ASYNC 2012 DTU

18th IEEE International Symposium on
Asynchronous Gircuits and Systems | _—
May 7-9,,Lyngby, Denmark i Ny T

Multi-Token Resource Sharing for
Pipelined Asynchronous Systems

John Hansen and Montek Singh

Dept. of Computer Science
University of North Carolina
Chapel Hill, NC, USA

“Grand” Vision

Asynchronous high-level synthesis:

BMAIN : main proc (IN? chan <<byte, byte, ...).
begin
a,b,cdef g hijk: varbyte
|
forever do
IN?<<a, b, c, d, e, f>>;
g:=a*b;
h:=c*d;
I:=e*f
j:=g+h;
K:=i*];
OUTk
od
end

Convert high-level specification...

Automated
Design Tools

... into custom VLSI chip

Our Overall Design Flow

Several paths: spec
[Shared Resource

Synthesis Path

Data-Driven
Design Path

Optimizing
Compiler
N\

@ [ASYNC-08]
@ [ASYNC-10, ICCAD-10] Haste tools
@ [DATE-12, ASYNC-12]

—
ue>|o1-e|6ugjs@)
uay0l-nN\ @

Physical

- Existing commercial tools Chlp <
Our contributions

Back-end

Comparison of Design Paths

Path 1: Data-driven High area

1 I | | | | I | I
’: 1 I I 2 i i 3 i |4 I I 5 :’
I I I I I

High performance
Path 2: Single-token 1~ 1 "é"‘u
|

Shared Resource Low area

L———l 4
' I Low performance

Path 3: Multi-token l i !]
Shared Resource

Low area

|
— 1 1D =
I 4 I
Lo High performance

Sync vs. Async Scheduling

Synchronous

add mult mem

% Basic synchronous
scheduling approach

e Operations can only be
scheduled on clock edges

e Critical path in dark grey
e Best solution shown

Sync vs. Async Scheduling

Synchronous Asynchronous

add mult mem 0 add mult mem

(time steps for reference; no clock present) 6

Sync vs. Async Scheduling

Synchronous Asynchronous

add mult mem 0 add mult mem

Multi-Token Synthesis

spec

Shared Resource
l Synthesis Path

Optimizing
Compiler

l

Haste tools

chip

Physical
Back-end

¥ Multi-Token

e multiple concurrent
computations

e pipelined
% Unsolved problem
e even for synchronous systems

% Best of both worlds
e pipelined and shared-resource
e high performance, low area

e explore whole spectrum in-
between!

= Previous Work

% Our Approach
e Basic approach [DATE 2012]
e Hierarchical approach [this paper]

¥ Results & Conclusions

Existing Sync. Solutions: Poor Match

% Synchronous approaches:
e SPARK, AutoPilot/AutoESL, GAUT, ...

e Large search space for ILP
» Each time step for each <operation, func unit> - distinct variable

e QOur idea: Solve for relative ordering of events, not timing

Q)oooooooooooooo
d Yeeeeeeeecccccee
2000000000000006¢ Large number of
b Y X XYY YY @ @ X XXX similar solutions!
000000000000006
C XX X XX XXXXXXrx
dOoOooooooooooooo ® Adder 1
® Adder 2
ooooooo(?(?ooooo ® Multiplier
C secccccereveceee
0 8 16 24 ">>10

Asynchronous Approaches

¥ Syntax-directed synthesis tools (Haste/Balsa)

e No automated resource sharing
> “what you write is what you get”

% Resource sharing: Single-token

e Many approaches are not purely async

» adapt discrete time methods to async
» E.g.: [Nielsen 2005, Saito 2006, ...]

e Hansen/Singh [ASYNC-10] [ICCAD-10]

» first exact purely asynchronous solution
» based on relative order, not absolute timing

11

Multi-Token Synthesis: Challenges

% More challenging than single-token

e mix-and-match operations from successive tokens
» much larger search space
» how many tokens?

