Pseudo-boolean optimization and graph cuts

Markov Random Fields

Consider a set of random variables X' = {Xq,..... Xn} taking val-
ues in a set S (usually a discrete set of values). Assume a
neighbourhood structure: for each variable X; there is defined
a set of variables N; C X — {i} such that

LieN;=jeN;.
2. P(X; = | X7—i’«'j;j?&'i):P(X1:fi | X]:zj;jGN%).

In other words the conditional probability distribution of a given
variable X; depends only the values of its neighbors.

This is called a Markov Random Field (MRF).

Notation. Denote the set (or vector) of all random variables
by X and a set of values of the random variables by x.

MRFs and graphs
Define an undirected graph ¢ = (V, £} such that

1. The vertices V are in one-to-one correspondence with the
random variables X;. (In fact we will refer to the vertices as
Xz.)

2. There is an edge from X; to X; if and only if i € Nj.

Example: Image graph (4-connected) has cliques of size 1 and
2.

e size 1 (vertices)
e size 2 (pairs of vertices joined by an edge).

6-connected and 8-connected graphs have cliques of size 3 and
4 respectively.

Gibbs distribution

Refer to paper Geman and Geman "Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Relaxation Restoration of Im-
ages.”

Theorem. The complete probability distribution of the MRF
is given by
1
P(x=x) =~ [] exp(-Eo(x)
cec

where C represents the set of all cliques in the graph of the MRF.

1. E.(x) is an energy function depending only on the values
of the vertices X; € C.

2. Z is a normalizing constant




Definition of pseudo-boolean function.

Define 5 = {0,1}. A pseudo-boolean function is a map-
ping
f:B"-R.

Variables: x;. The set of variables will be denoted
X ={z;i=1,...,n}.

Literals: Literals are z;,Z;, where z; = 1 — z;. Use u
to represent a literal. The set of literals is denoted by

“hree ways of representing a pseudo-boolean function.

1. Tableau. This lists all 2" values of the function,
2. Posiform.
ap + Z a;t; + Zai]ui'u] + ...
i i,5
where all coefficients are positive, except perhaps ag.
3. Polynomial.

n
o+ Z cx; + Z ¢y 4+ ... .
i=1

1<i<j<n

Maximizing the probability

Commonly, we want to find the assignment x that maximizes

the probability (the most probable state of the MRF).

We see that
log P(X =x) = const— Y Ec(x)
cec
hence

argmaxx P(X =x) = argming Y Ec(x)
cec

Hence, finding the most probable state of the MRF is equivalent

to minimizing the energy function

> Eo(x)

cec

where each Eq(x) is a function only of the variables in the clique

C.

Transformation between different forms.

Example — Tableau to posiform

&1 wp w3 val term
0 0 0 z
0 0 1

c 1 0

o 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Corresponding posiform computed as follows.
3F170%3 + 2B Fowz — 5F1u0T3 + 1 Franns — 41170T3 — 2a1Tors 4 3z1a073 — Tayames
Replace the terms with negative coefficients.

—iFary =

= ayumwg + aows + w3 - 1

All terms with negative coefficients can be replaced in this way.




Transform to posiform

Replace the terms with negative coefficients.

—zr1¥2w3 = —(1 - 71)ZT2w3

T1Zpx3 — T3

Z1Za23 — (1 — z2)z3
Z1Zowz + zowz — 3
= Z1¥pw3+apwz+ i3 1

All terms with negative coefficients can be replaced in this way.

Transform to polynomial

Pamlarcra asckh =0 by 1 Al rralbinly Aot Fuywnmimnla
Replace each Z; by 1 — z; and multiply out. Example.
Z1Zo2z = (1 —21)(1 —22)z3

= 23— 2133 — 2203 + 212223

Ambiguity of posiform representation.

172 = (1-21 (1 —22)
= 1-21 -zt 122
= 1-(1-=1)—(1-22) +Z122
= 14z +ix+ 132

Uniqueness of polynomial representation.
Polynomial representation is unique.

