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Introduction



Mathematical optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

• x = (x1, . . . , xn): optimization variables

• f0 : Rn → R: objective function

• fi : Rn → R, i = 1, . . . ,m: constraint functions
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Solving optimization problems

General optimization problem

• can be extremely difficult

• methods involve compromise: long computation time or local optimality

Exceptions: certain problem classes can be solved efficiently and reliably

• linear least-squares problems

• linear programming problems

• convex optimization problems
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Least-squares

minimize ‖Ax − b‖2
2

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2p (for A ∈ Rp×n); less if structured

• a widely used technology

Using least-squares

• least-squares problems are easy to recognize

• standard techniques increase flexibility (weights, regularization, . . . )
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Linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

• no analytical formula for solution; extensive theory

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a widely used technology

Using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

• objective and constraint functions are convex:

fi(θx + (1 − θ)y) ≤ θfi(x) + (1 − θ)fi(y)

for all x, y, 0 ≤ θ ≤ 1

• includes least-squares problems and linear programs as special cases
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Solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m, F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

Using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

6



History

• 1940s: linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

• 1950s: quadratic programming

• 1960s: geometric programming

• 1990s: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,
sum-of-squares programming, . . .
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New applications since 1990

• linear matrix inequality techniques in control

• circuit design via geometric programming

• support vector machine learning via quadratic programming

• semidefinite pogramming relaxations in combinatorial optimization

• applications in structural optimization, statistics, signal processing,
communications, image processing, quantum information theory,
finance, . . .
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Interior-point methods

Linear programming

• 1984 (Karmarkar): first practical polynomial-time algorithm

• 1984-1990: efficient implementations for large-scale LPs

Nonlinear convex optimization

• around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

• since 1990: extensions and high-quality software packages
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Traditional and new view of convex optimization

Traditional: special case of nonlinear programming with interesting theory

New: extension of LP, as tractable but substantially more general

reflected in notation: ‘cone programming’

minimize cTx
subject to Ax � b

‘�’ is inequality with respect to non-polyhedral convex cone
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Outline

• Convex sets and functions

• Modeling systems

• Cone programming

• Robust optimization

• Semidefinite relaxations

• ℓ1-norm sparsity heuristics

• Interior-point algorithms
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Convex Sets and Functions



Convex sets

Contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

example: one convex, two nonconvex sets:
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Examples and properties

• solution set of linear equations

• solution set of linear inequalities

• norm balls {x | ‖x‖ ≤ R} and norm cones {(x, t) | ‖x‖ ≤ t}

• set of positive semidefinite matrices

• image of a convex set under a linear transformation is convex

• inverse image of a convex set under a linear transformation is convex

• intersection of convex sets is convex
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Convex functions

domain dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

f is concave if −f is convex
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Examples

• expx, − log x, x log x are convex

• xα is convex for x > 0 and α ≥ 1 or α ≤ 0; |x|α is convex for α ≥ 1

• quadratic-over-linear function xTx/t is convex in x, t for t > 0

• geometric mean (x1x2 · · ·xn)1/n is concave for x � 0

• log detX is concave on set of positive definite matrices

• log(ex1 + · · · exn) is convex

• linear and affine functions are convex and concave

• norms are convex

15



Operations that preserve convexity

Pointwise maximum

if f(x, y) is convex in x for fixed y, then

g(x) = sup
y∈A

f(x, y)

is convex in x

Composition rules

if h is convex and increasing and g is convex, then h(g(x)) is convex

Perspective

if f(x) is convex then tf(x/t) is convex in x, t for t > 0
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj

θkj

intensity Ik at patch k depends linearly on lamp powers pj: Ik = aT
k p

Problem: achieve desired illumination Ik ≈ 1 with bounded lamp powers

minimize maxk=1,...,n

∣

∣log(aT
k p)

∣

∣

subject to 0 ≤ pj ≤ pmax, j = 1, . . . , m
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Convex formulation: problem is equivalent to

minimize maxk=1,...,n max{aT
k p, 1/aT

k p}
subject to 0 ≤ pj ≤ pmax, j = 1, . . . , m

0 1 2 3 4
0

1

2

3

4

5

u

m
ax

{u
,1

/u
}

cost function is convex because maximum of convex functions is convex
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Quasiconvex functions

domain dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

f is quasiconcave if −f is quasiconvex
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Examples

