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Fast Algorithms

— based on ideas from Computational Geometry



Computational Geometry

Example: Find smallest enclosing circle.




Smallest Enclosing Circle

Consider n points (x;,y;).
Find centre (zp,yp) and minimum radius r.

min r
sl keg 2,9 4 lll - 1 — 1 §

SOCP!
What about time complexity?

Not so good...




Smallest Enclosing Circle

Notice that 3 points normally touch the circle.

Let's call the 3 supporting points a basis.

We will say a point z violates basis B if x IS not enclosed
by the circle corresponding to basis B.

Problem formulation:
- Find basis which is not violated by any other point.

Given 3+ 1 = 4 points, we can compute an optimal basis
in fixed time.



A Randomized Algorithm

H - set of points. B - some initial basis. Call: LP(H, B).
function LP(H, B)

n — 0 B Seardinality of H\ B
m .= randperm(n); Y%random order
. b

while 1 + + < n,
h.— element n(:) in H\ B;
iIf h violates B then
B :=basis(BU{h}), Youpdate basis
i .= 0; %start all over
end
end
return B,

Note: Randomization independent of input data.
Time complexity is O(n)!




Abstract Linear Programming
Consider optimization problem specified by pair (H,w).

H - set of constraints
w - objective function, w: 27 — R U {—o0}

For G C H, w(G) means smallest value while satisfying
constraints of G.

Examples:
e Smallest enclosing circle,
e Linear Programming,




Basis

A basis is a set B C H (with w(B) > —oo) for which all
proper subsets B’ of B imply w(B’) < w(B).

A basis of G is a minimal subset B of G with w(B) = w(G).

The combinatorial dimension is the maximum cardinality
of any basis.

Goal: Compute basis By of H with w(Bgy) = w(H).

Examples:
e Smallest enclosing circle,
e Linear Programming.




Abstract Linear Programming

We assume the following three primitive operations:

Violation test: for a constraint h and a basis B, test
whether h is violated by B.

Basis computation: for a constraint A and a basis B,
compute basis of BU{h}.

Initial basis: An initial basis By.

Examples:
e Smallest enclosing circle,
e Linear Programming.



Abstract Linear Programming

Called LP-type if the following axioms satisfied:

Axiom 1. (Monotonicity) For any FF C G C H, we have
w(F) < w(G).

Axiom 2. (Locality) For any F C G C H with w(F) =

w(G) > —oco and any h € H, we have

w(G) < w(GU{h}) = w(F) < w(FU {h})




£

Example: Smallest Enclosing Circle

Axiom 1. (Monotonicity) For any F' C G C H, we have

w(F) <w(@).

=1 }

G={ } U {blue points}



Example: Smallest Enclosing Circle

Axiom 2. (Locality) For any F C G C H with w(F) =
w(G) > —oco and any h € H, we have

w(G) < w(GUA{h}) = w(F) <w(FU{h}).

"= }
G={ } U {blue points}
h = red point



Example: Linear Programming

Axiom 1. (Monotonicity) For any F' C G C H, we have

w(F) <w(@).

min Y
st a by ¢

F = {green half planes}
G = {green half planes} U {blue half planes}



Example: Linear Programming

Axiom 2. (Locality) For any FF C G C H with w(F) =
w(G) > —oco and any h € H, we have

w(G) < w(GUA{h}) = w(F) <w(FU{h}).

F = {green half planes}

G = {green half planes} U {blue half planes}
h = red half plane



Counter-Example: Linear Programming

Axiom 2. (Locality) For any F C G C H with w(F) =
w(G) > —oco and any h € H, we have

w(G) < w(GUA{h}) = w(F) <w(FU{h}).

Different minima
for FF and G
Axiom not satisfied.

£z .. No plateaus!
P ) | Degenerate
G={ } U {blue half planes} [N this case.

h = red half plane



Recall the Definition of ...

