
Uncle – An RTL Approach To
Asynchronous Design

Robert B. Reese (Mississippi State University)

Scott C. Smith (University of Arkansas)

Mitchell A. Thornton (Southern Methodist University)

Outline

• Motivation

• NULL Convention Logic (NCL) background

• NCL Systems

• Uncle Synthesis Flow Details

• Design Examples and Comparisons

• Summary and Future Work

2

Motivation

• Would like a readily-available asynchronous
design flow that

– Uses a standard RTL (i.e., Verilog/VHDL) so can
take advantage of commercial tools for these
languages.

– Should generate a complete system
(sequential/combinational logic,
datapath+control), have timing analysis, and
performance/area optimizations.

3

This sounds familiar….
• Theseus Logic flow for NULL Convention Logic (circa

late 90’s-mid 2000s) (Ligthart, Fant, Smith, Taubin, Kondratyev., Async

2000)

– Used VHDL, Synopsys as front-end.

– Combinational logic/sequential logic in separate files, ack
networks generated manually.

– Timing tool called CyclePath used to measure loop
performance, orphan detection.

– Theseus Logic is now Camgian Microsystems
(Maitland/Florida, Starkville/Mississippi).

– Original flow is unavailable for comparison purposes.

• Reese et.al began work on new flow in December 2010 with
goal of synergistic activities with Camgian regarding NCL design
(new flow was not solicited by Camgian).

4

NULL Convention Logic Background
• Four-phase, dual-rail logic family based on threshold

logic

– Can be used to build delay-insensitive systems

– 27 fundamental gates (all combinations of 2, 3, 4 inputs).

– CMOS static and semi-static implementations

• THmn threshold gate (at least m inputs of n total inputs
asserted before output is asserted).

– All inputs must be negated before output is negated.

5

Dual-rail Combinational Logic in NCL

31 transistors 56 transistors

Basic approach for

combinational logic is to

represent as netlist of

AND2, OR2, XOR2, NOT

and dual-rail expand the

netlist; logic is input-

complete.

Some complex gates

such as MUX2 and FULL

ADDER have optimized

NCL implementations.

NCL dual-rail more efficient than DIMS
6

Linear Pipeline

Data-driven design with data arrival, acknowledgements

controlling the data flow; external ports active every compute

cycle.

Half-latch, Reset-to-NULL

7

Finite State Machine

Three-half latches used for registers involved in a loop with middle half-

latch having initial data at reset.

Data-driven design in that all logic is dual-rail, no separation of

control/datapath, external ports are active every compute cycle.

Must be

reset to Data

(either Data-

0 or Data-1)

to insert

token on

ring.

8

NCL Systems using Balsa
Balsa [Bardsley, Univ. of Manchester ‘98] is a well-known

asynchronous synthesis system that can generate designs

that can use NCL for combinational logic blocks (supports

other logic styles as well). Registers/control do not use NCL.

Very efficient

from a transistor

viewpoint.

Read ports give

conditional

access to data.

This register has

a low-true

ackout (ko)

9

NCL Combinational logic: Balsa uses dual-rail expanded

primitive gates + optimized complex gates (full-adder, others)

Balsa-style Control
Balsa control uses single-rail handshaking elements (S-

element, T-element) to implement sequencers that control

datapath operation.

T-element offers more currency than S-element (Oa

return to null overlapped with next operation (la+).

20 transistors

24 transistors

data NULL

next

data NULL

next

10

Example Balsa Datapath/Control

Control is single-rail, datapath is dual-rail. More complex

sequencers with choice, conditional looping also possible.

11

Unifiedǂ NCL Environment (Uncle)

Both data-driven register/control and Balsa-style

register/control (control-driven) is supported (designs can

mix the styles).

ǂ
Somewhat pretentious, not yet fully realized and may never be.

12

RTL to Single-rail to Dual-rail

• Area-driven RTL synthesis, weak linkage between timing
in .lib and final design, needs to be improved.

• Single-rail netlist output file contains:

– Primitive gates (AND2, OR2, XOR2, NOT, D-latch, DFF), complex
gates (MUX2, FULL ADDER) that are inferred from RTL
statements by synthesis.

