

Markov Random Fields for Vision and Graphics

Phil Torr,

Oxford Brookes University, http://cms.brookes.ac.uk/research/ visiongroup/

thanks to

Manish Jethwa, Pushmeet Kohli, Pawan Kumar, Yuri Boykov, George Vogliatzsis, Chria Bishop, Bill Freeman and many others.

Markov Random Fields

Slide Stealing!!!!

Many many thanks to Yuri Boykov for allowing me to use his slides

"Normal" MRF

This is a pairwise MRF

First order according to Besag

Second order pseudo Boolean function

Higher order cliques???

Part I Shortest Path:

Dynamic Programming

Applications

Shortest paths on graphs (examples)

Object extraction (Segmentation)

- live-wire [Falcao, Udupa, Samarasekera, Sharma 1998]
- intelligent scissors [Mortensen, Barrett 1998]

Scan line stereo (& Optic Flow)

- Ohta & Kanade, 1985
- Cox, Hingorani, Rao, 1996

Texture Synthesis

• Efros & Freeman, 2001

Dynamic Programming (examples)

Snakes

• Amini, Weymouth, Jain, 1990

Scan-line stereo

• e.g. Ohta&Kanade'85, Cox at.al.'96

Object Matching / Registrations

• Pictorial structures [Felzenszwalb & Huttenlocher, 2000]

Discrete Snakes

[Amini, Weymouth, Jain, 1990]

First-order interactions $E(v_1, v_2, ..., v_n) = E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n)$ General order interactions

Second-order interactions + $E_1(v_1, v_2, v_3) + E_2(v_2, v_3, v_4) + \dots + E_{n-2}(v_{n-2}, v_{n-1}, v_n)$

Energy *E* is minimized via Dynamic Programming

Dynamic Programming (DP)

In this talk we mainly concentrate on **first-order interactions** $E_1(v_1, v_2) + E_2(v_2, v_3) + \dots + E_{n-1}(v_{n-1}, v_n)$

Note: Similar to Viterbi Algorithm

Viterbi, developed in speech to solve HMM's

Higher Order Interaction

- Second order can be done by considering trellises where states corresponding to the joint labelling of two points.
- Problem m² labels and complexity in square of labels.

DP in vision: Scan-line stereo

- •Ohta & Kanade, 1985
- •Geiger at.al. 1992

- •Belhumeur & Mumford 1992
- •Cox at.al. 1996
- •Scharstein & Szelisky 2001

 $E(d_1, d_2, ..., d_n) =$

Left image

Disparities of pixels in the scan line S_{left}

 $\sum_{p \in S_{left}} E_p(d_p, d_{p+1})$

DP in vision: Object matching / registration

Pictorial structures [Felzenszwalb & Huttenlocher, 2000]

DP can be applied to trees!

FH'00 beat O(nm^2) complexity of DP for a class of first-order energies

Hierarchical Part-Based Human Body Pose Estimation BMVC 2005

* <u>Ram</u>anan Navaratnam * Arasanathan Thayananthan † Prof. Phil Torr * Prof. Roberto Cipolla * University Of Cambridge † Oxford Brookes University

Hierarchical Parts

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{x})p(\mathbf{z}|\{x_i\})}{p(\mathbf{z})}$$
$$= \frac{p(x_{HT})p(x_{RUA}|x_{HT})p(x_{LUA}|x_{HT})p(x_{RLA}|x_{RUA})p(x_{LLA}|x_{LUA})p(\mathbf{z}|\{x_i\})}{p(\mathbf{z})}$$

Pose Estimation in a Single Frame

Pose Estimation in a Single Frame

DP => graph algorithms

DP can be "implemented" via Shortest Path algorithm for graphs

Shortest Paths on weighted graphs

- - processed nodes (distance to A is known)
- - active nodes (front)
- active node with the smallest distance value

Dijkstra algorithm

Shortest paths on graphs (examples)

• Image quilting [Efros & Freeman, 2001]

Object extraction

- live-wire [Falcao, Udupa, Samarasekera, Sharma 1998]
- intelligent scissors [Mortensen, Barrett 1998]