Ss(f)

.f)\

Y S N A




= NN
=N A=

=
o
e T =
0 TR R
5 e
e




T T SR S
7% SRS NP /5 W/ A

S
I A

a
Y S

.f)\







Back to Quasiconvex Problems

5opt = MINg MaX;c; fi(©)

max;er fi(©)
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B is a basis for H = {f1(9©), f2(©), f3(©), f4(©)}

B



Quasiconvex Problems

Are quasiconvex problems LP-type problems?

Let H be set of quasiconvex constraints. Set w(G) to be
the objective function. We need to show monotonicity
and locality.

Axiom 1. (Monotonicity) For any FF C G C H, we have
w(F) < w(G).

This is easy to show: Adding more constraints can never
decrease the objective function, cf. Linear Programming.

Locality is harder. This needs some more work.

If so, what is the combinatorial dimension??

We will get back to this question as well.
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Strict Quas

Strict quasiconvexity: As ¢ decreases, the sublevel sets

Ss(f) must shrink smoothly.
That is, no plateaus allowed.
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Strict Quasiconvexity

SOCP problems have error functions f;(©) that are strictly QC.
Proved in [Sim-Hartley-CVPR-2006].

— Two view triangulation [Nister 2001];

— Multiview triangulation [Hartley & Schaffalitzky CVPRO04];

— Multiview SFEM, known rotations [Hartley CVPR04, Kahl ICCV05, Ke ICCV05];
— Reconstruction with plane-induced homographies [Kahl ICCV05, Ke ICCV05];
— Homography estimation [Kahl ICCV05, Ke ICCVO05],

— Camera resectioning [Kahl ICCV05, Ke ICCV05],

— Camera motion recovery [Sim & Hartley CVPRO6];

— Vanishing point computation in images [Hartley 2006];

Strict quasiconvexity implies locality, cf. Linear Program-
ming. Hence, our min-max problems are LP-type.



Quasiconvex Optimization

We assume the following three primitive operations:
Violation test: for a constraint A and a basis B, test
whether h is violated by B.

Basis computation: for a constraint A~ and a basis B, com-
pute basis of BU{h}.

Initial basis: An initial basis Bp.



Combinatorial Dimension

Applications:

- d = 3 for smallest enclosing circle.

- d = m for Linear Programming in R".

-d = m -+ 1 for quasiconvex problems with m degrees of
freedom. In particular:

- d =4 for Ly-triangulation.

—d =9 for Loo-homography estimation.

- etc.

For a proof for quasiconvex problems, see
e C. Olsson, O. Enqvist, F. Kahl. A Polynomial-Time Bound for Matching and
Registration with Outliers. CVPR. 2008.

Time complexity is O(K n)!
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Outliers

— detection/removal of outliers



" Problem?
B

Problem: Find line of best fit

Measurements: X, = (z;,v;)
Parameters: © = {a, b}
Error functions: f;(®) = (y; — ax; — b)?

L> optimization:

ming p ¥ (y; — ax; — b)?
L~ optimization:

min, , max;(y; — az; — b)?

Xg Is an OUTLIER.
We need to remove it!

4




Overview

When the Lo-idea was first introduced, it was considered
a major drawback its sensitivity to outliers.

Now, one of its strengths.

Many different ideas and approaches for detection and
removal introduced last few years.

- QOutlier detection [Sim-Hartley].

----- Abstract LP-approach [Li].

- Minimize infeasibility [Seo and Ke-Kanade].
- Verification strategy [Olsson-Enqgvist-Kahl].



max;er fi(©) Suppose only two error functions
\ =="#1(©) f1(©) and f>(©).

f2(©) Choose a threshold §;,.
——————————— Then either f1(®) or f»(®) has to be
removed such that
ming maX;er, fi(©) < dip
where I, = {1} or I;,, = {2}. But which one?

\4

It is inherently AMBIGUOUS.
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o mn

Iin = {3,4} and Iout = {1,2}

4

Outlier

We have error functions f;(®) indexed
by 7 in an index set I.

