ULTRA LOW POWER BOOTH MULTIPLIER USING ASYNCHRONOUS LOGIC

Jiaoyan Chen¹, Dilip Vasudevan

2,

Michel Schellekens² And Emanuel Popovici¹

¹Embedded Systems Group, Department Of Electrical And Electronics Engineering, University College Cork, Cork, Ireland ²CEOL Department Of Computer Science, University College Cork, Cork, Ireland

Contents

- Motivation
- Background Booth Multiplier
- Positive Feedback Charge Sharing Logic
 - General Operation
 - Power Estimation
- PFCSL Booth Multiplier
- Results (Power, Area)
- Conclusion & Future Work

Motivation

Low Power Requirement in Embedded Systems					
Dynamic Power	Lower Voltage Supply, Avoid Unwanted Switches, Adiabatic Logic and etc.				
Static Power	Power Gating, Multi-threshold and etc.				
Target:	Low Power Parallel Multiplier (Booth Radix-4 Array Multiplier)				

Background - Booth Multiplier

- Structure
 - Partial ProductGenerator
 - Adder Block
- Array-Based
 - Regular Architecture
 - BalancedCapacitiveDistribution

PositiveFeedbackChargeSharingLogi

PFCSL= PFAL (Positive Feedback Adiabatic Logic) +

Charge Sharing Technology

PFCSL vs PFAL					
Power Clock	DC Supply (No overhead of power clock network)	Specifically designed Power Clock			
Energy Recycling	~50%	~60%			
Speed	Run @ 100MHz	Not Efficient in High-Speed Applications			

Positive Feedback Charge Sharing Logi

- General Operation
 - 1) VPC(i) to VDD, VPC(i-1) to Ground.
 - 2) VPC(i) Shares the ENERGY with VPC(i+1), meeting @ VDD/2
 - 3) VPC(i+1) to VDD, VPC(i) to Ground.

ASYNC'12 May 7-9,

PositiveFeedbackChargeSharingLogic

Power Estimation

- > Charge Sharing $Q = C_1V_1 = C_1V_2 + C_2V_2$
- Due to the Balanced Distribution, ~50% Energy transferred from one stage to the next.

ASYNC'12 May 7-9,

Signal Transition Diagram

- Four-Phase Handshaking Model
- Controlled by Celement

- PFCSL Handshaking Model
- Controlled by Dynamic-AND

Two Controlled Latch

Normal D-Latch is NOT suitable in PFCSL circuits.

ASYNC'12 May 7-9.

PFCSL Booth Multiplier

- Only ONE set of Y(i) is fetched at each time.
- Smaller Area

Results Comparison – ADDER

One-Bit Full Adder (VDD=1V, 45nm TSMC)

Spee d	Static	Dynam ic	PFAL (Non- Adiabatic)	PFCSL
100M Hz	325n W	550nW	520nW	266nW
~	20%	52%	49%	/

Dynamic Power

Results Comparison – Multiplier

Dynamic Power

Static Power

ASYNC'12 May 7-9,

Results Comparison – Multiplier

Area Comparison (Transistor Numbers)

	PPG	Communicati on Circuits	Adders	Latches	Total
PFCSL	1830	280	6231	4300	12641
STATIC	6544	154	6952	3440	17090

Conclusion & Future Work

- New Logic family PFCSL
- New structure of PPG, Booth Multiplier
- Power and area improvements
- In the future, implement into 8051 microcontroller design. Fabricate it!!!

Acknowledgements

- This work was funded by the Science Foundation Ireland under Grant number 07/IN.1/1977.
- The authors also would like to thank Synopsys, Ireland for their generous support in this project.

Thank you! Questions?