
Multi-Token Resource Sharing for
Pipelined Asynchronous Systems

John Hansen and Montek Singh

Dept. of Computer Science

University of North Carolina

Chapel Hill, NC, USA

“Grand” Vision

Asynchronous high-level synthesis:

2

&MAIN : main proc (IN? chan <<byte, byte, …).

 begin

 a, b, c, d, e, f, g, h, i, j, k : var byte

 |

 forever do

 IN?<<a, b, c, d, e, f>>;

 g := a * b;

 h := c * d;

 i := e * f;

 j := g + h;

 k := i * j;

 OUT!k

 od

 end

Convert high-level specification…

… into custom VLSI chip

Automated

Design Tools

Our Overall Design Flow

Several paths:

3

spec
M

u
lti-to

k
e

n

S
in

g
le

-to
k
e

n

Haste tools

chip

Optimizing

Compiler

Physical

Back-end

Shared Resource

Synthesis Path

Data-Driven

Design Path

1

2 3

Existing commercial tools

Our contributions

1 [ASYNC-08]

2 [ASYNC-10, ICCAD-10]

3 [DATE-12, ASYNC-12]

High performance

Path 3: Multi-token
Shared Resource

+ * 1

2

4

3

5

Low area

Low performance

Path 2: Single-token
Shared Resource

+ * 1

2

4

3

5

Low area

Path 1: Data-driven

1 2 + * 3 4 + * 5

High performance

High area

Comparison of Design Paths

4

Sync vs. Async Scheduling

 Basic synchronous
scheduling approach

 Operations can only be
scheduled on clock edges

 Critical path in dark grey

 Best solution shown

5

0

1

2

3

4

5

6

7

8

9

10

11

add mult mem

Synchronous

Sync vs. Async Scheduling

6

0

1

2

3

4

5

6

7

8

9

10

11

add mult mem

Synchronous Asynchronous

0

1

2

3

4

5

6

7

8

9

10

11

add mult mem

(time steps for reference; no clock present)

Sync vs. Async Scheduling

7

0

1

2

3

4

5

6

7

8

9

10

11

add mult mem

Synchronous

0

1

2

3

4

5

6

7

8

9

add mult mem

Asynchronous

(time steps for reference; no clock present)

Multi-Token Synthesis

Multi-Token

 multiple concurrent
computations

 pipelined

 Unsolved problem

 even for synchronous systems

 Best of both worlds

 pipelined and shared-resource

 high performance, low area

 explore whole spectrum in-
between!

8

spec

M
u

lti-to
k
e

n

S
in

g
le

-to
k
e

n

Haste tools

chip

Optimizing

Compiler

Physical

Back-end

Shared Resource

Synthesis Path

3

Outline

 Previous Work

Our Approach

Basic approach [DATE 2012]

Hierarchical approach [this paper]

Results & Conclusions

9

Existing Sync. Solutions: Poor Match

 Synchronous approaches:

 SPARK, AutoPilot/AutoESL, GAUT, …

 Large search space for ILP

Each time step for each <operation, func unit>  distinct variable

 Our idea: Solve for relative ordering of events, not timing

10 0 8 16 24 …

a
b
c

d
e

Adder 1

Adder 2

Multiplier

Large number of
similar solutions!

Asynchronous Approaches

 Syntax-directed synthesis tools (Haste/Balsa)

 No automated resource sharing

“what you write is what you get”

 Resource sharing: Single-token

 Many approaches are not purely async

adapt discrete time methods to async

E.g.: [Nielsen 2005, Saito 2006, …]

 Hansen/Singh [ASYNC-10] [ICCAD-10]

 first exact purely asynchronous solution

based on relative order, not absolute timing

11

Multi-Token Synthesis: Challenges

More challenging than single-token

 mix-and-match operations from successive tokens

much larger search space

how many tokens?

 more memory elements (buffers)