Chonco A thrachnld 5.
A R AVAUS \WN @ | Ll coliviu UILI"L-

Choose largest subset I;, (the inlier set)
that satisfies
ming max;ey, fi(©) < din

An inlier is any measurement in I;,
An outlier is any measurement not in I;,.

Index set I is made up of two subsets -
I, (inlier set) and I,,: (outlier set).

=TI

V)T
£ fin ~ tout



e Outliers?
EE———

e Method 1: RANSAC

- Relies on random sampling to find a set of measurements containing only

HR Y HP

IIIIICID

- Can only be used on problems where solution can be computed quickly and
from only a small number of measurements.

- Some outliers may be missed because they happen to fit the model used.

_ N AN NnAaciirnmaonntc wiith larannct vracidiinl
INTIHIITVUVC 11TITAdoUlI TIlITIILOo vvilll 1idirycolu 1coivuuail.

_ Daoannat firct +\wwA ctonc Nntil an arcantahla mMmav racidiial ic arhinvaA
INTpTAdl 111oL LVWU OLTpPYOD UldiLll dil aLLTpLawvicT l1i1iaAa 1colvuuaitl 1o a\.«lllcvcu-

For this to work, the set of meas ith largest residual
must contain outliers. BUT THIS IS NO ALWAYS THE CASE!
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Outlier removal strategy:
— Solve optimization problem
— Remove measurements with iargest residual




Strategy

Outlier removal strategy:
— Solve optimization problem
— Remove measurements with iargest residual

Why does strategy fail for general
Lo or Ly problems?
!

For genera

Lo L s, th
measurements with iargest residuai does
NnNnt noroccarilvy raontain Nniitliorc

1INV U 'l\d\-’\ddqul'ly AL AR R EEEN] ULl 9

DIIT ctvntoanv winvlire FAvy raviFAin T
L2U 1 U1 CILCM VVVUI ND 1VI1l Ol Ldaliii L/OO
problems!

We show that, under certain conditions,
the measurements with largest residual

@]
e 9
are guaranteed to contain outliers.
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e Needed?
—

Theorem: (Under certain conditions)
Consider a minimax problem with solution ming max;e; fi(©) = dopt.
Suppose there exists I;, C I for which mine maxicy,, fi(©) < din < dopt.

Then I, must contain at least one index ¢ not in I,.

In English: The support set must contain at least one outlier.

Condition A: (Under certain conditions) -

If fo is a function not in the support set for a minimax problem,

then we can remove fp without decreasing the L., error gu.

That is, if O ¢ Isup, then ming maX;c;_ioy fi(©) = mine Max;es fi(©) = dopt.

In English: If fo & I, then fo should not be constraining our solution.
So we can remove fo without affecting the Lo, error dyp:.

4



dition A To Hold
B
e A, B,C are the sublevel sets of 3 error

functions f; ,, fig, fio-
e fi, iIs QC = C'is a convex set

fiy» Jig @are not QC = A, B are nonconvex sets
° @Opt = AnBNC

® Oypt & bd(C) = fi, & Lsupp = {ia, iR}
e Suppose we remove f; ..




We need convex sublevel sets.
Quasiconvexity is needed!

ndition A To Hold
e A, B,C are the sublevel sets of 3 error

functions f; ,, fig, fio-
e fi, iIs QC = C'is a convex set

fiy» Jig @re not QC = A, B are nonconvex sets
° @opt = AnBNC

® Oypt & bd(C) = fi, & Lsupp = {ia, iR}
e Suppose we remove f; ..

e Since A, B are not convex, the solution may
jump to © where f; ,(©') < dopt and

fiB(ei) < 5opt-
e That is, because A, B are not convex, it is

T -

£ ~ N Al ai~
Ji~ & lsupp dria opbLdill d
+ /

v




\ Ao mnoad ronvav cithlowval coatc
VVC 1ICCU CUIIVCA SUUJITVYVCIE STLuWLS.
Quasiconvexity is needed!

