

Leti

A Pseudo-Synchronous Implementation Flow for WCHB QDI Asynchronous Circuits

Yvain Thonnart, Edith Beigné, Pascal Vivet CEA-LETI, Minatec, Grenoble, France

Async'2012, May 8th 2012 DTU, Copenhagen, Denmark

Asynchronous circuits

with synchronous CAD tools?

Entangled uneven loops

But very expensive design time

- Backed-up by big EDA companies
- Obsessed about clocks
- Scared of loops
- Pseudo-synchronous implementation
 - "Mass-produced"
 - Much cheaper design time
 - Can run fast, nevertheless!

Outline

- Asynchronous circuits with synchronous CAD tools?
- Pseudo-synchronous models for C-elements
- Pseudo-synchronous circuit implementation
- Benchmarking against asynchronous implementation
- Real-world implementations
- Conclusion & perspectives

DIMS WHCB pipeline combinational loops & optimization

- Performance is given by the loops cycle times
 - Design optimization needs to constrain those loops
 - Synchronous CAD tools can't handle them
 - need to cut the loops in the timing graph & constrain loop segments
- Where to cut for a systematic approach
 - in the WCHB C-elements: the ones gathering forward and backward data (they must be Resetted)

Asynchronous Implementation: cost & flaws

- Resulting timing constraints:
 - For each WCHB C-element in the cell library, disable timing arcs to cut the loops
 - set_disable_timing 'C_element' -from 'in' -to 'out'
 - For each path segment between two WCHB C-elements, specify a target maximum delay
 - set_max_delay -from 'C/elt/inst1/out' -to 'C/elt/inst2/in' 0.5ns
- Limitation: The WCHB C-elements themselves are not optimized
 - Minimal or no drive adaptation of cells depending on cell load
 - No consideration on signal slope on path end
 - Cells can be moved back and forth during placement
 - → Synchronous CAD tools do not manage asynchronous path ends correctly
- → Use pseudo-synchronous models for WCHB C-elements
 - to cut timing loops without disabling timing arcs
 - to improve tool control over path ends

Pseudo-synchronous circuit timing paths

- Loops are cut naturally at pseudo-synchronous C-elts
 - No need to disable a timing arc
 - Creates 2 kinds of paths in WCHB pipeline:
 - forward paths
 - backward paths
- → How to derive pseudo synchronous models?
- → How to constrain resulting paths?

Asynchronous .lib characterization

- .lib files in Liberty format to model cell timing arcs
 - As a function of input transition times and output capacitance
 - 4 values per arc: rise delay, fall delay, rise transition, fall transition

Pseudo-synchronous .lib derivation

- C-element is modeled like a synchronous flip-flop
 - Reset pin is used as a dummy clock input
 - New arc uses first row of $A \rightarrow Z$ arc, old arcs are turned to setup checks

rise_delay($Clk \rightarrow Z$): 200ps 30ps 120ps Z output capacitance 10fF 40fF 100fF rise_tran(Clk \rightarrow Z): 12ps 80ps 320ps 85ps Z output capacitance 10fF 40fF 100fF

setup_rise($A \rightarrow Clk$) A input transition 0ps 10ps 50ps 80ps 100ps ↓200ps

→ computed as diff. between 1st column of previous rise_delay($A \rightarrow Z$) and new rise_delay($Clk \rightarrow Z$)

setup_rise($B \rightarrow Clk$) Idem with previous B→Z

Simple pseudo-synchronous constraint

- Declaring a clock on the reset signal constrains all paths to a given "dummy" period
 - → Actual asynchronous cycle time given by biggest sum of 2 fwd + 2bwd delays on the loops (for token+bubble)
 - → as bad as 4x dummy target period
 - often less (2x-3x) as no hold fixing is done
- Dummy clock period limitation:
 - Logic depth can be different on each path
 - Relaxes all paths to worst path length
 - → Actual throughput not optimal when forward and backward logic are not balanced (on most critical local loop)
 - → Actual forward latency can be really sub-optimal (given by sum of fwd delays)
- What about over-constraining the design ?
 - Negative slack is not a big deal for implementation, circuit is QDI after all!
 - But over-constrained paths will distract the optimization kernels...

Refined pseudo-synchronous timing constraints

- → Use dummy clock declaration to identify paths, not to constrain design with a given period
 - Declare clock to break loops, with any period (e.g. Ons)
 - Override delays on all paths with reg2reg set_max_delay constraints set max delay 0.23ns -from C/elt/inst1 -to C/elt/inst2 (no pins given → preserve all arcs inferred by clock declaration)
- → Resulting constraints very similar to asynchronous ones, but with no timing arc disabled
 - → Better control on timing paths for optimization tools
 - → Leverage on all existing asynchronous STA methods to predict performance

WHCB isochronic forks handling

- Green fork needs no isochronic assumption
 - Both branches are acknowledged by protocol (C-element on point of reconvergence)
- Red forks should be isochronic (or relaxed)
 - Only one of the branches is acknowledged (reconvergence on a combinational gate) **BUT**
 - they always occur at path ends (previous logic is shared)
 - Shortest adversary path goes through 2 C-elements and at least 1 inverting bwd logic
 - Constraining paths through the fork for shortest possible delays (with refined 'set max delay' constraints) also balances any buffer tree needed at the fork
 - Adversary path isochronic hypothesis is easily met

Pseudo-synchronous implementation flow

Linear pipeline case study

- Instantiated 4x to inject the 4 different input values on each MR4
- Implemented down to layout with Cadence SoC Encounter
- STMicro 65nm LP technology
- Very narrow floorplan 20μm*600μm to model a long NoC link

Timing constraints strategies

Asynchronous modeling

combinational loops broken at C-elements inputs.