 General problem unsolved

 Given: dataflow graph, throughput target

 Compute: resource schedule that minimizes area

over all possible resource allocations

over all possible buffer insertions

over all possible token counts

12

Multi-Token Synthesis: Prior Work

 No prior optimal method for multi-token scheduling

 existing approaches solve only part of the problem

[Beerel 2005] requires token count, discrete time

 others heuristic, share resources where straightforward

not targeting exact area-minimization problem
[Spark 2004, Cadence 2011]

13

Outline

Previous Work

 Our Approach

 Part 1: Basic approach [DATE 2012]

 Part 2: Hierarchical approach [this paper]

Results & Conclusions

14

Review: Dependence Graphs

15

b0

c0

d0

a0
…

…

…

…

b1

c1

d1

a1

b2

c2

d2

a2

b

c

d

0

0

0

1

a

1

1

1

1

while(true){

 a=read();

 b=3*d;

 c=a+b;

 d=c*0.25;

}

Folded Dependence Graph:
Encodes dependence constraints across iterations

Novel Graphical Model [DATE 2012]

 Three types of arcs

 data arcs (RAW)

 reverse arcs (WAR)

 resource arcs

 Arc properties:

 weight = difference in iteration count

 delay = min time elapsed

 Can directly infer the following:

 resource allocation and schedule

 number of pipeline buffers

 performance / cycle time

 number of tokens

16

c

a

0

0

0

1

1

1

0 1 b

d

1

1

1

1

Expressiveness of Graphical Model

 Encodes all of the following:

 What is the schedule for a resource?

Determined by placement and weight of
resource arcs

 How many resources?

number of resource cycles

 How many pipeline stages?

Σ weights on data and reverse arcs

 What is the performance?

Cycle metric: Determined by the weight
and delay of every cycle in the graph
(Σ delays / Σ weights)

17

c

a

0

0

0

1

1

1

0 1 b

d

0

1

1

1

Expressiveness of Graphical Model

 Legality constraints:

 Weight of each cycle > 0

avoids deadlock

 Weight of each resource cycle = 1

single-stride schedule

 Weight of data arcs >= 0

dependencies go forward in time

 Goal:

 Find the lowest-area schedule that
meets legality constraints and
performance target

18

c

a

0

0

0

1

1

1

0 1 b

d

0

1

1

1

Graphical Model: Buffering

Buffers needed for 2 reasons:

1. WAR requirements

reverse arcs model WAR

multiple values for a may be live

must buffer all waiting to be consumed

e.g.: m+n buffers needed for a

19

bm

bm+1

a1

a2

am+n

…

a

b
m n

Theorem:

buffers = weight of data arc +

 weight of reverse arc

Graphical Model: Buffering

Buffers needed for 2 reasons:

2. Speed requirements

 too few buffers can cause slowdown

“slack mismatch” in reconvergent paths

20

datain
dataout

fork join

Graphical Model: Buffering

Buffers needed for 2 reasons:

2. Speed requirements

 too few buffers can cause slowdown

“slack mismatch” in reconvergent paths

21

datain
dataout

fork join

Search Space

 The following are the unknowns:

 placement and weights of resource arcs

determine schedule

 weights of reverse arcs

determine buffering

Our Algorithm: 2-level

 Top-level: Branch-and-bound strategy

schedules operations

allocates function units

 Bottom-level: ILP strategy

ensures performance constraint is met (cycle metric)

add optimal number of pipeline buffer stages to help!

22

Outline

Previous Work

Our Approach

Basic approach [DATE 2012]

 Hierarchical approach [this paper]

Results & Conclusions

23

Hierarchical Scheduling

Optimal scheduling is
NP-complete

 Need scalable method

 Hierarchical algorithm

 Faster, scalable

 Algorithm steps:

 Decompose

 Schedule

 Simplify

24

A

X

Y Z

A

X

Y Z

A

X

Y Z

Simplifying block internals

 Propagate a simpler/abstract model of block

 Only subset of nodes interact with other blocks

 Hide internal nodes!

25

A

C

B

Y

A

X

Y Z

What do we replace a block with?

26

Can we replace a block (subgraph of the DFG)

with

a

FIFO?

YES!