e more memory elements (buffers)

% General problem unsolved
e Given: dataflow graph, throughput target

e Compute: resource schedule that minimizes area
» over all possible resource allocations
» over all possible buffer insertions
» over all possible token counts

12

Multi-Token Synthesis: Prior Work

% No prior optimal method for multi-token scheduling

e existing approaches solve only part of the problem
> [Beerel 2005] requires token count, discrete time

e others heuristic, share resources where straightforward

» not targeting exact area-minimization problem
[Spark 2004, Cadence 2011]

13

¥ Previous Work

=» Our Approach

e Part 1: Basic approach [DATE 2012]
e Part 2: Hierarchical approach [this paper]

¥ Results & Conclusions

14

Review: Dependence Graphs

L 4 L 4 L 4

I'\while(true){ | & ~a
I b=3*d; I 5 4 " >
[= : % " " ‘e s _1°%

c=a+b; | ‘% % o4 Q'
| d=c*0.25; | @ ol N=i» 3
I s 13
._} _______ I : . N y 0 1 ¢

Folded Dependence Graph:
Encodes dependence constraints across iterations

15

Novel Graphical Model [DATE 2012}

% Three types of arcs
e data arcs (RAW) 1
e reverse arcs (WAR)
® resource arcs

* Arc properties:
e weight = difference in iteration coun
e delay = min time elapsed

% Can directly infer the following:
e resource allocation and schedule
e number of pipeline buffers
e performance / cycle time
e number of tokens

16

Expressiveness of Graphical Model

% Encodes all of the following:

e What is the schedule for a resource?

» Determined by placement and weight of
resource arcs

e How many resources?
» number of resource cycles

e How many pipeline stages?
» 2 weights on data and reverse arcs

e What is the performance?

» Cycle metric: Determined by the weight
and delay of every cycle in the graph
(2 delays / Z weights)

17

Expressiveness of Graphical Model

% Legality constraints:

e Weight of each cycle > 0
> avoids deadlock

e \Weight of each resource cycle = 1
» single-stride schedule

e Weight of data arcs >= 0
» dependencies go forward in time

)1

¥ Goal:

e Find the lowest-area schedule that
meets legality constraints and
performance target

18

Graphical Model: Buffering

Buffers needed for 2 reasons:

1. WAR requirements
» reverse arcs model WAR
» multiple values for @ may be live
» must buffer all waiting to be consumed
»e.g.. m+n buffers needed for @

Theorem:
buffers = weight of data arc +
weight of reverse arc

19

Graphical Model: Buffering

Buffers needed for 2 reasons:

2. Speed requirements
» too few buffers can cause slowdown
» “slack mismatch” in reconvergent paths

fork d join
'—» —>
datam ‘_’ N N ‘ dataout

20

Graphical Model: Buffering

Buffers needed for 2 reasons:

2. Speed requirements
» too few buffers can cause slowdown
» “slack mismatch” in reconvergent paths

fork T L join
‘—V —>
datal-n dataout

21

Search Space

% The following are the unknowns:

e placement and weights of resource arcs
» determine schedule

e weights of reverse arcs
» determine buffering

% Our Algorithm: 2-level

e Top-level: Branch-and-bound strategy
» schedules operations
» allocates function units /
e Bottom-level: ILP strategy »

» ensures performance constraint is met (cycle metric)
» add optimal number of pipeline buffer stages to help!

22

¥ Previous Work

% Our Approach

e Basic approach [DATE 2012]
=» Hierarchical approach [this paper]

¥ Results & Conclusions

23

Hierarchical Scheduling

% Optimal scheduling is
NP-complete X ''
e Need scalable method !
% Hierarchical algorithm
e Faster, scalable

% Algorithm steps:
e Decompose
e Schedule
e Simplify

24

Simplifying block internals

% Propagate a simpler/abstract model of block
e Only subset of nodes interact with other blocks
e Hide internal nodes!

