Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UCLA

Joint work with **Stephen Boyd**, Stanford University

Ph.D. School in Optimization in Computer Vision DTU, May 19, 2008

Mathematical optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

- $x = (x_1, \dots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$: constraint functions

Solving optimization problems

General optimization problem

- can be extremely difficult
- methods involve compromise: long computation time or local optimality

Exceptions: certain problem classes can be solved efficiently and reliably

- linear least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2p (for $A \in \mathbf{R}^{p \times n}$); less if structured
- a widely used technology

Using least-squares

- least-squares problems are easy to recognize
- standard techniques increase flexibility (weights, regularization, . . .)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

- no analytical formula for solution; extensive theory
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a widely used technology

Using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

• objective and constraint functions are convex:

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

for all x, y, $0 \le \theta \le 1$

• includes least-squares problems and linear programs as special cases

Solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

Using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

History

• 1940s: linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

- 1950s: quadratic programming
- 1960s: geometric programming
- 1990s: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, . . .

New applications since 1990

- linear matrix inequality techniques in control
- circuit design via geometric programming
- support vector machine learning via quadratic programming
- semidefinite pogramming relaxations in combinatorial optimization
- applications in structural optimization, statistics, signal processing, communications, image processing, quantum information theory, finance, . . .

Interior-point methods

Linear programming

- 1984 (Karmarkar): first practical polynomial-time algorithm
- 1984-1990: efficient implementations for large-scale LPs

Nonlinear convex optimization

- around 1990 (Nesterov & Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- since 1990: extensions and high-quality software packages

Traditional and new view of convex optimization

Traditional: special case of nonlinear programming with interesting theory

New: extension of LP, as tractable but substantially more general

reflected in notation: 'cone programming'

minimize
$$c^T x$$
 subject to $Ax \leq b$

'≤' is inequality with respect to non-polyhedral convex cone

Outline

- Convex sets and functions
- Modeling systems
- Cone programming
- Robust optimization
- Semidefinite relaxations
- ℓ_1 -norm sparsity heuristics
- Interior-point algorithms

Convex Sets and Functions

Convex sets

Contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

example: one convex, two nonconvex sets:

Examples and properties

- solution set of linear equations
- solution set of linear inequalities
- norm balls $\{x \mid ||x|| \le R\}$ and norm cones $\{(x,t) \mid ||x|| \le t\}$
- set of positive semidefinite matrices

- image of a convex set under a linear transformation is convex
- inverse image of a convex set under a linear transformation is convex
- intersection of convex sets is convex

Convex functions

domain $\operatorname{dom} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$

f is concave if -f is convex

Examples

- $\exp x$, $-\log x$, $x \log x$ are convex
- x^{α} is convex for x>0 and $\alpha\geq 1$ or $\alpha\leq 0$; $|x|^{\alpha}$ is convex for $\alpha\geq 1$
- quadratic-over-linear function x^Tx/t is convex in x, t for t>0
- geometric mean $(x_1x_2\cdots x_n)^{1/n}$ is concave for $x\succeq 0$
- \bullet log det X is concave on set of positive definite matrices
- $\log(e^{x_1} + \cdots + e^{x_n})$ is convex
- linear and affine functions are convex and concave
- norms are convex

Operations that preserve convexity

Pointwise maximum

if f(x,y) is convex in x for fixed y, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x

Composition rules

if h is convex and increasing and g is convex, then h(g(x)) is convex

Perspective

if f(x) is convex then tf(x/t) is convex in x, t for t > 0

Example

m lamps illuminating n (small, flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j : $I_k = a_k^T p$

Problem: achieve desired illumination $I_k \approx 1$ with bounded lamp powers

minimize
$$\max_{k=1,...,n} \left| \log(a_k^T p) \right|$$
 subject to $0 \le p_j \le p_{\max}, \quad j=1,\ldots,m$