Proof: We can compute the coefficients of the polynomial
representation by evaluating function.

Example: f(x) = ag + X;aw; + Xij

1. Determination of the constant term: f(0) = aq.

2. Determination of a;. Evaluate at z; = 1, x; = 0 for i % 4,
gives f(0,.... 1...., 0) = ag + a;, allows us to determine a;.

3. Determine the coefficients a;; by evaluating by z; = z; =1
and z = 0, otherwise. Gives ag + a; + a; + a5, allows us to
determine a;y.

Quadratic functions

For a guadratic pseudo-boolean function, we can formu-
late an alternative form.

fx)=ag+ Z"l“z + Z apyn;
q 1<i<j<n
where u; = x; or Z;, and a; > 0 for all <.

This representation is unique.




Cost representation

Sometimes, we express the function to be minimized in terms of

costs of the form E;., or E;;.,,,, where i indexes the variable, and

p.gq are boolean values, 0 or 1.

Thus, cost E;;, is incurred if variable z; takes value p, and not
otherwise. Similarly, Eyj.,,, is incurred if 2; = p and x; = q. Thus,
the costs associated with two variables »; and z; are made up of
linear terms such as

Ez';l z; + Ei;O z;
plus quadratic terms

Eryi00 @@y + Byt wxy + Eygo1 Ty + Byo o3 -

Higher-degree terms may also be expressed in a similar way.

Minimum of f(x) and posiforms,
For a posiform &, defing C(¢) to be the constant term.

Theorem. miny f(x) = max,, ((¢)., where ¢ ranges over all posi-
form representations of f

Proof. Consider a tableau of the function. For instance:

val

@1 wp w3
0 ¢ 0 3
00 1 2
0 1 0 -5

fo=0 11 1
1 0 0 -4
10 1 -2
11 0 3«
11 1 -7«

Now, subtract the mirimum value of the function, to get
a tableau representation of f(x) — miny f(x). Namely

[ & X X3

G 0 O

0 0 1

o 1 0

f(x)—mxinf(x)z 0 1 1
1 0 0

1 0 1

11 0

1 1 1

Now, write this out as a posiform

T3+ 9x1%px3 + 412023 + 8X1xow3

160 =minf(x) + 105

43217073+ 221Tpw3 + 10212573 + O wq2s ©

This is a posiform representation ¢ of the function, so we
see miny f(x) = C(¢), so

min f(x) < maxC(¢) .
X @

However, for any posiform ¢ and value x, we have f(x) >
C(¢), so
min f(x) > maxC(¢)
x @

so equality holds.

MNP hardness.

We can show that in general, minimizing a posiform is an NP hard
problem (with respect to the number of variables n). Consider
a problem in which all terms are of degree 3 and all coefficients
are 1 in a posiform representation. This is
fx)= Z UgljUf
i,k
where u;, u; and uy are literals. For example:

1,22, 23) = 17223 + F120%3 + r122%3 .
Clearly f(x) > 0. To determine whether f(x) = 0 for some x is
the 3-SAT problem: Can we make a boolean assignment so that
all terms w;ujuy, are zero.

Another way to see this is to observe that a posiform or poly-
nomial representation of a general pseudo-boolean function can
have up to 2" terms. Thus, given an arbitrary function over n
variables, presented in polynomial format, it requires exponential
time just to read the coefficients of the function.




An approach to minimizing a pseudo-boolean function.

Let F™ be the set of posiforms with terms of degree at
most n. Define

Ca(f) = max C(4) .
GEF?
Then, since minx f(x) = maxger C(¢), we see

Ca(f) < min f(x) .
Thus, Co(f) gives a lower bound on miny f(x).

Solving using Linear Programming.