<—<—>—LS*—L?(JF£B) —> S5o-pt(fi5’)
> >‘5'Tfﬁ"(fi_,1) < S(Sopt(fi.f't)
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If {®}soin cONtains more than a sin

Lsupp = {ﬂfﬂ'(@op'{;) — 50-{)1',} - {2}

4

IS Insufficient

~A
U u .
ie point, then QC is necessary but insufficient.

® Ming Max;—12 fi(©) = dopt
o {O}soin = Ni=1,255,,,(fi) = [a, ]
e But bisection aigorithm only returns

a single point ©,,: € {®}_
=) ™~ opt ~ 1~ Jjsoin

a . (O .\ - S N Ff. AT — O
¥ J1\N~opt) >~ Yopt — J1 ¥ L8upp — L4 [
a Si1innNce wo romove f.
® OuUpPpPUDT VT iTiinivvce J1q.

e Bisection algorithm will find a new solution
©’ with a lower Lo error §.
= Quasiconvexity is insufficient

Need smoothness condition on sublevel sets.
Strict Quasiconvexity is needed!




Strict quasiconvexity: As § decreases, the sublevel sets Ss(f) must shrink smoothly.
That is, no plateaus allowed.

Definition: f is strictly QC if Uy«s Su(f) =1Int Ss(f) V¢

f2(©)

Quasiconvex,
but not gtrictly

\4

N,
>




fficient

Theorem:

Consider a minimax problem with solution ming maxics fi(©) = dopt
where error functions f;(©) are all strictly quasiconvex.

Suppose there exists I;,, C I for which ming max;ey,, fi(©) < din < dopt.
Then Iz, must contain at least one index ¢ not in [;,.

In English: If our error functions f;(©) are all strictly quasiconvex,
then the support set must contain at least one outlier.

In Abstract LP-language: Let B;, be a basis for error
functions in I;, and By a basis for all error functions.
Hence w(B;y) < din < dopt = w(Byy).

Then By must contain at least one outlier.
For a detailed proof, see:

e K. Sim, R. Hartley. Removing Outliers Using the L, Norm. CVPR. 2006.

4



Il Mean?
B

If we can write a geometric vision problem as an L. optimization problem
where the error functions f;(©) are strictly quasiconvex
then I, Must contain at least one outlier.

So by repeatedly throwing out part or all of I, it should be
possible to eventually remove outliers from a given problem.




struction

e 4402 image points x;; used to recover 36
camera locations C; and 1381 scene points X;.

e Gaussian noise added to 5% of the 4402
image points x;; (i.e. 220 outliers).

Max Size of | Remaining
Cycle ) _
Residual Tsupp Outliers
1 0.0390 10 210
2 0.0277 43 168
3 0.0196 54 123
4 0.0140 100 57
5 0.0080 72 23
6 0.0035 60 7
7 0.0019 36 4




Another approach using Abstract LP

» Removing the whole support set is rather crude.
e We know our min-max problems are LP-type.

o Exhaustive search too slow, but using properties of LP-
type problems we can do it more efficiently.

o Suppose we seek to remove at most k outliers where k
IS a small number.



b Level k

k=6
____________________________ k=17

k=38

Observation 1: If we are to remove one outlier, it is enough to
consider elements in the basis.

Observation 2: Satisfying all but £ constraints can be obtained from
a path from from k£ — 1 constraints.



Outlier removal using Abstract LP

o Exhaustive search but not all subsets need to be inves-
tigated.

More formally, the previous two observations can be
stated as follows.

Theorem. ( ) For a non-degenerate LP-
type problem (H,w) of combinatorial dimension d with w(G) > —o0o
for any G C H, the number of bases of level at most k is bounded
from above by |B<i| = O((k + 1)9).

Theorem. ( ) Every basis of level k can be reached
from the basis of level k — 1 through a direct path. Consequently, all
bases are connected through a tree structure.



Outlier Removal Using Abstract LP

o A deterministic algorithm for LP-type problems:

Input: an LP-type problem (H,w), a given maximal level K.
QOutput: all the bases B, at each level 0 < k < K.