– Black-box gates generated from parameterized modules
supplied in Uncle that implement various asynchronous
functions such as Balsa-style registers, control; specialized
functions (arbiter, merge gates)

13

Ack Generation

• Ack generation is area-driven and ensures that all
data sources receive acks from data destinations

– Ack networks for latches with common destinations
are merged; common cgate sub-trees across different
acks are factored and shared

• An ack checker step is included at the end
of the flow to check ack network validity
– Sanity check to ensure intermediate optimization

steps have not broken the ack network.
14

Optimizations

• Net buffering: buffers nets to meet user-specified
maximum transition time
– Timing data uses non-linear delay model (NLDM) – two-axis tables use

input transition time, output load. NLDM data from 65 nm technology
based on pre-layout transistor models. Library had four inverter
variants, three AND2 variants, two register variants, and two variants
of most commonly used NCL gates.

• Latch balancing – pushes half-latches to improve
performance

• Relaxation – area optimization to reduce gate count
of NCL dual-rail expanded logic (Cheoljoo/Nowick Async’2008).

15

Latch Balancing Details

• Logic pushed across latch boundaries to reduce data+ack cycle time

• Iterative algorithm; multiple candidate latches pushed one gate level each
iteration

• Algorithm halts when no cycle time improvement found.
16

Feature Comparison
Balsa Uncle ATN (Cheoljoo/Nowick)

Combinational
synthesis

yes yes yes

Control synthesis yes Data-driven only
(control-driven
manual instantiation)

no

Logic Style Different dual-rail
styles, bundled data

NCL only

NCL only

Behavioral simulation yes limited limited

Area optimizations no Relaxation, limited
cell merging, ack
sharing

Relaxation, cell
merging

Performance
optimizations

Language features
allow area, perf.
tradeoffs by coding
style

RTL style allow
area/perf. tradeoffs,
latch balancing, net
buffering

Timing-driven
relaxation

Timing model Fixed delay NLDM Fixed delay

Uncle vs. Balsa Design Comparison
Methodology

• Used designs for which published Balsa code was
available

– Balsa code that was used was written in a high performance
style

• Designs mapped to same gate level library for apples-
to-apples comparison

– Designs verified at both gate and transistor levels

– Transistor simulation used pre-layout transistor models in 65
nm technology; Cadence Ultrasim used for verification.

– All test benches were self-checking

18

Design Example: 16-bit Integer GCD

Uncle ver. DD DD/NB

DD/LB/

NB CD CD/NB

transistors 16192 16226 20128 8658 8662

* 1.87 1.87 2.32 1.00 1.00

cyc. time (ns) 105.7 86.0 64.9 75.7 62.4

* 1.69 1.38 1.04 1.21 1.00

energy (pJ) 32.4 35.3 49.7 10.2 10.8

* 3.17 3.44 4.85 1.00 1.05

DD: data-driven; NB: net-buffered; LB: latch-balanced, CD: control-driven

Note: Control-driven == Balsa style registers/control

Uncle versions

Conditional port activity caused data-driven designs to be large, slow.

Latch balancing helped DD performance. Control driven produced best

results.

19

Design Example: 16-bit Integer GCD

RTB: ratio-to-best; DD: data-driven; NB: net-buffered; LB: latch-balanced, CD:

control-driven

Uncle vs. Balsa

Balsa used more read ports on registers reducing loading but increasing

transistor count. Net buffering helped offset increased loading in Uncle

design, improved performance.

transistors

Cyc time (ns)

Energy (pJ)

Balsa

Uncle

(CD/

NB) Balsa

Uncle (CD/

NB) Balsa

Uncle (CD/

NB)

11455 8662 85.2 62.4 13.7 10.8

RTB 1.32 1.00 1.37 1.00 1.27 1.00

20

Viterbi Decoder

• Balsa code from published source (written for high
performance) [L. T. Duarte PhD diss., 2010, Univ. Manchester]

• Investigated different Uncle versions for each block
– Compared best Uncle vs. Balsa for each block

• Final Balsa/Uncle versions ran complete code (each multiple
modules) in one pass through synthesis systems to get final
netlists.
– Both verified at gate and transistor levels with same vectors.