Let
n n
d(x) = ag+ Z (a325+a52:) + Z (aljzlac] + ag %z + agei®; + aﬁiiij)
i=1 2,j=1
and

69 = ot - e

i=1

represent the same function. Then we can compute the rela-
tionship between the coefficients « and c.

Thus

n n
g = (L0+Zug+ Z ag;

i=1 =1
n n
o+ = ap+ Zu,;,—‘,— Z (IW*”;'F”;‘JF»“
k=1 k=1

cot et tey = Lylap.ap ..., agj)

where L;; is a linear expression in the coefficients a.

Thus, we can compute the lower bound as follows.

Minimize ag

Subject to o = ao+ Xj=g uy+ Z{f]=1 ag

co + ¢ = Li(ag, - ... ai;) Vi

and g, o0 20

Note: This gives a lower bound for the solution, but it
does not give the assignment.

Simple Graph Representability.

Let G = (V. W) be a directed weighted graph with vertices V
and weights W. The weights are real numbers (not necessarily
positive).

We consider a pseudo-boolean function f(zq,...,z,) and con-
sider graphs with n 4 2 vertices. There are two vertices called 0
and 1 (or sometimes s and t) and other vertices that are labelled
x;, in one-to-one correspondence with the variables. There are
certain edges with weights.

A partition of the graph is a division of the vertices into Vg and
V1, where 0 € Vp and 1 € V;. If x is a particular value of the
variable x = (z1....,2n), then Vg(x) is the set of vertices z; with
value 0, and Vi(x) is the set of vertices x; with value 1. Thus
(Vo(x), V1(x)) is a particular partition of the graph.




Graph-representable functions

The cost of a partition (Vg, V1) is the sum of weights of
all edges going from Vg to Vi. Formally,
Cost(Vp. V1) = Z w(w, v)
u€Vg wEV]
where w(u.v) is the weight of the edge from vertex u to
k28

Definition The function f(x) is simple graph representable
if there is a graph ¢ = (V, W), such that for all x,

f(x) = Cost(Vo(x). V1(x)) .

Cost of a partition is the sum
of weights of edges passing
from Vg to Vy.

Representation of quadratic pseudo-boolean functions.

The easiest way to find a graph-representation of a quadratic
pseudo-boolean function is as follows.

Step 1. Represent the function in the form
n
=L+ a7 T

,j=1
where L represents linear terms in literals «; and z;.

Step 2. Draw a graph with vertices labelled 0, 1 and z;, and
assign edges as follows:

1. For the constant term «g, add an edge from O to 1 with
weight ag.

2. For a term a;z;, add an edge from 0 to z; with weight «;.

3. For a term a;x;, add an edge from z; to 1 with weight a;.

4. For a term a7, add an edge from z; to z; with weight
(1;]

Notes:

1. An edge from vertex u to vertex
v with weight a represents the
term aiwv, where 0= 1.

2. It is unnecessary to have both
terms «; and Z; occuring. Fur-
thermore, non-zero linear terms
can be of the form a;z; with a; >
0, or uzr; with az > 0.

i

3. It is unnecessary to have both
Zwy and Zjaz; oceuring.  Thus,
the function can be written as

fx)=L+ Z {1,;].;17[:1:9' .

1<i<j<n




Theorem. For a pseudo-boolean function represented as

FO=L+ Y ayfa
1

ij=
the graph given by this construction is a simple graph-representation
of f.

Proof: Consider a partition (Vp.V1) and an edge from vertex
u to v (where w,v € X U{0.1}). Then the edge correpondes to
a term aypuv, and aypuv is non-zero if and only if u € Vg and
v eV

Flow on a graph.

Given a graph with vertices v;, a flow is a function ¢ : VxV — R
such that

1w vp) = —¢(v.v)
2. For all 4, ¥; ¢(v;. v;) = 0.

Think of Kirchoff's Current Law. Total flow into a vertex equals
total flow out.

Permissible Flow

Later will will be interested in permissible flow on weighted
graphs which will satisfy one other axiom.