Convex formulation: problem is equivalent to

minimize
$$\max_{k=1,...,n} \max\{a_k^T p, 1/a_k^T p\}$$

subject to $0 \le p_j \le p_{\text{max}}, \quad j=1,...,m$

cost function is convex because maximum of convex functions is convex

Quasiconvex functions

domain $\operatorname{dom} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

are convex for all $\boldsymbol{\alpha}$

f is quasiconcave if -f is quasiconvex

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $ceil(x) = inf\{z \in \mathbf{Z} \mid z \geq x\}$ is quasiconvex and quasiconcave
- $\log x$ is quasiconvex and quasiconcave on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

is quasiconvex and quasiconcave

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

Quasiconvex optimization

Example

minimize
$$p(x)/q(x)$$

subject to $Ax \leq b$

p convex, q concave, and $p(x) \ge 0$, q(x) > 0

Equivalent formulation (variables x, t)

$$\begin{array}{ll} \text{minimize} & t \\ \text{subjec to} & p(x) - tq(x) \leq 0 \\ & Ax \preceq b \end{array}$$

- ullet for fixed t, constraint is a convex feasibility problem
- ullet can determine optimal t via bisection

Modeling Systems

Convex optimization modeling systems

- allow simple specification of convex problems in natural form
 - declare optimization variables
 - form affine, convex, concave expressions
 - specify objective and constraints
- automatically transform problem to canonical form, call solver, transform back
- built using object-oriented methods and/or compiler-compilers

Example

minimize
$$-\sum_{i=1}^{m} w_i \log(b_i - a_i^T x)$$

variable $x \in \mathbb{R}^n$; parameters a_i , b_i , $w_i > 0$ are given

Specification in CVX (Grant, Boyd & Ye)

```
cvx_begin
    variable x(n)
    minimize ( -w' * log(b-A*x) )
cvx_end
```

Example

minimize
$$||Ax - b||_2 + \lambda ||x||_1$$

subject to $Fx \leq g + (\sum_{i=1} x_i)h$

variable $x \in \mathbf{R}^n$; parameters A, b, F, g, h given

CVX specification

```
cvx_begin
    variable x(n)
    minimize ( norm(A*x-b,2) + lambda*norm(x,1) )
    subject to
        F*x <= g + sum(x)*h
cvx_end</pre>
```

Illumination problem

```
minimize \max_{k=1,...,n} \max\{a_k^T x, 1/a_k^T x\}
subject to 0 \le x \le 1
```

variable $x \in \mathbf{R}^m$; parameters a_k given (and nonnegative)

CVX specification

```
cvx_begin
    variable x(m)
    minimize ( max( [ A*x; inv_pos(A*x) ] )
    subject to
        x >= 0
        x <= 1
cvx_end</pre>
```

History

- general purpose optimization modeling systems AMPL, GAMS (1970s)
- systems for SDPs/LMIs (1990s): SDPSOL (Wu, Boyd), LMILAB (Gahinet, Nemirovski), LMITOOL (El Ghaoui)
- YALMIP (Löfberg 2000)
- automated convexity checking (Crusius PhD thesis 2002)
- disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)
- CVX (Grant, Boyd, Ye 2005)
- CVXOPT (Dahl, Vandenberghe 2005)
- GGPLAB (Mutapcic, Koh, et al 2006)
- CVXMOD (Mattingley 2007)

Cone Programming

Linear programming

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

 $'\preceq'$ is elementwise inequality between vectors

Linear discrimination

separate two sets of points $\{x_1,\ldots,x_N\}$, $\{y_1,\ldots,y_M\}$ by a hyperplane

$$a^{T}x_{i} + b > 0, \quad i = 1, ..., N$$

$$a^{T}y_{i} + b < 0 \quad i = 1, ..., M$$

$$a^T y_i + b < 0 \quad i = 1, \dots, M$$

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$a^{T}x_{i} + b \ge 1, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b \le -1, \quad i = 1, \dots, M$$