Lo ( ) Find the root basis set for the universe
set H, i.e., Bo = By. Let £k = 0.
2. ( ) Generate all bases at level k41 by performing a

| series of basis-change operations. Specifically, for every b € By,
do the following: generate a basis at level k+ 1 for H\V (B)\b,
where V(By,) is the violation set of B.

3. If k< K then k= k+ 1, go back to 2.
4. Output all the bases, i.e., Bg, B1o, B11, ---,Bk1, .



s =
0

Example:
First basis of level 1: B11 = {f1(©), fo(©)}

First basis of level 2: Take b € By 1, say b = f9(©).
Then By 1 = basis of H\V(B1,1)\{fe(©)}, where V(B1.1) = {f10(©)}.



Outlier Removal Using Abstract LP

e Pros: Deterministic, guaranteed to get optimal level k&
(kth median) solution. Relatively fast compared to ex-
haustive search.

o Cons: Becomes very slow for large k or large d (combi-
natorial dimension).



Least Median Optimization

Could we minimize the median measurement?

1. k-th largest error is not a convex function.



Minimizing the median

Work of Ke and Kanade (ICCV 2005)

min $s1+s>+ ...+ sn

§;,X
subject to g;(x) <'s;
and s; >0

Use bisection: Feasible if less than k of the s; are non-

zero.
9:0)=C

g(x)=0

9.(0) =5



Problem Formulation

Given a set of hypothetic correspondences {(x;, y;) }i 4

find the largest consistent set 1.

max ||
such that for some transformation 17" € T
d(T(xz;),y;) <6, forall i eI

d;, €rror tolerance Applications:
m o Multiview geometry problems:

d(.) ) metric — Triangulation

- Uncalibrated camera pose
Etc.

e Matching problems

o Registration problems

o Etc.




Registration Problems

Model: Measurements:




Registration Problems

Model:

v

Measurements:
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Registration Problems

Model: T
—
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Registration Problems

Model: Measurements:




Registration Problems

Source points: x;
Target points: y;, 1 =1,....m



Registration Problems

Source points: x;
Target points: y;, 1 =1,....m

maxI,T |I|

d;n, €rror tolerance
d(-,-) metric



Registration Problems

R™ > t +— T3 parametrisation of the set of
feasible transformations.



Registration Problems

R™ > t +— T3 parametrisation of the set of
feasible transformations.

Assumption:
The reprojection errors

ri(t) = d(Ti(z;), y;)
are quasi/pseudo-convex functions.



Registration Problems

2D Similarity Transformation:
d(Rz; +t,y;) = ||Rx; +1t—yll2

R(a,b) = (_“b 2)

Homography estimation:

Hqix Hox
Y1 — 7 Y2 —

d(y, Hz) = | Haz Haz

2

Triangulation/Resectioning:

< PU P2U>
Ul — ———, U — ——

d(u, PU) = ' PsU’ PsU

2



Reformulation

Given a set of hypothetic correspondences {(z;, y;) }7~

For some pre-defined 9§;, > 0O

min s
seRM, TeT Islo
s.t.  d(T(z;),y;) < din + s; for all i
S; Z 0.
Hard, non-convex problem due to || -||g

Norms:
z||1 = 32 |4
o\ 1
z|lo = (02 |z )12
o Jlallp = (s leif?)?
Quasi-norm:
o ||z||[o = sum of non-zero z;




Convex Lq-relaxation (Y. Seo, 2008)

Given a set of hypothetic correspondences {(x;, yz-)};'il

For some pre-defined é;, > O

min sl
seR™m TeT
S.t. d(T(wi),y@-) < 9;, + s; for all 2
S; Z 0.

Can be solved with LP or SOCP!
o The Li-norm is known to produce sparse solutions.

o If ||s|[1 = O at optimum, then there exists T' € 7 such
that d(T'(x;),y;) < 6;, - all correspondences are inliers.