•
√

|x| is quasiconvex on R

• ceil(x) = inf{z ∈ Z | z ≥ x} is quasiconvex and quasiconcave

• log x is quasiconvex and quasiconcave on R++

• f(x1, x2) = x1x2 is quasiconcave on R2
++

• linear-fractional function

f(x) =
aTx + b

cTx + d
, dom f = {x | cTx + d > 0}

is quasiconvex and quasiconcave

• distance ratio

f(x) =
‖x − a‖2

‖x − b‖2
, dom f = {x | ‖x − a‖2 ≤ ‖x − b‖2}

is quasiconvex
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Quasiconvex optimization

Example
minimize p(x)/q(x)
subject to Ax � b

p convex, q concave, and p(x) ≥ 0, q(x) > 0

Equivalent formulation (variables x, t)

minimize t
subjec to p(x) − tq(x) ≤ 0

Ax � b

• for fixed t, constraint is a convex feasibility problem

• can determine optimal t via bisection
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Modeling Systems



Convex optimization modeling systems

• allow simple specification of convex problems in natural form

– declare optimization variables
– form affine, convex, concave expressions
– specify objective and constraints

• automatically transform problem to canonical form, call solver,
transform back

• built using object-oriented methods and/or compiler-compilers
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Example

minimize −
m

∑

i=1

wi log(bi − aT
i x)

variable x ∈ Rn; parameters ai, bi, wi > 0 are given

Specification in CVX (Grant, Boyd & Ye)

cvx begin
variable x(n)

minimize ( -w’ * log(b-A*x) )

cvx end
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Example

minimize ‖Ax − b‖2 + λ‖x‖1

subject to Fx � g + (
∑

i=1 xi)h

variable x ∈ Rn; parameters A, b, F , g, h given

CVX specification

cvx begin
variable x(n)

minimize ( norm(A*x-b,2) + lambda*norm(x,1) )

subject to
F*x <= g + sum(x)*h

cvx end
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Illumination problem

minimize maxk=1,...,n max{aT
k x, 1/aT

k x}
subject to 0 � x � 1

variable x ∈ Rm; parameters ak given (and nonnegative)

CVX specification

cvx begin
variable x(m)

minimize ( max( [ A*x; inv_pos(A*x) ] )

subject to
x >= 0

x <= 1

cvx end
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History

• general purpose optimization modeling systems AMPL, GAMS (1970s)

• systems for SDPs/LMIs (1990s): SDPSOL (Wu, Boyd), LMILAB
(Gahinet, Nemirovski), LMITOOL (El Ghaoui)

• YALMIP (Löfberg 2000)

• automated convexity checking (Crusius PhD thesis 2002)

• disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)

• CVX (Grant, Boyd, Ye 2005)

• CVXOPT (Dahl, Vandenberghe 2005)

• GGPLAB (Mutapcic, Koh, et al 2006)

• CVXMOD (Mattingley 2007)
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Cone Programming



Linear programming

minimize cTx
subject to Ax � b

‘�’ is elementwise inequality between vectors

Ax � b
x⋆

−c
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Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane

aTxi + b > 0, i = 1, . . . , N

aTyi + b < 0 i = 1, . . . ,M

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . , M
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Approximate linear separation of non-separable sets

minimize
N

∑

i=1

max{0, 1 − aTxi − b} +
M
∑

i=1

max{0, 1 + aTyi + b}

can be interpreted as a heuristic for minimizing #misclassified points
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Linear programming formulation

minimize
N

∑

i=1

max{0, 1 − aTxi − b} +
M
∑

i=1

max{0, 1 + aTyi + b}

Equivalent LP

minimize
∑N

i=1 ui +
∑M

i=1 vi

minimize ui ≥ 1 − aTxi − b, i = 1, . . . , N
vi ≥ 1 + aTyi + b, i = 1, . . . ,M
u � 0, v � 0

variables a, b, u ∈ RN , v ∈ RM
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Cone programming

minimize cTx
subject to Ax �K b

• y �K z means z − y ∈ K, where K is a proper convex cone

• extends linear programming (K = Rm
+ ) to nonpolyhedral cones

• (duality) theory and algorithms very similar to linear programming
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Second-order cone programming