Approximate linear separation of non-separable sets

can be interpreted as a heuristic for minimizing #misclassified points

Linear programming formulation

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - a^T x_i - b\} + \sum_{i=1}^{M} \max\{0, 1 + a^T y_i + b\}$$

Equivalent LP

variables a, b, $u \in \mathbf{R}^N$, $v \in \mathbf{R}^M$

Cone programming

minimize
$$c^T x$$

subject to $Ax \leq_K b$

- $y \leq_K z$ means $z y \in K$, where K is a proper convex cone
- \bullet extends linear programming $(K = \mathbf{R}_{+}^{m})$ to nonpolyhedral cones
- (duality) theory and algorithms very similar to linear programming

Second-order cone programming

Second-order cone

$$C_{m+1} = \{(x,t) \in \mathbf{R}^m \times \mathbf{R} \mid ||x|| \le t\}$$

Second-order cone program

minimize
$$f^Tx$$
 subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

inequality constraints require $(A_i x + b_i, c_i^T x + d_i) \in C_{m_i+1}$

Linear program with chance constraints

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

 a_i is Gaussian with mean \bar{a}_i , covariance Σ_i , and $\eta \geq 1/2$

Equivalent SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \Phi^{-1}(\eta)\|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i=1,\dots,m$

 $\Phi(x)$ is zero-mean unit-variance Gaussian CDF

Semidefinite programming

Positive semidefinite cone

$$\mathbf{S}_{+}^{m} = \{ X \in \mathbf{S}^{m} \mid X \succeq 0 \}$$

Semidefinite programming

minimize
$$c^T x$$

subject to $x_1 A_1 + \cdots + x_n A_n \leq B$

constraint requires $B - x_1 A_1 - \cdots - x_n A_n \in \mathbf{S}_+^m$

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$) equivalent SDP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \end{array}$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \ t \ge 0 \iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \ge 0$$

Chebyshev inequalities

Classical inequality: if X is a r.v. with $\mathbf{E} X = 0$, $\mathbf{E} X^2 = \sigma^2$, then

$$\operatorname{\mathbf{prob}}(|X| \ge 1) \le \sigma^2$$

Generalized inequality: sharp lower bounds on $\mathbf{prob}(X \in C)$

• $X \in \mathbf{R}^n$ is a random variable with known moments

$$\mathbf{E}X = a, \qquad \mathbf{E}XX^T = S$$

• $C \subseteq \mathbf{R}^n$ is defined by quadratic inequalities

$$C = \{x \mid x^T A_i x + 2b_i^T x + c_i < 0, \ i = 1, \dots, m\}$$

Equivalent SDP

$$\begin{array}{ll} \text{maximize} & 1 - \mathbf{tr}(SP) - 2a^Tq - r \\ \\ \text{subject to} & \left[\begin{array}{cc} P & q \\ q^T & r - 1 \end{array} \right] \succeq \tau_i \left[\begin{array}{cc} A_i & b_i \\ b_i^T & c_i \end{array} \right], \quad i = 1, \ldots, m \\ \\ \tau_i \geq 0, \quad i = 1, \ldots, m \\ \\ \left[\begin{array}{cc} P & q \\ q^T & r \end{array} \right] \succeq 0 \end{array}$$

- an SDP with variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, scalars r, τ_i
- optimal value is tight lower bound on $\mathbf{prob}(X \in C)$
- solution provides distribution that achieves lower bound

Example

- $a = \mathbf{E} X$; dashed line shows $\{x \mid (x-a)^T (S-aa^T)^{-1} (x-a) = 1\}$
- lower bound on $\mathbf{prob}(X \in C)$ is 0.3992 achieved by distribution in red

Detection example

$$x = s + v$$

- $x \in \mathbf{R}^n$: received signal
- s: transmitted signal $s \in \{s_1, s_2, \dots, s_N\}$ (one of N possible symbols)
- v: noise with $\mathbf{E} v = 0$, $\mathbf{E} v v^T = \sigma^2 I$