» Any non-zero s; implies existence of outliers.



Minimization of Sum of Infeasibilities for QOutliers Removal

Residuals from SOI. Threshold:y=2 Outliers=330 among 11832.

|
inliers threshold ~ outliers

An Experiment with real data

| Input: Oxford Dino sequence.
| 1,832 image points in 36 views.

Problem: Motion & Structure (known rotation).

Result with SeDuMi:
330 outliers were collected.
11,502 inliers for further optimization.
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0 2
Magnitude of residuals, log-normalized { log(efy) )




Verifying Optimality

Given a candidate solution I obtained from your favourite
heuristics (Lq-relaxation, RANSAC, etc. ).

Try to reject the hypothesis that there exists I« #+ I
with |I«| > |1p].

Method: For each correspondence h ¢ Ig. Show that
It cannot be an element of I, either.

To be presented this summer:
e C. Olsson, O. Enqvist, F. Kahl. A Polynomial-Time Bound for Matching
and Registration with Outliers. CVPR. 2008.



\ Basic Method

- Pick a h@[o.



\ Basic Method

- Pick a h@[o.

- Divide the remaining correspondences
randomly into disjoint sets H;.



\ Basic Method

- Pick a h@[o.

- Divide the remaining correspondences
randomly into disjoint sets H;.

- Try consistency for sets {h} U H;



Basic Method

- Assume that K inconsistencies are found.
Then he I, = |I.| <N - K

Iy - candidate solution
I. - hypothetic better solution
N - number of correspondences



Basic Method

- Assume that K inconsistencies are found.
Then he I, = |I.| <N - K

- If N — K < |Ig|, remove h permanently
and update N.

Iy - candidate solution
I. - hypothetic better solution
N - number of correspondences



Limitations

- Test sets {h} U H;'s must be large enough,
otherwise exact solutions exist.

Solution. Divide into large sets H;,.
Perform several tests for each H;.



Refined Method

For a set H; of size n form all subsets H;;
of size k < n.

Test consistency for sets {h} U H;;.

- If all tested sets are inconsistent h € I, implies
that |I>1< M H’I,| <k

- If less than (kjﬂj are consistent h € I,

implies that |[I. N H;| <k+ f



Results




Image | nr. corr | Inliers | Inliers | Number of tests | Number of tests in Li-CVPR2007
id |H| | RANSAC | Loc. | to verify optimum (* = worst case bound)
1 353 264 270 10276 4.0-10%%

2 121 104 105 420 9.3.10%3
3 69 49 50 1171 5.6-101%
4 86 55 57 800 5.6- 1014
5 150 114 116 834 6.5 - 101
6 65 42 50 1228 4.8.1013
7 14 9 9 1001 2.7 -10%
8 105 87 87 418 3.2-101%
9 174 147 149 718 1.0-10%6%
10 263 244 245 187 3.2. 101




Stereo | nr. corr | Inliers | Inliers | Number of tests | Number of tests in Li-CVPR2007
pair |H| RANSAC | Loc. | to verify optimum (* = worst case bound)
1 513 430 432 5889 6.7 - 105
2 101 57 64 9468 4.6-1013










\] ‘\ulu‘l

of

Image | nr. corr Inliers Inliers | Number of tests | Number of tests in Li-CVPR2007
id |H | RANSAC | Loc. | to verify optimum (* = worst case bound)
1 217 194 199 396 3.5-10°*
2 67 56 59 102 4.9 .10°
3 76 70 71 20 574
4 74 66 66 42 11177
5 77 46 46 4563 2.8-100*
6 146 43 < 73 18335 3.2-108*
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That’s It

Thank you



A Randomized Algorithm (recursive version)

H - set of points. C - some basis. Call: LP(H,C).

function LP(H,(C)

If H = C then
return
else

choose random he H\ C
B [P(H (5 ()
If h violates B then
return LP(H, basis(BUHh))
else
return B

Note: Randomization independent of input data.

Time complexity is O(n)!




