18th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), May 7-9, 2012, Copenhagen

High-Throughput Low-Energy Content-Addressable Memory Based on Self-Timed Overlapped Search Mechanism

Dr. Naoya Onizawa Postdoctoral Fellow, McGill University naoya.onizawa@mail.mcgill.ca

Collaborators: S. Matsunaga, V. Gaudet, and T. Hanyu

Acknowledgements

This research was supported by Japan Science Technology Agency (JST)

Development of Dependable Network-on-Chip Platform

in Core Research for Evolutional Science and Technology (CREST)

Content-Addressable Memory (CAM)

- Associative memory
- Parallel searching
- Applications
 - Cache, Virus checking
 - Packet forwarding (40G, 100Gbps)

Hardware-Implementation Issue

Speed restriction

Packet length - 32bit (IPv4), 128,144bit (IPv6)

Pipelined approach K. Pagiamtzis, et al (JSSC'04 vol.39-9)

Goal: High-throughput low-overhead CAM

Concept

Operate as comparable to small CAM

Hide large matching delay to improve throughput

Approach

Assign search words to unused blocks

After searching first few bits, most blocks are mismatched

➤ If unused blocks are found, it doesn't need to wait to search new words until the current search is complete.

5.57x higher throughput at 8% cost of area

Table of Contents

- > Introduction to content-addressable memory
- Overlapped search mechanism
 - Word overlapped search
 - Phase overlapped processing
- Hardware implementation
- > Evaluation
- Conclusion and future prospect

CAM

Operation

- 1. Search all words in parallel
- 2. Find a matched word block
- 3. Output a matched location (address)

Word-parallel search in single cycle

CAM Word Block

Throughput determined by word length in conventional CAM

Long word length degrades throughput

CAM Characteristics

Matching probability of word blocks after k-bit search is

$$p_{matched} = \left(\frac{1}{2}\right)^k$$

Most word blocks are not used after k-bit search (We set k=8 in the hardware implementation)

> Use unused blocks to improve throughput

Most word blocks are unused (mismatched).

Word Overlapped Search (WOS)

CAM architecture based on segmentation method

CAM block (self-timed circuit)

- 1. Partition word block to:
 - a) small k-bit block and
 - b) large (n-k)-bit block by segmentation block
- 2. Segmentation block stores Its k-bit matched result
- 3. Latter block operates when the first block matches

Word block partitioned by segmentation block

WOS operation

WOS operation

After k-bit search, new search starts

How to assign search words to unused blocks?

13

Categorize Word Blocks

Categorize based on the first k-bit stored word

Pre-Computation

Input controller (m=1)

Compare "m" consecutive k-bit search words

If they are different, they are in different groups (Category 1: fast mode)

Otherwise, they are in the same group (Category 2: slow mode)

Categorize search words using comparator

Timing Diagram (fast mode)

Send search words based on short delay T_{tst}

Consecutive words are assigned to unused blocks

High-speed searching based on T_{1st}

Timing Diagram (slow mode)

Two consecutive words use the same word block

Wait until the current search is complete

Average Search Delay

Category 1 – fast mode

Send search words based on the first k-bit delay (T_{1st})

Category 2 – slow mode

Send a new word after the current n-bit search is complete (T_{slow})

$$T_{sa} = T_{1st} \left(1 - m \left(\frac{1}{2} \right)^k \right) + T_{slow} \left(m \left(\frac{1}{2} \right)^k \right)$$

Table of Contents

- > Introduction to content-addressable memory
- Overlapped search mechanism
 - Word overlapped search
 - Phase overlapped processing
- Hardware implementation
- > Evaluation
- Conclusion and future prospect

Word Circuit (precharge)

NAND-type word circuit

- Dynamic logic
- Series of pass transistors

NAND-type CAM cell

- Match "ON",
- Mismatch "OFF"

Charge capacitance on match line

Word Circuit (evaluate)

Match operation

Mismatch operation

Discharging capacitance on match line

Output goes high

Not discharging

Output remains low

Match line remains high in mismatched case

Synchronous Control (conventional)

All word circuits are controlled by a global clock signal

2 phases are required every search

22

Phase Overlapped Processing (POP)

Each circuit is independently controlled using local control signals

- Matched word circuit
 Move on to precharge phase
- Mismatched word circuit
 Stay in evaluate phase
- → Lowering switching activity of pre-charging signals

Mismatched blocks always process new word

23

WOS based POP

Unused block can process without waiting precharge phase

Searching words requires just 1 phase

Throughput Ratio

Conventional
$$T_{CS} = 2T_{SS} = 2(T_{reg} + T_{1st} + T_{2nd})$$

$$T_{CA} = T_{SA} = T_{1st} \left(1 - m \left(\frac{1}{2} \right)^k \right) + T_{slow} \left(m \left(\frac{1}{2} \right)^k \right)$$

$$\cong T_{1st}$$

Throughput ratio =
$$\frac{T_{CS}}{T_{CA}} = \frac{2(T_{reg} + T_{1st} + T_{2nd})}{T_{1st}}$$

 T_{SS} Synchronous search delay (evaluate phase)

25

 T_{SA} Asynchronous search delay

Table of Contents

- > Introduction to content-addressable memory
- Overlapped search mechanism
 - Word overlapped search
 - Phase overlapped processing
- Hardware implementation
- Evaluation
- Conclusion and future prospect

Circuit Implementation

- 144-bit CAM word block with self-precharge circuit
- Self-precharge circuit pre-charges after 2nd stage is complete.
- Hierarchical 2nd stage block (17 local and 1 global match circuit)

Store local matched result

It isn't affected by input changing

Self-precharge circuit controls its word circuit

Simulated Waveforms

CAM operates based on T_{1st} (259ps)

HSPICE simulation under a 90nm CMOS technology

Performance Comparison

256-word 144-bit binary CAM@90nm CMOS

		Conventional	Proposed
Cycle delay [ps]		1454	261
Energy [fJ/bit/ search]	Match	0.0003	0.0006
	Search	0.160	0.160
	Control	0.103	0.001
	Total	0.263	0.162
Area [Trs.]		372K	408K

Independent control reduces switching activity of pre-charging

5.57x throughput and 38% energy saving

Performance Comparison

Energy dissipation [fJ/bit/search]

Better energy-delay product

Conclusion

High-throughput low-energy CAM

- Word overlapped search
 - Use unused word block
 - Assign based on pre-computation
- Phase overlapped search
 - Independent control of each word block
 - Search without waiting for precharge
 - 5.57x throughput, 38% energy saving, 8% cost of area

Future Prospects

- Circuit design considerations
 - Number of partitions
 - Timing robustness
- Extend to Ternary CAM (TCAM)
 - Redesign input controller
- Application specific design
 - Cache (TLB), virus checker