- zero-delay target:
 - 'set max delay 0' on all paths
- zero slack:
 - iterations on place-and-route flow adjusting per path 'set_max_delay' values until implementation reports final slack of Ops.
- -40ps slack:
 - same as above, but stop iterating as soon as final negative slack is lesser than 40ps.

Pseudo-synchronous modeling

- zero-delay target:
 - 'create clock Reset -period 0'
- simple:
 - 'create clock Reset -period N' with iterations until N cannot be reduced with a final slack of Ops.
- zero slack:
 - 'create clock Reset -period 0', plus iterations on per path 'set_max_delay' values until implementation reports a final slack of Ops.
- -20ps slack:
 - same as above, with a 20ps target.

Benchmarking results @tt65_1.2V_25C

- With asynchronous modeling, disabling timing arcs to break loops at C-elements degrades performance
- Simple and 0 target synchronous are comparable in performance
 - Less iterations for 0 target, but slightly bigger area
- Ad-hoc synchronous constraints give best results

ANoC implementations

- ANoC router made of 6 kinds of WCHB processes
 - 3 per input stage, 3 per output stage
 - Generic data path size
 - Any possible combination of input stages and output stages
- 60 "generic" 'set_max_delay' constraints cover all possible arrangements of processes in NoC topology
 - 60 values to refine for zero-slack strategies
- Recent implementation in 3 chips with industrial partnership in 2011/2012
 - 2D-mesh based, in STMicro 65nm LP
 - Reg-Resp Master-Slave based in STMicro 32nm and 28nm LP

MAG3D

P2012 CO

28nm P2012_CO ANoC synthesis results

- According to dummy period:
 - Area increase up to +30%
 - cycle time & latency reduction up to -30%
- Ad-hoc pseudo-sync. constraints allow for:
 - reproducible best performance @ 1280Mflit/s
 - with reasonable area increase by ~20% compared to under-constrained design

MAG3D implementation results

- **Technology**
 - **STMicroelectronics** cmos 65nm low-power process
- Implementation strategy
 - Pseudo-synchronous hard-macro for routers
 - Mixed integration on top
 - Synchronous DfT
 - Pseudo-synchronous ANoC links
 - P&R Runtime ~ 17h
- **ANoC Area**
 - 1M Gate
- Performance
 - @tt65 1.2V 25C
 - 7 routers path
 - ~10 mm links
 - Average throughput: 850 Mflit/s
 - Average latency: 9.81ns

~8.5mm

Conclusion

Asynchronous circuits turned synchronous (not really...)

- For the designs \rightarrow a bit more performance
 - DIMS WCHB circuits are not as bad as you would think, aren't they?
- For the designers → a systematic approach for loop breaking and design constraints
 - Large asynchronous designs within easy reach
- For the community a "benevolent" betrayal
 - Don't banish me, please...
- For the industry \rightarrow a comfortable well-known CAD environment
 - Energy-efficient off-the-shelf **soft** IPs
 - OK, they are actually asynchronous, but only if they ask...
- → But will it work for more than ANoC or DIMS WCHB?

Pseudo-synchronous timing paths in QDI (PCHB/PCFB/RSPCHB...) pipelines

- Up to 5 types of pseudo-synchronous paths instead of 2
 - (+ WCHB like paths for state variable in PCFB)
 - Not necessarily balanced in delays → ad-hoc constraints to be considered, dummy period could be insufficient
- When no Reset input is present on the cells, create and rely on an "internal pin" for dummy clock
 - pin(dummy) {direction: "internal"; [...]} in .lib file
 - create_clock -name 'dummy_clk' [\$all_dummy_pins_in_design] in .sdc file
- Blue paths form an isochronic fork for "bubbles"
 - Need special handling to guarantee data deactivation before EN re-activation

timing arcs diversion and timing margin

- Alternatives for relative delay constraint on isochronic fork
 - specify 'set data check'
 - reduce max delay constraints separately on both paths to guarantee there is no positive slack
 - Add security margin to data arcs
 - Compatible with simple dummy clk period constraint
 - Specify margin thanks to dummy clk transition time

Dummy (or Reset)

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

list

LABORATOIRE D'INTÉGRATION DES SYSTÈMES ET DES TECHNOLOGIES

Many thanks to

- My co-authors for their 9-year contribution & support
- The reviewers for their inspiring feedback
- The audience for your questions?