21

Branch Metric Unit: Uncle vs. Balsa

• Uncle version just combinational logic with half-latch on output

• Balsa version used loop splitting to split combinational logic into
concurrent blocks that increased parallelism of internal
computations at the cost of more transistors.
– Has overhead of more transistors

transistors Cycle time (ns) Energy (pJ)

Balsa

Uncle

(DD/NB) Balsa

Uncle (DD/

NB) Balsa

Uncle

(DD/NB)

 9040 5338 9.30 8.87 2.33 1.35

RTB 1.69 1.00 1.05 1.00 1.73 1.00

RTB: ratio-to-best; DD: data-driven; NB: net-buffered;
22

Path Metric Unit: Uncle Versions

• Latch balancing did not improve data-driven performance until
extra half-latch stage added on primary outputs to give more
latch movement freedom; data-driven had highest performance.

• Control-driven approach used fewest transistors as expected.

RTB: ratio-to-best; DD: data-driven; NB: net-buffered; LB: latch-balanced,

LB+: latch-balanced, extra latch stage on primary outputs CD: control-driven

Uncle ver. DD/NB DD/NB/LB DD/NB/LB+ CD/NB

transistors 20184 21778 24561 18838

RTB 1.07 1.16 1.30 1.00

cyc. time (ns) 13.4 13.4 6.9 13.3

RTB 1.93 1.93 1.00 1.91

energy (pJ) 5.1 5.7 6.8 4.6

RTB 1.12 1.24 1.48 1.00

23

Path Metric Unit: Uncle vs Balsa

• Uncle data-driven approach with latch balancing, net buffering
compares favorably in all areas to Balsa version
– Without latch balancing, Uncle implementation would have been slower.

– Balsa implementation was faster than Uncle’s control-driven
implementation; Balsa has some performance enhancement features not
currently implemented in Uncle.

– Transistor discrepancy between Balsa and Uncle appears to be mostly in
the trellis sub-module which is simply wires in Uncle, but channels with
enclosure logic in Balsa.

RTB: ratio-to-best; DD: data-driven; NB: net-buffered; LB: latch-balanced,

LB+: latch-balanced, extra latch stage on primary outputs CD: control-driven

 transistors Cycle time (ns) Energy (pJ)

 Balsa

Uncle (DD/

NB/LB+) Balsa

Uncle (DD/

NB/LB+) Balsa

Uncle

(DD/NB/

LB+)

 38328 24561 9.39 6.94 9.73 6.81

RTB 1.56 1.00 1.35 1.00 1.43 1.00

24

History Unit Control
Register file write

Register file read

in conditional loop

Implemented unconditional

loop, conditional loop, choice

Control optimization

was implemented

that overlapped

register file write

return-to-NULL with

S2/S3 only if

conditional loop

(L0….) was not

executed.

25

History Unit: Uncle vs Balsa

RTB: ratio-to-best; CD: control-driven; NB: net-buffered;

 Balsa

Uncle

CD/NB

Uncle

CD

 transistors 21819 16471 16425

 RTB 1.33 1.00 1.00

v1 cyc. time (ns) 10.8 6.8 8.4

 RTB 1.60 1.00 1.25

 energy (pJ) 1.34 1.17 1.07

 RTB 1.26 1.09 1.00

v2 cyc. time (ns) 230.7 161.3 192.0

 RTB 1.43 1.00 1.19

 energy (pJ) 25.4 19.6 18.7

 RTB 1.36 1.05 1.00

V1: no internal-loop execution

V2: internal loop execution

Control optimization for ‘V1’

set in Uncle implementation

provided performance boost.

Unclear as to exact reason for

performance boost on ‘V2’ set

(could be a mixture of control

+ datapath efficiency).

26

Viterbi Decoder: Uncle vs. Balsa

RTB: ratio-to-best; CD: control-driven; NB: net-buffered;

transistors Cycle time (ns) Energy (pJ)

Balsa Uncle Balsa Uncle Balsa Uncle

 71370 46752 22.0 17.3 15.0 10.5

RTB 1.53 1.00 1.27 1.00 1.43 1.00

• Transistor counts in this table does not match sums of previous
tables since entire source processed at one time through
respective tools

– Balsa’s transistor count is ~4% higher than published source.