What do we replace a block with?

Can we replace a block (subgraph of the DFG)
with

d

FIFO?

YES!

26

Single-Path (FIFO) Approximation

¥ Simplify path between a pair of interface nodes

Original Paths Simplified Single Path
(A to C only) Internals Approximation 927

D
0
=
®
C
<
e
Q.
{©
O
>
o
O
-
©
O
=
D
>
Q
ad

Limiting

Stage

n-1 n n+l

Occupancy

mdygnoay .,

28

Canopy Graph: Single-Path Approx.

ETTuoughput

tokens

29

Canopy Graph: Single-Path Approx.

Occupancy

30

Canopy Graph: Single-Path Approx.

L N
SN
Throughput

Occupancy

31

Canopy Graph: Single-Path Approx.

L N
SN
Throughput

Occupancy

32

Canopy Graph: Single-Path Approx.

Throzlghput

Much simpler
model!

Occupancy

Throughput Constraint

33

Two-port Transformation

Experimental Setup

% Examples
e 6 DFGs, 20 test cases
e Throughput specified - minimize area

¥ Comparisons:
e multi-token vs. single-token approaches
e optimal multi-token vs. hierarchical multi-token
e trends in hierarchical approach

% Tool implemented in java on Macbook Pro
e for ILP, use CPLEX tool

37

Results: Optimal vs. Hierarchical

Multi-Token Synthesis Results

Optimal | 1] Hierarchical

Cycle Time Runtime Area | Runtime
Benchmark | Constraint (unit) (s) (unit) (S)
ODE 130 0.99 826 0.38
ODE 258 0.98 556 0.35
DPS 66 0.62 2314 0.23
DPS 258 0.40 1814 0.31
COS 66 12.2 4196 0.68
COS 130 1850 2136 31.1
TTH 98 1100 3970 0.43
7TH 130 * 3600 2360 0.57
ELP 66 - 2352 16.7
ELP 130 [238 58.7

indicates execution incomplete after an hour; best result found is shown.

“-" indicates tool did not produce any result within an hour.

Hierarchical Multi-Token Results

Block size: m8 m12 m16

15000

10000

Larger block size
- Lower area

Area

5000

O -
TEA-4

Smaller block size
- Lower runtime

TEA-8 TEA-16
ES m12 m16
+1000
2
S 100
£ 10
T

1_

TEA-4 TEA-8 TEA-16 39

Results: Single-token vs. Multi-token

500
400
300
200
100

o

Logic Area

B Single-token ® Multi-token

N -
T O
B
Ll LL]
A O
O O

DP8-35

DP8-50

DP8-90 r

Ln
™

%,
O

7TH-9O

TEA-40

Multi-token produces lower area solutions!
Multi-token solves problems single-token cannot!

TEA-43

Conclusions

¥ Summary of Contributions:

e DATE 2012: First exact method for multi-token

» async as well as sync

» novel graphic model that captures buffering, scheduling, data
dependencies

e ASYNC 2012: Fast hierarchical method
» can solve larger problems
» promising experimental results

> A Key Result: An arbitrary Marked Graph/DFG can be modeled as a
FIFO!

41

Thank You

* Questions?

Search Algorithm

% Algorithm overview:
e la. Pick an unscheduled operation
e 1b. Allocate a compatible resource
e 1c. Repeatedly schedule another compatible operation
e 1d. Or, close this resource cycle

e 2. With this partial allocation & schedule, run ILP...
> ... to determine optimal buffering and satisfy legality constraints

¥ Monotonicity:

e Area and cycle time monotonically increase as you go down
the search tree = Branch-and-bound

e Several heuristics for pruning and ordering

43

Architectural Model

HOLVT || HOLV

HOL1V1 || HOLV'T

Operands

Cyclic
Schedule:
a—>b—>c—>d

Results

44

