulations do not
account for wire capacitances, we included an additional wire
load equivalent to a wire length of 8.75 µm in the SPICE file
for every gate in the circuit. Our simulations use 65nm bulk
CMOS process at 1V nominal VDD and typical-typical (TT)
process corner.

For non-zero operands, the FPM registers a highest through-
put of 1.53 GHz. In applications with a considerable per-
centage of zero operands, the average FPM throughput rises
to as high as 1.78 GHz, since zero input operations skip
throughput constraining N-Inverter templates in the multiplier
array. The FPM energy per operation results across all ap-
plication benchmarks are shown in Figure 12. Applications
with considerable zero-input operands consume significantly
less energy per operation as zero-input operations skip various
logic blocks.

Denormal arithmetic penalty

• Throughput drop is negligible for benchmarks

Zero-bypass datapath
• For some applications, a non-trivial number of operands are zero
• Example: matrices with a small number of non-zero elements

❖ Efficient sparse matrix codes use “mostly dense” sub-matrices
• Can avoid most of the energy required

FPM designs [16,28] do not fully support these operations
in hardware. Instead, these operations are implemented in
software via traps. This yields very long execution time [23].
It also means that the FPM hardware is no longer fully IEEE
compliant.

We use serial shifters to provide full hardware support for
these special case inputs. Using conditional split pipelines,
the output bits from the CPA are directed to either Normal
or Denormal/Underflow logic path. The Normal datapath
includes single-bit normalization shift block and rounding
logic. The Denormal/Underflow unit comprises serial left and
right shift blocks and a combined rounding block. For input
tokens diverted to the Normal datapath, no dynamic power is
consumed within the Denormal/Underflow block and likewise
for input tokens headed for Denormal/Underflow block, there
is no dynamic power consumption in the Normal datapath.
In contrast, synchronous design requires significant control
overhead to attain fine-grain clock gating.

Once the mantissa has been correctly aligned using variable
left or right shift block, a subsequent rounding operation may
be required to increment the 53-bit mantissa by one. We utilize
ripple-carry 1-of-4 encoded increment logic to implement
rounding. An expensive increment logic topology would have
been futile since the output from variable shift blocks arrives
in bitwise fashion. The rounding logic is shared between the
Denormal and Underflow datapaths as shown in Figure 10
to further minimize the area overhead of supporting these
special case operations. The Rnd block receives incoming
guard, round, sticky, and rounding mode bits from both special
case datapaths. It selects the correct set of inputs to determine
whether to increment the mantissa or not.

Fig. 10. Unified rounding hardware for denormal/underflow cases

Prior to the final Pack pipeline, there is a merge pipeline
stage, which selects the output from either the Normal or
the Denormal/Underflow datapath. Since these special case
inputs happen very infrequently as shown in Figure 11, the
throughput degradation due to the use of serial shifters does
not effect the average FPM throughput.

A. Zero-input Operands
Operand profile of floating-point multiplication instructions

reveals that a few application benchmarks have a significant
proportion of zero input operands. These primarily include ap-
plications with sparse matrix manipulations, such as 447.deal
and 437.leslie3d [2], despite their use of specialized sparse ma-
trix libraries. For other benchmarks, the zero-input percentage
varies widely as shown in Figure 11. In most state-of-the-art
synchronous FPM designs that we came across [21,26,28], the
zero-input operands flow through the full FPM datapath. They

yield similar latency and consume same power as any other
non-zero operand computation. This is highly non optimum
since if one or both of the FPM operands are zero, the final
zero output could be produced much earlier and at much
reduced energy consumption by skipping most of the compute
intensive power consuming logic blocks such as the multiplier
array, carry propagation adder, normalization, and rounding
unit.

Fig. 11. Operand profile of floating-point multiplication instructions

We provide a zero bypass path in the FPM datapath to
optimize its latency and energy consumption in the case of
zero operands. To activate the bypass path, the FPM utilizes
the zero flag control output from Unpack stage, which checks
if any of the input operands is zero. But this information is not
available in time before the start of pipeline stages pertaining
to Booth control and 3Y multiple generation. One possible
solution was to delay these pipeline stages until the zero flag
is computed and then use it to divert the tokens to either
the regular or the bypass path. Since this solution incurs a
latency hit for non-zero operands, it was discarded. In our
design, instead of delaying the multiplier array, we inhibit the
flow of tokens much deeper in the datapath. As a result, in
our design the energy footprint of zero operand computations
includes the overhead of computing Booth control token as
well as some parts of the 3Y multiple computation. But this
still yields roughly 82% reduction in energy consumption for
each zero operand computation, while preserving same latency
and throughput for non-zero operand operations.

VIII. FLOATING-POINT MULTIPLIER EVALUATION

This section presents the SPICE simulation results of our
proposed FPM datapath. The transistors in the FPM were sized
using standard transistor sizing techniques [27]. To meet high
performance targets and to minimize charge sharing problems,
each NMOS stack was restricted to a maximum of four
transistors in series. Since HSIM/HSPICE simulations do not
account for wire capacitances, we included an additional wire
load equivalent to a wire length of 8.75 µm in the SPICE file
for every gate in the circuit. Our simulations use 65nm bulk
CMOS process at 1V nominal VDD and typical-typical (TT)
process corner.

For non-zero operands, the FPM registers a highest through-
put of 1.53 GHz. In applications with a considerable per-
centage of zero operands, the average FPM throughput rises
to as high as 1.78 GHz, since zero input operations skip
throughput constraining N-Inverter templates in the multiplier
array. The FPM energy per operation results across all ap-
plication benchmarks are shown in Figure 12. Applications
with considerable zero-input operands consume significantly
less energy per operation as zero-input operations skip various
logic blocks.

Results
• 65nm process (TT, 1V)

❖ 92.1 pJ/op, 1.5 GHz (leakage: 1.6mW @ 90C)

• \\\

• Synchronous FPM by Quinnell (65nm SOI, 1.2V)
❖ 280 pJ/op, 0.67 GHz, 701ps latency @ 1.3V

For reference: Synopsys Designware FPM: 9.5x higher latency

Summary
• We have designed a double-precision floating-point multiplier
• Techniques used to reduce energy

❖ Radix 8 array with simpler 3Y adder
❖ Circuits modified to reduce handshake energy
❖ Slow denormal arithmetic
❖ Zero bypass

• Future work
❖ Fused multiply-add
❖ New techniques to reduce multiplier energy?

• Thanks to NSF

The person that
did the work!