1. If wyy; is the weight of an edge from vertex v; to vy, then
#(vs.v;) < wgy for all i, j.

It is easily seen that there is no permissible flow on a weighted
graph unless w;; +wy; > 0 for all 4.5. In fact this is a necessary
and sufficient condition.

Connection of flow and function representation.

Consider a weighted graph. If two edges are not connected, we
add an edge with zero weight. Clearly, this makes no difference
to the the function represented by the graph.

We now show the following theorem.

Theorem. Let uwy and wj, be two different weights on a
graph with vertices {x;} U {0,1}. Then the graphs ¢ = (V. W)
and ¢’ = (V, W) represent the same function f(x) if and only if
there is a flow ¢y such that

’U/iw = Wy + Ouv

for all vertices » and v.




Example of flow reweighting

3x1 4 22120 + dToxz 4+ T30 4+ 523

=24 x1 4 221%> 4 27023 + 3T320 + 373

Proof. Suppose that wy, and wl,, represent the same function,
and define ¢uy = wuy — wh,. We show that ¢, is a flow on the
graph.

To do this, we observe that ¢., is a set of weights representing
a quadratic pseudo-boolean function representing the zero func-
tion. This function can be transformed via a flow transform (a
flow transform is one that is induced by a flow) to the form
px)=ag+ apy+ Y Fij .
i 1<i<j<n

However, this form is unique, and hence all the coefficients are
zero, and the function is identically zero.

Simplification of quadratic terms

Simplification of linear terms

Example of rewriting formulas




Conversely, suppose that &{u.v) is a flow, so that w'(u,v) =
wlu,v) + ¢(u,v) and let f(x) and f/(x) be the functions repre-
sented by these two weights. Then, we see that
FER =1+ > Y éwo),
weVo({x) ¥
s0 f(x) = f(x').

Otherwise stated: the function represented by a flow is identically
zero.

This process is called reparametrization of the graph via the flow

.

Maximum flow.

Drop the edge from 0 to 1. Flow need not be conservative at
the nodes 0 and 1. Total flow is the amount of flow from 0 to
1. For a flow ¢, define x(é) to be the volume of the flow — the
flow out of node 0 and into node 1.

Theorem. Given a graph with weights wy, and a maximum
permissible flow ¢k, let wh, = wuy — ¢f,,. Then w'(x) = w(x) —
w{¢*) for all x, Hence

min £/(x) = min f(x) = #(4")

argmin, f/(x) = argminy, f(x)

Proof. By definition, wj, > 0 and there is no path from 0 to 1
with positive weights on all edges.

However, since all weights are positive in w’, we see

mxinf’(x) >0.

With weights w’, let Vg be the set of nodes v; reachable from
0 with positive edges and let V; be the rest. Then there is no
positive edge from Vs to Vq, hence Cost(Vp. V1) = 0. Let x* be
the variable assignment corresponding to this partition. Then,
f/(x*) = 0. It follows that

i ! —
min f (x) =0,
and hence

min £(x) = r(6")

Max flow algorithm




Summary.

. All quadratic pseudo-boolean functions f(x) can be expressed
as graphs ¢ = (V. W) such that the function value is equal
to the cost of the corresponding partition:

F(x) = Cost(Vo(x). V1(x))

. If all weights are positive, then the min-cut on the graph
(minimum of the function) is equal to the maximal permis-
sible flow.

. A graph with weights wyy can be reparametrized to a graph
with non-negative weights if and only if
w(wg, wj) +wleg ;) >0
for all pairs of variables z;, z;.
. If all the weights are non-negative, then
mincut = mxin f(x) = maxflow

and the minimization problem can be solved using a max-flow
algorithm in polynomial time.

Regular functions.

A quadratic function is regular (or submodular) if it can be
written in the form

n
flwy, ... on) =ag+ Z azm;  — Z 5 it (1)
=0 1<i<g<n
with a;; > 0 for all 4, 7.

