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“Grand” Vision 

Asynchronous high-level synthesis: 
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&MAIN :  main  proc (IN? chan <<byte, byte, … ). 

   begin 

      a, b, c, d, e, f, g, h, i, j, k :  var byte  

   | 

      forever do  

         IN?<<a, b, c, d, e, f>>; 

         g := a * b; 

         h := c * d; 

         i := e * f; 

         j := g + h; 

         k := i * j; 

         OUT!k 

      od 

   end 

Convert high-level specification… 

… into custom VLSI chip 

Automated 

Design Tools 



Our Overall Design Flow 

Several paths: 

3 

spec 
M

u
lti-to

k
e

n
 

S
in

g
le

-to
k
e

n
 

Haste tools 

chip 

Optimizing 

Compiler 

Physical 

Back-end 

Shared Resource 

Synthesis Path 

Data-Driven  

Design Path 

1 

2 3 

Existing commercial tools 

Our contributions 
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High performance 

Path 3: Multi-token 
Shared Resource 
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Sync vs. Async Scheduling 

 

 Basic synchronous 
scheduling approach 

 Operations can only be 
scheduled on clock edges 

 Critical path in dark grey 

 Best solution shown 
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Sync vs. Async Scheduling 
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Sync vs. Async Scheduling 
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Multi-Token Synthesis 

Multi-Token 

 multiple concurrent 
computations 

 pipelined 

 Unsolved problem 

 even for synchronous systems 

 Best of both worlds 

 pipelined and shared-resource 

 high performance, low area 

 explore whole spectrum in-
between! 
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Outline 

 

 Previous Work 
 

Our Approach 

Basic approach [DATE 2012] 

Hierarchical approach [this paper] 
 

Results & Conclusions 
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Existing Sync. Solutions:  Poor Match 

 Synchronous approaches: 

 SPARK, AutoPilot/AutoESL, GAUT, … 

 Large search space for ILP 

Each time step for each <operation, func unit>    distinct variable 

 Our idea:  Solve for relative ordering of events, not timing 

10 0 8 16 24 … 
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Adder 2 

Multiplier 

Large number of 
similar solutions! 



Asynchronous Approaches 

 Syntax-directed synthesis tools (Haste/Balsa) 

 No automated resource sharing 

“what you write is what you get” 

 

 Resource sharing:  Single-token 

 Many approaches are not purely async 

adapt discrete time methods to async  

E.g.:  [Nielsen 2005, Saito 2006, …] 

 

 Hansen/Singh [ASYNC-10] [ICCAD-10] 

 first exact purely asynchronous solution 

based on relative order, not absolute timing 
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Multi-Token Synthesis:  Challenges 

More challenging than single-token 

 mix-and-match operations from successive tokens 

much larger search space 

how many tokens? 

 more memory elements (buffers) 

 

 General problem unsolved 

 Given: dataflow graph, throughput target 

 Compute: resource schedule that minimizes area 

over all possible resource allocations 

over all possible buffer insertions 

over all possible token counts 
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Multi-Token Synthesis:  Prior Work 

 No prior optimal method for multi-token scheduling 

 existing approaches solve only part of the problem 

[Beerel 2005] requires token count, discrete time 

 

 others heuristic, share resources where straightforward 

not targeting exact area-minimization problem  
[Spark 2004, Cadence 2011] 

 

 

13 



Outline 

 

Previous Work 
 

 Our Approach 

 Part 1:  Basic approach [DATE 2012] 

 Part 2:  Hierarchical approach [this paper] 
 

Results & Conclusions 
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Review: Dependence Graphs 
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while(true){  

 a=read(); 

 b=3*d;  

 c=a+b;  

 d=c*0.25; 

} 

Folded Dependence Graph: 
Encodes dependence constraints across iterations 



Novel Graphical Model [DATE 2012] 

 Three types of arcs 

 data arcs (RAW) 

 reverse arcs (WAR) 

 resource arcs 

 Arc properties: 

 weight = difference in iteration count 

 delay = min time elapsed 

 Can directly infer the following: 

 resource allocation and schedule 

 number of pipeline buffers 

 performance / cycle time 

 number of tokens 
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Expressiveness of Graphical Model 

 Encodes all of the following: 

 What is the schedule for a resource? 

Determined by placement and weight of 
resource arcs 

 How many resources? 

number of resource cycles 

 How many pipeline stages? 

Σ weights on data and reverse arcs 

 What is the performance? 