Second-order cone

Cm+1 = {(x, t) ∈ Rm × R | ‖x‖ ≤ t}

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

Second-order cone program

minimize fTx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . , m
Fx = g

inequality constraints require (Aix + bi, c
T
i x + di) ∈ Cmi+1

32



Linear program with chance constraints

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ η, i = 1, . . . , m

ai is Gaussian with mean āi, covariance Σi, and η ≥ 1/2

Equivalent SOCP

minimize cTx

subject to āT
i x + Φ−1(η)‖Σ1/2

i x‖2 ≤ bi, i = 1, . . . ,m

Φ(x) is zero-mean unit-variance Gaussian CDF
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Semidefinite programming

Positive semidefinite cone

Sm
+ = {X ∈ Sm | X � 0}

X11X12

X
2
2

0

0.5

1

−1

0

1
0

0.5

1

Semidefinite programming

minimize cTx
subject to x1A1 + · · · + xnAn � B

constraint requires B − x1A1 − · · · − xnAn ∈ Sm
+
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) � tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A � tI
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Matrix norm minimization

minimize ‖A(x)‖2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

� 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0 ⇐⇒
[

tI A
AT tI

]

� 0
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Chebyshev inequalities

Classical inequality: if X is a r.v. with EX = 0, EX2 = σ2, then

prob(|X | ≥ 1) ≤ σ2

Generalized inequality: sharp lower bounds on prob(X ∈ C)

• X ∈ Rn is a random variable with known moments

EX = a, EXXT = S

• C ⊆ Rn is defined by quadratic inequalities

C = {x | xTAix + 2bT
i x + ci < 0, i = 1, . . . ,m}
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Equivalent SDP

maximize 1 − tr(SP ) − 2aTq − r

subject to

[

P q
qT r − 1

]

� τi

[

Ai bi

bT
i ci

]

, i = 1, . . . , m

τi ≥ 0, i = 1, . . . , m
[

P q
qT r

]

� 0

• an SDP with variables P ∈ Sn, q ∈ Rn, scalars r, τi

• optimal value is tight lower bound on prob(X ∈ C)

• solution provides distribution that achieves lower bound
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Example

a

C

• a = EX ; dashed line shows {x | (x − a)T (S − aaT )−1(x − a) = 1}
• lower bound on prob(X ∈ C) is 0.3992 achieved by distribution in red
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Detection example

x = s + v

• x ∈ Rn: received signal

• s: transmitted signal s ∈ {s1, s2, . . . , sN} (one of N possible symbols)

• v: noise with E v = 0, E vvT = σ2I

Detection problem: given observed value of x, estimate s
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Example (N = 7): bound on probability of correct detection of s1 is 0.205

s1

s2

s3

s4

s5
s6

s7

dots: distribution with probability of correct detection 0.205
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Duality

Cone program
minimize cTx
subject to Ax �K b

Dual cone program

maximize −bTz
subject to ATz + c = 0

z �K∗ 0

• K∗ is the dual cone: K∗ = {z | zTx ≥ 0 for all x ∈ K}
• nonnegative orthant, 2nd order cone, PSD cone are self-dual: K = K∗

Properties: optimal values are equal (if primal or dual is strictly feasible)
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Robust Optimization



Robust optimization

(worst-case) robust convex optimization problem

minimize supθ∈A f0(x, θ)
subject to supθ∈A fi(x, θ) ≤ 0, i = 1, . . . , m

• x is optimization variable; θ is an unknown parameter

• fi convex in x for fixed θ

• tractability depends on A

(Ben-Tal, Nemirovski, El Ghaoui, Bertsimas, . . . )
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Robust linear programming

minimize cTx
subject to aT

i x ≤ bi ∀ai ∈ Ai, i = 1, . . . , m

coefficients unknown but contained in ellipsoids Ai:

Ai = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

Equivalent SOCP

minimize cTx
subject to āT

i x + ‖P T
i x‖2 ≤ bi, i = 1, . . . , m
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Robust least-squares

minimize sup‖u‖2≤1 ‖(A0 + u1A1 + · · · + upAp)x − b‖2

• coefficient matrix lies in ellipsoid;

• choose x to minimize worst-case residual norm

Equivalent SDP

minimize t1 + t2

subject to





I P (x) A0x − b
P (x)T t1I 0

(A0x − b)T 0 t2



 � 0

where
P (x) =

[

A1x A2x · · · Apx
]
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Example (p = 2, u uniformly distributed in unit disk)

r(u) = ‖A(u)x − b‖2

xls

xtik

xrls

fr
eq

u
en

cy

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

xtik minimizes ‖A0x − b‖2
2 + ‖x‖2

2
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Semidefinite Relaxations



Relaxation and randomization

convex optimization is increasingly used

• to find good bounds for hard (i.e., nonconvex) problems, via relaxation

• as a heuristic for finding suboptimal points, often via randomization
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Semidefinite relaxations

Boolean least-squares

minimize ‖Ax − b‖2
2

subject to x2
i = 1, i = 1, . . . , n.

• a basic problem in digital communciations

• non-convex, very hard to solve exactly

Equivalent formulation

minimize tr(ATAZ) − 2bTAz + bTb
subject to Zii = 1, i = 1, . . . , n

Z = zzT

follows from ‖Az − b‖2
2 = tr(ATAZ) − 2bTAz + bT b if Z = zzT
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Semidefinite relaxation

replace constraint Z = zzT with Z � zzT

minimize tr(ATAZ) − 2bTAz + bTb
subject to Zii = 1, i = 1, . . . , n

[

Z z
zT 1

]

� 0

• an SDP with variables Z, z

• optimal value is a lower bound for Boolean LS optimal value

• rounding Z, z gives suboptimal solution for Boolean LS

Randomized rounding

• generate vector from N (z, Z − zzT )

• round components to ±1
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Example

• (randomly chosen) parameters A ∈ R150×100, b ∈ R150

• x ∈ R100, so feasible set has 2100 ≈ 1030 points

1 1.2
0

0.1

0.2

0.3

0.4

0.5

‖Ax − b‖2/(SDP bound)

fr
eq

u
en

cy

SDP bound rounded LS solution

distribution of randomized solutions based on SDP solution
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Sums of squares and semidefinite programming

Sum of squares: a function of the form

f(t) =
s

∑

k=1

(

yT
k q(t)

)2

q(t): vector of basis functions (polynomial, trigonometric, . . . )

SDP parametrization:

f(t) = q(t)TXq(t), X � 0

• a sufficient condition for nonnegativity of f , useful in nonconvex
polynomial optimization (Parrilo, Lasserre, Henrion, De Klerk . . . )

• in some important special cases, necessary and sufficient
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Example: Cosine polynomials

f(ω) = x0 + x1 cosω + · · · + x2n cos 2nω ≥ 0

Sum of squares theorem: f(ω) ≥ 0 for α ≤ ω ≤ β if and only if

f(ω) = g1(ω)2 + s(ω)g2(ω)2

• g1, g2: cosine polynomials of degree n and n − 1

• s(ω) = (cosω − cosβ)(cos α − cos ω) is a given weight function

Equivalent SDP formulation: f(ω) ≥ 0 for α ≤ ω ≤ β if and only if

xTp(ω) = q1(ω)TX1q1(ω) + s(ω)q2(ω)TX2q2(ω), X1 � 0, X2 � 0

p, q1, q2: basis vectors (1, cosω, cos(2ω), . . .) up to order 2n, n, n − 1
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Example: Linear-phase Nyquist filter

minimize supω≥ωs
|h0 + h1 cosω + · · · + hn cos nω|

with h0 = 1/M , hkM = 0 for positive integer k

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

ω

|H
(ω

)|

(Example with n = 50, M = 5, ωs = 0.69)
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SDP formulation

minimize t
subject to −t ≤ H(ω) ≤ t, ωs ≤ ω ≤ π

Equivalent SDP

minimize t
subject to t − H(ω) = q1(ω)TX1q1(ω) + s(ω)q2(ω)TX2q2(ω)

t + H(ω) = q1(ω)TX3q1(ω) + s(ω)q2(ω)TX3q2(ω)