Single-Path (FIFO) Approximation

 Simplify path between a pair of interface nodes

27

Simplified

Internals

Single Path

Approximation

A

C Y

3 2

4 4

9

10

10

0
0

0

1
1

0

0

Original Paths

(A to C only)

A

C
Y

23

17 0

1

12 1

A

C
Y

19 0

Review: Canopy Graph Analysis

Occupancy n 0

Limiting

Stage

T
h

ro
u

g
h

p
u

t

n+1 n-1 1
28

Canopy Graph: Single-Path Approx.

A B C E

F

G

D

A

C
Y

23

17 0

1

12 1

29

T
h

ro
u

g
h

p
u

t

tokens

Canopy Graph: Single-Path Approx.

A B C E

F

G

D

A

C
Y

23

17 0

1

12 1

30

T
h

ro
u

g
h

p
u

t

Occupancy

B

C

G

D

F

Canopy Graph: Single-Path Approx.

A

C
Y

23

17 0

1

12 1

31

T
h

ro
u

g
h

p
u

t

Occupancy

B

C

F

G

D

Y Z

Canopy Graph: Single-Path Approx.

A

C
Y

19 0

A

C
Y

23

17 0

1

12 1

32

T
h

ro
u

g
h

p
u

t

Occupancy

Canopy Graph: Single-Path Approx.

Throughput Constraint

Y Z

A

C
Y

19 0

33

T
h

ro
u

g
h

p
u

t

Occupancy

Much simpler

model!

Two-port Transformation

nC2

Total Arcs:

Join

Join

Join

Join

2

Total Arcs:

34

Experimental Setup

 Examples

 6 DFGs, 20 test cases

 Throughput specified  minimize area

 Comparisons:

 multi-token vs. single-token approaches

 optimal multi-token vs. hierarchical multi-token

 trends in hierarchical approach

 Tool implemented in java on Macbook Pro

 for ILP, use CPLEX tool

37

Results: Optimal vs. Hierarchical

38

Multi-Token Synthesis Results

Hierarchical Multi-Token Results

39

0

5000

10000

15000

TEA-4 TEA-8 TEA-16

8 12 16

1

10

100

1000

TEA-4 TEA-8 TEA-16

8 12 16

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

A
re

a

Larger block size
 Lower area

Smaller block size
 Lower runtime

Block size:

Results: Single-token vs. Multi-token

40

0
100
200
300
400
500

O
D

E
-3

4

O
D

E
-5

0

D
P
8
-3

5

D
P
8
-5

0

D
P
8
-9

0

C
O

S
-7

5

7
T
H

-9
0

T
E
A
-4

0

T
E
A
-4

3

Single-token Multi-token

L
o
g
ic

 A
re

a

Multi-token produces lower area solutions!
Multi-token solves problems single-token cannot!

Conclusions

 Summary of Contributions:

 DATE 2012: First exact method for multi-token

async as well as sync

novel graphic model that captures buffering, scheduling, data
dependencies

 ASYNC 2012: Fast hierarchical method

can solve larger problems

promising experimental results

A Key Result: An arbitrary Marked Graph/DFG can be modeled as a
FIFO!

41

Thank You

Questions?

Search Algorithm

 Algorithm overview:

 1a. Pick an unscheduled operation

 1b. Allocate a compatible resource

 1c. Repeatedly schedule another compatible operation

 1d. Or, close this resource cycle

 2. With this partial allocation & schedule, run ILP…

… to determine optimal buffering and satisfy legality constraints

Monotonicity:

 Area and cycle time monotonically increase as you go down
the search tree  Branch-and-bound

 Several heuristics for pruning and ordering

43

Architectural Model

Control FSM

M
U

X

M
U

X

Fn.

Unit

D
E

M
U

X

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

ack1

req1

reqn

ackn

. . .

ack1

req1

reqn

ackn

. . .

. . .

. . .

. . .

a

b c

d

Cyclic
Schedule:
abcd

0

0

0

1

Incoming Data

44

Resource

Operands

Results

Scheduler