Detection problem: given observed value of x, estimate s

Example (N=7): bound on probability of correct detection of s_1 is 0.205

dots: distribution with probability of correct detection 0.205

Duality

Cone program

minimize
$$c^T x$$

subject to $Ax \leq_K b$

Dual cone program

$$\begin{array}{ll} \text{maximize} & -b^Tz \\ \text{subject to} & A^Tz+c=0 \\ & z\succeq_{K^*} 0 \end{array}$$

- K^* is the dual cone: $K^* = \{z \mid z^T x \ge 0 \text{ for all } x \in K\}$
- ullet nonnegative orthant, 2nd order cone, PSD cone are self-dual: $K=K^*$

Properties: optimal values are equal (if primal or dual is strictly feasible)

Robust Optimization

Robust optimization

(worst-case) robust convex optimization problem

minimize
$$\sup_{\theta \in \mathcal{A}} f_0(x, \theta)$$

subject to $\sup_{\theta \in \mathcal{A}} f_i(x, \theta) \leq 0, \quad i = 1, \dots, m$

- ullet x is optimization variable; heta is an unknown parameter
- f_i convex in x for fixed θ
- ullet tractability depends on ${\cal A}$

(Ben-Tal, Nemirovski, El Ghaoui, Bertsimas, . . .)

Robust linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{A}_i, \quad i = 1, \dots, m$

coefficients unknown but contained in ellipsoids A_i :

$$\mathcal{A}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

Equivalent SOCP

minimize
$$c^T x$$
 subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \dots, m$

Robust least-squares

minimize
$$\sup_{\|u\|_2 \le 1} \|(A_0 + u_1 A_1 + \dots + u_p A_p) x - b\|_2$$

- coefficient matrix lies in ellipsoid;
- choose x to minimize worst-case residual norm

Equivalent SDP

minimize
$$t_1+t_2$$

$$\begin{bmatrix} I & P(x) & A_0x-b \\ P(x)^T & t_1I & 0 \\ (A_0x-b)^T & 0 & t_2 \end{bmatrix}\succeq 0$$

where

$$P(x) = \left[\begin{array}{ccc} A_1 x & A_2 x & \cdots & A_p x \end{array} \right]$$

Example (p = 2, u uniformly distributed in unit disk)

 x_{tik} minimizes $||A_0x - b||_2^2 + ||x||_2^2$

Semidefinite Relaxations

Relaxation and randomization

convex optimization is increasingly used

- to find good bounds for hard (i.e., nonconvex) problems, via **relaxation**
- as a heuristic for finding suboptimal points, often via randomization

Semidefinite relaxations

Boolean least-squares

minimize
$$||Ax - b||_2^2$$
 subject to $x_i^2 = 1, \quad i = 1, \dots, n.$

- a basic problem in digital communciations
- non-convex, very hard to solve exactly

Equivalent formulation

minimize
$$\mathbf{tr}(A^TAZ) - 2b^TAz + b^Tb$$
 subject to $Z_{ii} = 1, \quad i = 1, \dots, n$ $Z = zz^T$

follows from
$$||Az - b||_2^2 = \mathbf{tr}(A^T A Z) - 2b^T A z + b^T b$$
 if $Z = zz^T$

Semidefinite relaxation

replace constraint $Z = zz^T$ with $Z \succeq zz^T$

minimize
$$\mathbf{tr}(A^TAZ) - 2b^TAz + b^Tb$$
 subject to $Z_{ii} = 1, \quad i = 1, \dots, n$
$$\begin{bmatrix} Z & z \\ z^T & 1 \end{bmatrix} \succeq 0$$

- ullet an SDP with variables Z, z
- optimal value is a lower bound for Boolean LS optimal value
- ullet rounding Z, z gives suboptimal solution for Boolean LS

Randomized rounding

- ullet generate vector from $\mathcal{N}(z,Z-zz^T)$
- ullet round components to ± 1

Example

- (randomly chosen) parameters $A \in \mathbf{R}^{150 \times 100}$, $b \in \mathbf{R}^{150}$
- $x \in \mathbf{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

distribution of randomized solutions based on SDP solution

Sums of squares and semidefinite programming

Sum of squares: a function of the form

$$f(t) = \sum_{k=1}^{s} (y_k^T q(t))^2$$

q(t): vector of basis functions (polynomial, trigonometric, . . .)

