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Variability Continues to Increase as
Technology and Voltage Scales Down

Device variability vs. Technology node
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* Higher variability with finer design rules and larger wafers
 Higher variability with lower supply voltages




Circuit Performance Characteristics
with Different Timing Schemes

Self-timed circuit

Conventional
synchronous circuit

Original
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B: 3o delay variation
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 Self-timed circuit is a variation-monitoring circuit by itself
« Becomes advantageous when the variation is large (B>A)
« Statistical analysis framework is necessary




Statistical Analysis Framework

Circuit Variability Model
« Supply voltage

* Logic depth

« Width and length

Performance Model

« Computation overhead

« Communication overhead
« Delay and energy

+ Body bias performance
Determine the optimal timing strategy
>4 in the presence of variability
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Delay Model of CMOS Digital Circuit
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* One unified current model across different operating regions
* Model error <2% from 0.3V to 1V
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Delay Variability Model
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* Model error <8% from 0.3V to 1V
 Local mismatch dominates at low supply voltages
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Delay Variability Model with
Different Logic Depths
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» Use 4-stage inverter chain model as baseline model
» Model error <13% for n=8 and <15% for n=24
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Delay Overhead Evaluation

Dual-rail timing

Original Synchronous timing

circuit

Probability

A: protocol circuit delay
B: 3o delay variation

>
Computation Delay

» Assumption: Process variation follows Gaussian distribution
 Dual-rail approach: have only protocol overhnead but no delay overhead
» Synchronous approach: have only delay overhead
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Bundled-Data Self-Timed Approach

Main data path
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Delay Overhead [%]
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Performance Model under Variations

Original delay and energy model
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« Evaluate computation delay and energy under variations
* Overhead changes with supply voltage and logic depth
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Delay Overhead [%]

Delay Overhead Comparison
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 Global variation affects only synchronous approach
 Local mismatch dominates at low supply voltages
 Local mismatch has less impact on longer critical path
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Speed Performance Comparison
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* Assumption: Py, gieq-data = 1Tros; Pavalrail = 2TFo4
« Synchronous scheme is better for small critical path at high supply voltages
» Dual-rail scheme is better for large critical path at low supply voltages
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Energy Performance Comparison
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» Synchronous scheme is better for high activity at high supply voltages
» Dual-rail scheme is better for low activity at low supply voltages
» Leakage dominates for low activity at low supply voltages
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Conclusion

« A statistical analysis framework is proposed to evaluate
performance of CMOS digital circuit in the presence of
process variations.

« Designer can efficiently determine the optimal timing

strategy, pipeline depth and supply voltage based on the
proposed variability and statistical performance models.

* Asynchronous design exhibits better energy and delay
characteristics for circuits with low activity and larger critical
path delay under process variations
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