X1 � 0, X2 � 0, X3 � 0, X4 � 0

Variables t, hi (i 6= kM), 4 matrices Xi of size roughly n

54



Multivariate trigonometric sums of squares

h(ω) =
n

∑

k=−n

xke
−jkT ω =

∑

i

|gi(ω)|2, (xk = x−k, ω ∈ Rd)

• gi is a polynomial in e−jkT ω; can have degree higher than n

• necessary for positivity of R

• restricting the degrees of gi gives a sufficient condition for nonnegativity

Spectral mask constraints defined by trigonometric polynomials di

h(ω) = s0(ω) +
∑

i

di(ω)si(ω), si is s.o.s.

guarantees h(ω) ≥ 0 on {ω | di(ω ≥ 0}

(B. Dumitrescu)
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Two-dimensional FIR filter design

minimize δs

subject to |1 − H(ω)| ≤ δp, ω ∈ Dp

|H(ω)| ≤ δs, ω ∈ Ds,

where H(ω) =
∑n

i=0

∑n
k=0 hik cos iω1 cos kω2

−2 0 2
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−100

−50
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ω1ω2
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(ω

)|
(d

B
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1-Norm Sparsity Heuristics



1-Norm heuristics

use ℓ1-norm ‖x‖1 as convex approximation of the ℓ0-‘norm’ card(x)

• sparse regressor selection (Tibshirani, Hastie, . . . )

minimize ‖Ax − b‖2 + ρ‖x‖1

• sparse signal representation (basis pursuit, sparse compression)
(Donoho, Candes, Tao, Romberg, . . . )

minimize ‖x‖1

subject to Ax = b
minimize ‖x‖1

subject to ‖Ax − b‖2 ≤ ǫ
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Norm approximation

minimize ‖Ax − b‖2 minimize ‖Ax − b‖1

example (A is 100 × 30): histograms of residuals

2-norm

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

2
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10

1-norm

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

5

10

15

20

25

30

35

40

note large number of zero residuals in 1-norm solution
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Robust regression

-10 -5 0 5 10
-20

-15

-10

-5

0

5

10

15

20

25

t

f
(t

)

• 42 points ti, yi (circles), including two outliers

• function f(t) = α + βt fitted using 2-norm (dashed) and 1-norm
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Sparse reconstruction

signal x̂ ∈ Rn with n = 1000, 10 nonzero components

0 200 400 600 800 1000

-2

-1

0

1

2

m = 100 random noisy measurements

b = Ax̂ + v

Aij ∼ N (0, 1) i.i.d. and v ∼ N (0, σ2I), σ = 0.01
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ℓ2-Norm reconstruction

minimize ‖Ax − b‖2
2 + ‖x‖2

2

0 200 400 600 800 1000

-2

-1

0

1

2

0 200 400 600 800 1000

-2

-1

0

1

2

left: exact signal x̂; right: ℓ2 reconstruction
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ℓ1-Norm reconstruction

minimize ‖Ax − b‖2 + ‖x‖1

0 200 400 600 800 1000

-2

-1

0

1

2

0 200 400 600 800 1000

-2

-1

0

1

2

left: exact signal x̂; right: ℓ1 reconstruction
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Interior-Point Algorithms



Interior-point algorithms

• handle linear and nonlinear convex problems

• follow central path as guide to the solution (using Newton’s method)

• worst-case complexity theory: # Newton iterations ∼ √
problem size

• in practice: # Newton steps between 10 and 50

• performance is similar across wide range of problem dimensions,
problem data, problem classes

• controlled by a small number of easily tuned algorithm parameters
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Cone program

Primal and dual cone program

minimize cTx
subject to Ax + s = b

s �K 0

maximize −bTy
subject to ATz + c = 0

z �K∗ 0

• s �K 0 means s ∈ K (convex cone)

• z �K∗ 0 means z ∈ K∗ (dual cone K∗ = {z | sTz ≥ 0 ∀s ∈ K})