SDP parametrization:

$$f(t) = q(t)^T X q(t), \quad X \succeq 0$$

- a **sufficient** condition for nonnegativity of f, useful in nonconvex polynomial optimization (Parrilo, Lasserre, Henrion, De Klerk . . .)
- in some important special cases, necessary and sufficient

Example: Cosine polynomials

$$f(\omega) = x_0 + x_1 \cos \omega + \dots + x_{2n} \cos 2n\omega \ge 0$$

Sum of squares theorem: $f(\omega) \geq 0$ for $\alpha \leq \omega \leq \beta$ if and only if

$$f(\omega) = g_1(\omega)^2 + s(\omega)g_2(\omega)^2$$

- ullet g_1 , g_2 : cosine polynomials of degree n and n-1
- $s(\omega) = (\cos \omega \cos \beta)(\cos \alpha \cos \omega)$ is a given weight function

Equivalent SDP formulation: $f(\omega) \geq 0$ for $\alpha \leq \omega \leq \beta$ if and only if

$$x^T p(\omega) = q_1(\omega)^T X_1 q_1(\omega) + s(\omega) q_2(\omega)^T X_2 q_2(\omega), \quad X_1 \succeq 0, \quad X_2 \succeq 0$$

p, q_1 , q_2 : basis vectors $(1, \cos \omega, \cos(2\omega), \ldots)$ up to order 2n, n, n-1

Example: Linear-phase Nyquist filter

minimize $\sup_{\omega \geq \omega_s} |h_0 + h_1 \cos \omega + \cdots + h_n \cos n\omega|$

with $h_0 = 1/M$, $h_{kM} = 0$ for positive integer k

(Example with n=50, M=5, $\omega_{\rm s}=0.69$)

SDP formulation

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t \leq H(\omega) \leq t, \quad \omega_{\mathrm{s}} \leq \omega \leq \pi \\ \end{array}$$

Equivalent SDP

minimize
$$t$$
 subject to $t-H(\omega)=q_1(\omega)^TX_1q_1(\omega)+s(\omega)q_2(\omega)^TX_2q_2(\omega)$
$$t+H(\omega)=q_1(\omega)^TX_3q_1(\omega)+s(\omega)q_2(\omega)^TX_3q_2(\omega)$$

$$X_1\succeq 0,\quad X_2\succeq 0,\quad X_3\succeq 0,\quad X_4\succeq 0$$

Variables t, h_i ($i \neq kM$), 4 matrices X_i of size roughly n

Multivariate trigonometric sums of squares

$$h(\omega) = \sum_{\mathbf{k} = -\mathbf{n}}^{\mathbf{n}} x_{\mathbf{k}} e^{-j\mathbf{k}^T \omega} = \sum_{i} |g_i(\omega)|^2, \qquad (x_{\mathbf{k}} = x_{-\mathbf{k}}, \ \omega \in \mathbf{R}^d)$$

- g_i is a polynomial in $e^{-j\mathbf{k}^T\omega}$; can have degree higher than \mathbf{n}
- necessary for positivity of R
- ullet restricting the degrees of g_i gives a sufficient condition for nonnegativity

Spectral mask constraints defined by trigonometric polynomials d_i

$$h(\omega) = s_0(\omega) + \sum_i d_i(\omega) s_i(\omega), \qquad s_i \text{ is s.o.s.}$$

guarantees $h(\omega) \geq 0$ on $\{\omega \mid d_i(\omega \geq 0)\}$

(B. Dumitrescu)

