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Variability Continues to Increase as  
Technology and Voltage Scales Down 

Device variability vs. Technology node  

-80% ~ +110% @0.3V 

-40% ~ +30% @1V 

Normalized Delay 

Delay spread due to process variations 
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•  Higher variability with finer design rules and larger wafers 
•  Higher variability with lower supply voltages 
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Circuit Performance Characteristics 
with Different Timing Schemes 

Original 
circuit 

Self-timed circuit 

Conventional 
synchronous circuit 

Computation Delay 

P
ro

ba
bi

lit
y 

•  Self-timed circuit is a variation-monitoring circuit by itself 
•  Becomes advantageous when the variation is large (B>A) 
•  Statistical analysis framework is necessary 

B: 3σ delay variation 
A: protocol circuit delay 
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Statistical Analysis Framework  
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Circuit Variability Model 
•  Supply voltage  
•  Logic depth 
•  Width and length  
•  Body bias 

 
 

Performance Model  
•  Computation overhead  
•  Communication overhead 
•  Delay and energy 

performance 
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Communications 

Sensors 

Determine the optimal timing strategy 
in the presence of variability   
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Delay Model of CMOS Digital Circuit 
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•  One unified current model across different operating regions   
•  Model error <2% from 0.3V to 1V 

4-stage FO4 INV chain  
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Simulation data
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Delay Variability Model 
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Within die variation (WID) 
“Local mismatch” 

Die-to-die variation (DTD) 
“Global variation” 
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Simulation data
Model (WID)
Model (Threshold voltage)
Model (Geometry)
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Simulation data
Model (DTD)
Model (Threshold voltage)
Model (Geometry)
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Delay Variability Model 
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Simulation data
Model (total)
Model (DTD)
Model (WID)
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•  Model error <8% from 0.3V to 1V 
•  Local mismatch dominates at low supply voltages 
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Simulation data (n=4)
Model (n=4)
Simulation data (n=8)
Model (n=8)
Simulation data (n=24)
Model (n=24)

Delay Variability Model with  
Different Logic Depths  
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n=4
n=8
n=24

•  Use 4-stage inverter chain model as baseline model  
•  Model error <13% for n=8 and <15% for n=24 
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Delay Overhead Evaluation 

Original 
circuit 

Dual-rail timing 

 Synchronous timing 

Computation Delay 
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•  Assumption: Process variation follows Gaussian distribution 
•  Dual-rail approach: have only protocol overhead but no delay overhead 
•  Synchronous approach: have only delay overhead  

B: 3σ delay variation 
A: protocol circuit delay 
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Dsync =
3! logic,total

µlogic,total

For 99.7% yield:  



Bundled-Data Self-Timed Approach 
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Main data path 

fdelay!line = N(µdelay!line,! delay!line
2 )

Goal: 

Assume main data path and replica delay line exhibit similar statistics:   
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Computation Delay 

Main data path Replica delay line 

For 99.7% yield:  
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Bundled-Data Delay Overhead  
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•  Delay overhead becomes 
much larger as process 
variability increases! 



Performance Model under Variations 
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Eleakage=VIleakageTdelay
 

 

Tcomp= Tdelay (1+P+D) 
 

Edynamic=αCswitchV2 

Etotal=αCswitchV2 

              +VIleakageTdelay   

Tcomp= Tdelay 
 

 

Eleakage=VIleakage(1+P)Tdelay (1+P+D) 
 

Edynamic=αCswitch(1+P)V2 

Etotal=αCswitch(1+P)V2 

         +VIleakage(1+P)Tdelay (1+P+D) 

  
 

Original delay and energy model Statistical delay and energy model  

Timing scheme Synchronous Bundled-Data Dual-Rail 
Delay Overhead (D) Dsync Dbundled-data 0 

Protocol Overhead (P) 0 Pbundled-data Pdual-rail 

•  Evaluate computation delay and energy under variations 
•  Overhead changes with supply voltage and logic depth 
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•  Global variation affects only synchronous approach 
•  Local mismatch dominates at low supply voltages 
•  Local mismatch has less impact on longer critical path 

4-stage FO4 INV chain  

Delay Overhead Comparison  

24-stage FO4 INV chain  
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Synchronous Timing
Bundled Data Self Timing
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•  Assumption: Pbundled-data = 1TFO4; Pdual-rail = 2TFO4 
•  Synchronous scheme is better for small critical path at high supply voltages 
•  Dual-rail scheme is better for large critical path at low supply voltages 

Speed Performance Comparison 

4-stage FO4 INV chain  24-stage FO4 INV chain  
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Dual Rail Self Timing
Bundled Data Self Timing
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Energy Performance Comparison 

24-stage FO4 INV chain  
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Synchronous Timing (  = 0.1)
Dual Rail Self Timing (  = 0.1)
Bundled Data Self timing (  = 0.1)

0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

Supply [V]
En

er
gy

 [f
J]

Energy Delay Plot

 

 

Synchronous Timing (  = 0.01)
Dual Rail Self Timing (  = 0.01)
Bundled Data Self timing (  = 0.01)

•  Synchronous scheme is better for high activity at high supply voltages 
•  Dual-rail scheme is better for low activity at low supply voltages 
•  Leakage dominates for low activity at low supply voltages 
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Conclusion 
 
•  A statistical analysis framework is proposed to evaluate 

performance of CMOS digital circuit in the presence of 
process variations. 

•  Designer can efficiently determine the optimal timing 
strategy, pipeline depth and supply voltage based on the 
proposed variability and statistical performance models.    

•  Asynchronous design exhibits better energy and delay 
characteristics for circuits with low activity and larger critical 
path delay under process variations 
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