Cycle metric:  Determined by the weight 
and delay of every cycle in the graph  
(Σ delays / Σ weights) 
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Expressiveness of Graphical Model 

 Legality constraints: 

 Weight of each cycle > 0 

avoids deadlock 

 Weight of each resource cycle = 1 

single-stride schedule 

 Weight of data arcs >= 0 

dependencies go forward in time 

 

 Goal:  

 Find the lowest-area schedule that 
meets legality constraints and 
performance target 
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Graphical Model: Buffering 

Buffers needed for 2 reasons: 

1. WAR requirements 

reverse arcs model WAR 

multiple values for a may be live 

must buffer all waiting to be consumed 

e.g.:  m+n buffers needed for a 
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Theorem: 

# buffers = weight of data arc +  

    weight of reverse arc 

 



Graphical Model: Buffering 

Buffers needed for 2 reasons: 

2. Speed requirements 

 too few buffers can cause slowdown 

“slack mismatch” in reconvergent paths 
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Graphical Model: Buffering 

Buffers needed for 2 reasons: 

2. Speed requirements 

 too few buffers can cause slowdown 

“slack mismatch” in reconvergent paths 
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Search Space 

 The following are the unknowns: 

 placement and weights of resource arcs 

determine schedule 

 weights of reverse arcs 

determine buffering 

Our Algorithm: 2-level 

 Top-level: Branch-and-bound strategy 

schedules operations 

allocates function units 

 Bottom-level: ILP strategy 

ensures performance constraint is met (cycle metric) 

add optimal number of pipeline buffer stages to help! 
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Outline 

 

Previous Work 
 

Our Approach 

Basic approach [DATE 2012] 

 Hierarchical approach [this paper] 
 

Results & Conclusions 
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Hierarchical Scheduling 

Optimal scheduling is 
NP-complete 

 Need scalable method 

 Hierarchical algorithm 

 Faster, scalable 

 

 Algorithm steps: 

 Decompose 

 Schedule 

 Simplify 
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Simplifying block internals 

 Propagate a simpler/abstract model of block 

 Only subset of nodes interact with other blocks 

 Hide internal nodes! 
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What do we replace a block with? 
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Can we replace a block (subgraph of the DFG) 
 

with 
 

a 

FIFO? 

YES! 



Single-Path (FIFO) Approximation 

 Simplify path between a pair of interface nodes 
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Review: Canopy Graph Analysis 
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Canopy Graph: Single-Path Approx. 
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Canopy Graph: Single-Path Approx. 
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Canopy Graph: Single-Path Approx. 

Throughput Constraint 
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Two-port Transformation 
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Experimental Setup 

 Examples 

 6 DFGs, 20 test cases 

 Throughput specified  minimize area 
 

 Comparisons: 

 multi-token vs. single-token approaches 

 optimal multi-token vs. hierarchical multi-token 

 trends in hierarchical approach 
 

 Tool implemented in java on Macbook Pro 

 for ILP, use CPLEX tool 
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Results:  Optimal vs. Hierarchical 

38 

Multi-Token Synthesis Results 



Hierarchical Multi-Token Results 
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Results:  Single-token vs. Multi-token 

40 

0 
100 
200 
300 
400 
500 

O
D

E
-3

4
 

O
D

E
-5

0
 

D
P
8
-3

5
 

D
P
8
-5

0
 

D
P
8
-9

0
 

C
O

S
-7

5
 

7
T
H

-9
0
 

T
E
A
-4

0
 

T
E
A
-4

3
 

Single-token Multi-token 

L
o
g
ic

 A
re

a
 

Multi-token produces lower area solutions! 
Multi-token solves problems single-token cannot! 



Conclusions 

 Summary of Contributions: 

 

 DATE 2012:  First exact method for multi-token 

async as well as sync 

novel graphic model that captures buffering, scheduling, data 
dependencies 

 

 ASYNC 2012:  Fast hierarchical method 

can solve larger problems 

promising experimental results 

A Key Result:  An arbitrary Marked Graph/DFG can be modeled as a 
FIFO! 
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Thank You 

 

Questions? 



Search Algorithm 

 Algorithm overview: 

 1a.  Pick an unscheduled operation 

 1b.  Allocate a compatible resource 

 1c.  Repeatedly schedule another compatible operation 

 1d.  Or, close this resource cycle 

 2.    With this partial allocation & schedule, run ILP… 

… to determine optimal buffering and satisfy legality constraints 

 

Monotonicity: 

 Area and cycle time monotonically increase as you go down 
the search tree  Branch-and-bound 

 Several heuristics for pruning and ordering 
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Architectural Model 

Control FSM 

M
U

X
 

M
U

X
 

Fn. 

Unit 

D
E

M
U

X
 

L
A

T
C

H
 

L
A

T
C

H
 

L
A

T
C

H
 

L
A

T
C

H
 

L
A

T
C

H
 

L
A

T
C

H
 

ack1 

req1 

reqn 

ackn 

. . . 

ack1 

req1 

reqn 

ackn 

. . . 

. . . 

. . . 

. . . 

a 

b c 

d 

Cyclic 
Schedule: 
abcd 

0 

0 

0 

1 

Incoming Data 

44 

Resource 

Operands 

Results 

Scheduler 