Two-dimensional FIR filter design

$$\begin{split} \text{minimize} & \quad \delta_{s} \\ \text{subject to} & \quad |1-H(\omega)| \leq \delta_{p}, \quad \omega \in \mathcal{D}_{p} \\ & \quad |H(\omega)| \leq \delta_{s}, \quad \omega \in \mathcal{D}_{s}, \end{split}$$

where $H(\omega) = \sum_{i=0}^{n} \sum_{k=0}^{n} h_{ik} \cos i\omega_1 \cos k\omega_2$

1-Norm Sparsity Heuristics

1-Norm heuristics

use ℓ_1 -norm $||x||_1$ as convex approximation of the ℓ_0 -'norm' $\mathbf{card}(x)$

• sparse regressor selection (Tibshirani, Hastie, . . .)

minimize
$$||Ax - b||_2 + \rho ||x||_1$$

sparse signal representation (basis pursuit, sparse compression)
 (Donoho, Candes, Tao, Romberg, . . .)

$$\begin{array}{lll} \text{minimize} & \|x\|_1 & \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b & \text{subject to} & \|Ax - b\|_2 \leq \epsilon \end{array}$$

Norm approximation

minimize
$$||Ax - b||_2$$
 minimize $||Ax - b||_1$

minimize
$$||Ax - b||_1$$

example (A is 100×30): histograms of residuals

2-norm

1-norm

note large number of zero residuals in 1-norm solution

Robust regression

- 42 points t_i , y_i (circles), including two outliers
- ullet function f(t)=lpha+eta t fitted using 2-norm (dashed) and 1-norm

Sparse reconstruction

signal $\hat{x} \in \mathbf{R}^n$ with n = 1000, 10 nonzero components

m=100 random noisy measurements

$$b = A\hat{x} + v$$

$$A_{ij} \sim \mathcal{N}(0,1)$$
 i.i.d. and $v \sim \mathcal{N}(0,\sigma^2 I)$, $\sigma = 0.01$

ℓ_2 -Norm reconstruction

minimize
$$||Ax - b||_2^2 + ||x||_2^2$$

left: exact signal \hat{x} ; right: ℓ_2 reconstruction

ℓ_1 -Norm reconstruction

minimize
$$||Ax - b||_2 + ||x||_1$$

left: exact signal \hat{x} ; right: ℓ_1 reconstruction

Interior-Point Algorithms

Interior-point algorithms

- handle linear and nonlinear convex problems
- follow central path as guide to the solution (using Newton's method)
- worst-case complexity theory: # Newton iterations $\sim \sqrt{\text{problem size}}$
- in practice: # Newton steps between 10 and 50
- performance is similar across wide range of problem dimensions, problem data, problem classes
- controlled by a small number of easily tuned algorithm parameters

Cone program

Primal and dual cone program

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^Ty \\ \text{subject to} & Ax+s=b & \text{subject to} & A^Tz+c=0 \\ & s\succeq_K 0 & z\succeq_{K^*} 0 \end{array}$$

- $s \succeq_K 0$ means $s \in K$ (convex cone)
- $z \succeq_{K^*} 0$ means $z \in K^*$ (dual cone $K^* = \{z \mid s^T z \ge 0 \ \forall s \in K\}$)

Examples (of self-dual cones: $K = K^*$)

- ullet linear program: K is nonnegative orthant
- second order cone program: K is second order cone $\{(t,x) \mid ||x||_2 \leq t\}$
- ullet semidefinite program: K is cone of positive semidefinite matrices

Central path

solution
$$\{(x(t), s(t)) \mid t > 0\}$$
 of

minimize
$$tc^Tx + \phi(s)$$

subject to $Ax + s = b$

 ϕ is a **logarithmic barrier** for primal cone K

- nonnegative orthant: $\phi(u) = -\sum_k \log u_k$
- second order cone: $\phi(u,v) = -\log(u^2 v^T v)$
- positive semidefinite cone: $\phi(V) = -\log \det V$