Examples (of self-dual cones: K = K∗)

• linear program: K is nonnegative orthant

• second order cone program: K is second order cone {(t, x) | ‖x‖2 ≤ t}
• semidefinite program: K is cone of positive semidefinite matrices
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Central path

solution {(x(t), s(t)) | t > 0} of

minimize tcTx + φ(s)
subject to Ax + s = b

φ is a logarithmic barrier for primal cone K

• nonnegative orthant: φ(u) = −∑

k log uk

• second order cone: φ(u, v) = − log(u2 − vTv)

• positive semidefinite cone: φ(V ) = − log detV
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Example: central path for linear program

minimize cTx
subject to Ax � b

c

x⋆
x(t)
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Newton equation

Central path optimality conditions

Ax + s = b, ATz + c = 0, z +
1

t
∇φ(s) = 0

Newton equation: linearize optimality conditions

[

0
∆s

]

+

[

0 AT

A 0

] [

∆x
∆z

]

=

[

−c − ATz
b − Ax − s

]

∆z +
1

t
∇2φ(s)∆s = −z − 1

t
∇φ(s)

• gives search directions ∆x, ∆s, ∆z

• many variations (e.g., primal-dual symmetric linearizations)
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Computational effort per Newton step

• Newton step effort dominated by solving linear equations to find search
direction

• equations inherit structure from underlying problem

• equations same as for weighted LS problem of similar size and structure

Conclusion

we can solve a convex problem with about the same effort as solving 30
least-squares problems
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Direct methods for exploiting sparsity

• well developed, since late 1970s

• based on (heuristic) variable orderings, sparse factorizations

• standard in general purpose LP, QP, GP, SOCP implementations

• can solve problems with up to 105 variables, constraints (depending on
sparsity pattern)
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Some convex optimization solvers

primal-dual, interior-point, exploit sparsity

• many for LP, QP (GLPK, CPLEX, . . . )

• SeDuMi, SDPT3 (open source; Matlab; LP, SOCP, SDP)

• DSDP, CSDP, SDPA (open source; C; SDP)

• MOSEK (commercial; C with Matlab interface; LP, SOCP, GP, . . . )

• solver.com (commercial; excel interface; LP, SOCP)

• GPCVX (open source; Matlab; GP)

• CVXOPT (open source; Python/C; LP, SOCP, SDP, GP, . . . )

. . . and many others
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Problem structure beyond sparsity

• state structure

• Toeplitz, circulant, Hankel; displacement rank

• fast transform (DFT, wavelet, . . . )

• Kronecker, Lyapunov structure

• symmetry

can exploit for efficiency, but not in most generic solvers
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Example: 1-norm approximation

minimize ‖Ax − b‖1

Equivalent LP
minimize

∑

k yk

subject to −y � Ax − b � y

Newton equation (D1, D2 positive diagonal)









0 0 −AT AT

0 0 −I −I
−A −I −D1 0
A −I 0 −D2

















∆x
∆y
∆z1

∆z2









=









r1

r2

r3

r4









• reduces to equation of the form ATDA∆x = r

• cost = cost of (weighted) least squares problem
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Iterative methods

• conjugate-gradient (and variants like LSQR) exploit general structure

• rely on fast methods to evaluate Ax and ATy, where A is huge

• can terminate early, to get truncated-Newton interior-point method

• can solve huge problems (107 variables, constraints), with

– good preconditioner
– proper tuning
– some luck
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Solving specific problems

in developing custom solver for specific application, we can

• exploit structure very efficiently

• determine ordering, memory allocation beforehand

• cut corners in algorithm, e.g., terminate early

• use warm start

to get very fast solver

opens up possibility of real-time embedded convex optimization
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Conclusions



Convex optimization

Fundamental theory

recent advances include new problem classes, robust optimization,
semidefinite relaxations of nonconvex problems, ℓ1-norm heuristics . . .

Applications

Recent applications in wide range of areas; many more to be discovered

Algorithms and software

• High-quality general-purpose implementations of interior-point methods

• Customized implementations can be orders of magnitude faster

• Good modeling systems

• With the right software, suitable for embedded applications
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