27

Observations/Conclusions
• Uncle’s RTL approach requires more effort by the

designer than Balsa’s approach, especially for control-
driven modules

– But can result in a higher quality design

• Latch balancing is a performance win for data-driven
designs with always active ports

• Data-driven style better for modules with always active
ports if performance is goal.

• Control-driven style (Balsa-style registers/control) better
for modules with conditional port activity.

28

Future Work/ Paper Contributions
• Future work

– Direct NCL synthesis with input completeness (M. Thornton)

– Support for multi-threshold NCL with sleep (S. Smith)

– Timing-driven ack-generation, timing-driven relaxation

– Net-buffering for critical paths, wire load model

– Automated half-latch insertion for performance

– Better timing connection between input synthesis library and
final gate level netlist

• Paper contributions:

– Demonstration of asynchronous RTL methodology (again…)

– Latch balancing optimization

– Design data point for future comparison

29

Thanks for listening!
Questions?

30

Uncle available at sites.google.com/site/asynctools

Automated regression testing for all designs, user manual.

Source available on request.

Reviewer Questions
• Why was iterative algorithm that only pushed one gate level used for latch

balancing instead of a standard retiming algorithm for optimum latch location?

– It was not used because of difficulties in predicting new ack network
performance, since ack network changes based on where latches are
located in logic. It is acknowledged that a standard retiming algorithm
would give a better starting point and save CPU time, unclear if result
quality would be better.

• Why use unit delays for gates in the Synopsys/Cadence library use for
synthesis?

– This is an acknowledged weakness – delays closer to the actual dual-
expanded gate delays should be used (the NLDM timing models for gates
were done late in project, did not make it into Synopsys/Cadence library).

• Why did net buffering ignore wire loading?

– It is acknowledged that a wire load model needs to be added.

• Where do the black-box gate, parameterized modules come from?

– They are provided in the Uncle release. User has freedom to add new
parameterized modules if desired.
 31

Static CMOS Implementation
• Static CMOS NCL gate has reset, set, hold0, hold1 blocks

TH23

Z = set + (Z- hold1); Z- prev output

Z’ = reset + (Z’- hold0);

set = AB + AC + AB

reset = A’ B’ C’

hold0 = set’

 =A’B’ +A’C’ + B’C’

hold1 = (inputs or’ed)

 = A + B + C

RTL Example Snippets

Clocked D-latch

maps to dual-rail

half-latch during

dual-rail

expansion.

Clocked DFF

maps to three half-

latch structure with

initial data in

middle latch

during dual-rail

expansion.

RTL Example Snippets (cont.)

Parameterized modules are used to implement functionality

that cannot be inferred from RTL. These expand to black-box

gates ignored by synthesis and passed to the gate-level file.

Latch Balancing Algorithm
Iterative algorithm that

pushes candidate

latches by one gate level.

Latches pushed in only

one direction (LATj

towards LATi).

Latch candidates are

identified using several

sorting/pruning stages to

identify those most likely

to improve performance.

Algorithm halts when no

further improvement

made. Delays calculated

using NLDM timing data.

Caveat: Current algorithm will

not find improvement in (b) even

though improvement exists.

Feature Comparison

Manual

Netlisting

Modern RTL

flows

Behavioral

Synthesis

ATN [Jeong/Nowick]: combinational only from

Blif/Verilog gate netlist, timing/area-driven relaxation,

technology mapping, fixed delay timing model.

Uncle: complete system from Verilog RTL, limited RTL

simulation, control synthesis only for data-driven approach,

Balsa style reg/control via parameterized macros, NLDM

timing, latch balancing netlist optimization for performance,

area-driven relaxation

Balsa: complete system from Balsa spec, simulation of Balsa

spec, control synthesis, fixed delay timing model, user can

control area/performance via language constructs, can

produce bundled data, different dual-rail logic styles.