Example: central path for linear program

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

Newton equation

Central path optimality conditions

$$Ax + s = b,$$
 $A^{T}z + c = 0,$ $z + \frac{1}{t}\nabla\phi(s) = 0$

Newton equation: linearize optimality conditions

$$\begin{bmatrix} 0 \\ \Delta s \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta z \end{bmatrix} = \begin{bmatrix} -c - A^T z \\ b - Ax - s \end{bmatrix}$$
$$\Delta z + \frac{1}{t} \nabla^2 \phi(s) \Delta s = -z - \frac{1}{t} \nabla \phi(s)$$

- gives search directions Δx , Δs , Δz
- \bullet many variations (e.g., primal-dual symmetric linearizations)

Computational effort per Newton step

- Newton step effort dominated by solving linear equations to find search direction
- equations inherit structure from underlying problem
- equations same as for weighted LS problem of similar size and structure

Conclusion

we can solve a convex problem with about the same effort as solving 30 least-squares problems

Direct methods for exploiting sparsity

- well developed, since late 1970s
- based on (heuristic) variable orderings, sparse factorizations
- standard in general purpose LP, QP, GP, SOCP implementations
- \bullet can solve problems with up to 10^5 variables, constraints (depending on sparsity pattern)

Some convex optimization solvers

primal-dual, interior-point, exploit sparsity

- many for LP, QP (GLPK, CPLEX, . . .)
- SeDuMi, SDPT3 (open source; Matlab; LP, SOCP, SDP)
- DSDP, CSDP, SDPA (open source; C; SDP)
- MOSEK (commercial; C with Matlab interface; LP, SOCP, GP, . . .)
- solver.com (commercial; excel interface; LP, SOCP)
- GPCVX (open source; Matlab; GP)
- CVXOPT (open source; Python/C; LP, SOCP, SDP, GP, . . .)
- . . . and many others

Problem structure beyond sparsity

- state structure
- Toeplitz, circulant, Hankel; displacement rank
- fast transform (DFT, wavelet, . . .)
- Kronecker, Lyapunov structure
- symmetry

can exploit for efficiency, but not in most generic solvers

Example: 1-norm approximation

minimize
$$||Ax - b||_1$$

Equivalent LP

$$\begin{array}{ll} \text{minimize} & \sum_k y_k \\ \text{subject to} & -y \preceq Ax - b \preceq y \end{array}$$

Newton equation $(D_1, D_2 \text{ positive diagonal})$

$$\begin{bmatrix} 0 & 0 & -A^T & A^T \\ 0 & 0 & -I & -I \\ -A & -I & -D_1 & 0 \\ A & -I & 0 & -D_2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z_1 \\ \Delta z_2 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

- \bullet reduces to equation of the form $A^TDA\Delta x=r$
- cost = cost of (weighted) least squares problem

Iterative methods

- conjugate-gradient (and variants like LSQR) exploit general structure
- rely on fast methods to evaluate Ax and A^Ty , where A is huge
- can terminate early, to get truncated-Newton interior-point method
- \bullet can solve huge problems (10⁷ variables, constraints), with
 - good preconditioner
 - proper tuning
 - some luck

Solving specific problems

in developing custom solver for specific application, we can

- exploit structure very efficiently
- determine ordering, memory allocation beforehand
- cut corners in algorithm, e.g., terminate early
- use warm start

to get very fast solver

opens up possibility of real-time embedded convex optimization

Conclusions

Convex optimization

Fundamental theory

recent advances include new problem classes, robust optimization, semidefinite relaxations of nonconvex problems, ℓ_1 -norm heuristics . . .

Applications

Recent applications in wide range of areas; many more to be discovered

Algorithms and software

- High-quality general-purpose implementations of interior-point methods
- Customized implementations can be orders of magnitude faster
- Good modeling systems
- With the right software, suitable for embedded applications