A quadratic submodular function can be written as a posiform
ag+ Y awu+ Y ayT; @)
“ i

and hence is representable by a graph with non-negative weights.

Note. If the function is written in terms of Ey;.,,, then

Eij00 %5 + Bl w4 Eyjor iy + Egjiio @5
= L+ (Eijo0+ Eiji11 — Eiyo1 — Eijiio) e

where L are linear terms.

Hence,
ay; = Eij01 + Eyjii0 — (Bij00 + Eijr11)
Function is regular if

Eij01 + Eijiio — (Bijioo + Eij;11) > 0

Theorem. A quadratic pseudo-boolean
function can be minimized using max-
flow on its simple graph representation
if and only if it is of the form (1) or
equivalently (2).

b
Method.
2

1. Write the function in the form (2).

2. Coefficients in the posiform are ex-
actly the edges on the graph.

Example. @

7+ 7x1 4+ 3zp + w3 — Be1wp — 2wows + 4z173
= 14721+ 832 + 73+ 57172 + 27013 + 42173

10



General Regular functions.

Definition. A pseudo-boolean function of any degree is callea
regular if any restriction to a two-variable function is regular,
hence of the form L + ay;Z;x; with L linear and a;; > 0.

Thus, set all variables but two to given values, you get a function
of two variables, which must be regular.
Example.

—4zy20 — 3123 — 2u013 + 2T 2003 4+ 3w1Tow3 4 drq20Z3

1. Set 23 = 1 gives
—4x172 + 2X1w0 + 30172 + L
= —9zy1xp + L which is submodular

2. Set w3 = 0 gives —8Bxjunr + L
3. Set 2, = 0.1, and z; = 0,1 and test if submodular.

Cubic functions.
Observation A cubic pseudo-boolean function can be written
uniquely in the form

L+ Y ayma+ 3 QR (1)

1<i<j<n T 1<i<j<k<n

such that

. L is a linear posiform without terms in both =; and z;.

. For each 4, 7.k, either wyuju, = ;2w OF wjujuy = Ti%;%p-
- ajjr < 0 for all i j k.

. Coefficients a;; may be positive or negative.

g o~ W N

. The coefficients are uniguely determined by these conditions.

Proof. First, get the cubic terms in the right form, then the
guadratic terms, and finally the linear and constant terms.

Theorem. The cubic posiform in the form (?7) is submodular
if and only if the coefficients a;; of the quadratic terms are all
negative.

Proof. First, we show that this form is submodular. For two
indices i, j, a restriction to z; and z; will be of the form
L+ ajmm; + sz]fil'j + Zcija_nii‘j
ij ij

where the b;; and ¢;; are sums ol some of Lthe coefficienls a;;
and hence are negative. However, we may write

Zc = L+Z(:H.’nlx_,
ij iy

and so the quadratic terms of the form z;x; have negative coef-
ficients.

Conversely, suppose that the function is submodular. Consider
two indices i.j. We wish to show that a;; < 0. We restrict the
function f(x) by assigning values to each z;, except z; and w;.
This gives L+ aj;2;x;+ C(x) where C(x) represents cubic terms.

We wish to make an assignment to all other z, so that the
cubic terms vanish. There may exist a cubic term a @,z OF
agjp ;% but not both.

Suppose a cubic term a;y, w2y, Then setting x;, = 0 will cause
this term to vanish.

If term a5, 2,27, occurs, then setting z, = 1 will cause this term
to vanish.

Thus, for this assignment of variables =z, the function f(x) re-
duces to L + ay; wz;. Since this must be submodular, a;; < 0.

11



Graph representation of cubic functions.

Given a function of the form (77}, we show how to represent
the function as a graph. This is related closely to reducing the
function in some sense to a quadratic function.

Handling the cubic terms: observe that for all values of x;, =
and xzy,
—xr, = myln @+ + o, -1y

= min (& + 3+ 3y +5 -1

So, given a term —a;;k @;T;Ty, With a;, > 0, replace by
aige (Fiy + Zgy + Zry + 9)

which differs by a constant.
Similarly, replace term —a; . %;7%;7, with a;5, > 0 by

agr (@i + @7+ oz +y) -

Graph Representability.

Consider V = V=4V, +{0. 1} where the ver-
tices V. correspond to vertices axqp,....: Ty
The Vy vertices are extra vertices.

Definition The function f(x) is graph rep-

resentable if there is a graph G = (VUY. W),

such that for all z,

F(x) = min_ Cost(¥o U Vp(x), Y1 UVi(x))
(Yo.d1)

The minimum is taken over all partitions of

Y.

We have shown that quadratic and cubic
pseudo-boolean functions are graph repre-
sentable.

Graph Representable functions are submodular.

Step 1: Reduction to 2 variables.

12



Proof for 2-variable functions

Graph representation of non-submodular functions.

First, we represent a general quadratic pseudo-boolean function.

Vv
(T

2z1 4 3z3 + 24 + 25 + 20T3 + 1475 + 22120 + 22374 + 22374

After maximum-flow algorithm, we can reduce it to a form where
there is no path from 0 to 1.

What happens for submodular functions?

For a submodular function
f=L+ > Zz;
1<i<j<n
the graph separates into two parts, disjoint except at 0 and 1.

13



Max-flow provides a partial solution.

Nodes connected to the vertex 0 will have value 0 in any optimal

Elimination.

Consider the problem of minimizing a pseudo-boolean functior
folw1.@0. ..., zn) We may write

fo(@1, 20, zn) = 31 A(22,.. ., 2n) + h(Z2, ..., 20) -

We call A the derivative of fo with respect to z1.

Now, suppose values of @o,...,xy are given, and let

We see that

o= 1 if Awp....,2p) <0
L1710 if Alws,....z0) >0

solution.
¥ <« ] i S s {
¥
Back substitution

Note, =} is a function of (aa.....: rn). Substitute back xj in f¢
and define

fileo...omn) = r‘glln folor. .o an)

= xfA(xp.....w0) +h(xs, ..

and

Ilr’.rj‘i.prn folz1,.-.. Tn) = H;Zr’rli“r};” rr}lln Jo(x1, ... @)

= .rgrr.].i.[‘r” f1lza, .. zn) .

and if A(xzp,...,zp) =0, then 2§ can have either value.
Example.
Jolz1, 20, @3) = 4dx1+ 3ap — 223 + 22170 — 571273 + 72073 + 3T17073

= 21(4 4 225 — 523+ 3zp13) + (322 — 203 + Tapx3)
= x1A(z2,72) + h(z2. x3)
Then, we may compute

7o |23 | A|z] |z] Aterm
0j0| 4|0 0 | Z2Z3
0|1 |-1|1 0 | Zpx3
1|0 6|0 6 | xzoZ3
1|1 4|0 0 |zox3

Hence,

z] = 6xpT3 = 6ap — 67023 .
Substitute in f1{z2.23) gives

f1(wp,w3) = 9wp — 223 + womz = 20(9 + x3) — 223 .

14



Example — continued

Continuing with

f1(z2,23) = 22(9 + 23) — 223 .

Then
w3 | Alab[al Alterm ‘
ol8[o] O I3
1/9/0]| 0 3
Hence, fa(x3) = —2x3. This is minimized when 2% = 1, and the

minimum is —2. Subsituting back gives 25 =0, and =} = 1.

— 2 .
—d
——

Elimination.
— T ' T_ %
o—d &—=2
—F—F— ¢ 7 7 7
@ ol | [ . /
o |
é{ — (~ll}— —(t) é/' 4 & v -
A1
A ] |
@/'/-— & & -2
@ — B
[ §
a & &
b & &
&
F—
-
& =
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