Scan line stereo

- Ohta & Kanade, 1985
- Cox, Hingorani, Rao, 1996

Shortest paths: Texture synthesis

> *"Image quilting"* Efros & Freeman, 2001

"Image quilting" Efros & Freeman, 2001

Shortest paths: object extraction

live-wire [Falcao, Udupa, Samarasekera, Sharma 1998]
intelligent scissors [Mortensen, Barrett 1998]

Example:

Graph edges are "cheap" in places with high intensity gradients

Matching space (one scanline pair)

- compare every pixel in the left scanline with every pixel in right scanline (subject to r≤l)
 - use a similarity metric, *M_n(I, r)*, for comparisons
 - *e.g.* sum of squared differences (SSD) over 3x3 windows centred on the pixels in question
 - normalise s.t. $0 \le M_n \le 1$
- High similarity ⇒ low cost (light points)
- Low similarity (dark points)
- \Rightarrow high cost

OXFORD

State of the art: 'Three-move' graph

- Path planning on graph
- Three edges into each node (I, r):
 - Matched from (I-1, r-1)
 - weight *M_n(I, r)*
 - Left Occlusion from (I, r-1)
 - weight β ('occlusion cost')
 - **Right Occlusion** from (I-1, r)
 - weight β ('occlusion cost')

Three-move model

Minimum cost path: Dynamic programming step

- Build up minimum cost graph in ordered, greedy fashion from bottom left to top right
- Maintain backward links table

Minimum cost path

- Following backward links gives minimum cost path through graph
- Over all scanlines these paths form a depth map
- Create synthetic new view (Criminsi, Torr ICCV 2003)

DP ~ *Shortest Paths*

Snakes (via DP)

Live wire / Int. scissors

Scan-line stereo (via DP) Scan-line stereo (via Shortest paths)

• DP and *Shortest paths* are comparable optimization tools

-1D structures only

-first- and second-order interactions: (DP~ $O(nm^2), O(nm^3)$)

-similar theoretical complexities

Note about practical complexities: (DP) "Average Case" = "Worst Case" (SP) "Average Case" < "Worst Case"

DP / Shortest-paths

Efficient global optimization tools ③

- Good for 1-D optimization problems only ⊗
 - Can't deal with dependent scan-lines in stereo
 - Can't handle bubbles (N-D snakes) or object boundaries in volumetric data

Graph-Cuts can be seen as a "generalization" to N-D

Summary Part I

- Dynamic ProgrammingShortest path algorithm
- Examples
 - Snakes
 - Textures
 - Stereo

Part II Graph Cuts

Graph Cuts vs Shortest Path Augmenting Path Algorithm Given an energy how to create the graph to be cut. Multi Way Cuts Examples

Stereo example

Independent scan-lines (via DP)

Multi-scan line (via Graph Cuts)

Ground truth

Graph Cuts for Solving MRF's

segmentation, object extraction, stereo, motion, image restoration, pattern recognition, shape reconstruction, object matching/recognition, augmented reality, texture synthesis, ...

1D Graph cuts = *shortest paths*

Example:

find the shortest closed contour in a given domain of a graph

Shortest paths approach

Compute the *shortest path* $p \rightarrow p$ for a point p. Repeat for all points on the gray line. Then choose the optimal contour. Graph Cuts approach

Compute the *minimum cut* that separates red region from blue region

Graph cuts vs. shortest paths

• On 2D grids *graph cuts* and *shortest paths* give optimal 1D contours.

- Shortest paths still give optimal 1-D contours on N-D grids
- *Min-cuts* give optimal **hyper-surfaces** on N-D grids

Graph Cuts as hyper-surface in 3D

Object extraction [Boykov, Jolly, Funkalea 2001, 2004]

Graph Cuts Basics (simple 2D example)

Goal: divide the graph into two parts separating red and blue nodes

Red/blue nodes can be "identified" into two super nodes (terminals)

Graph Cuts Basics (simple 2D example)

Goal: divide the graph into two parts separating red and blue nodes

A graph with two terminals S and T

- Cut cost is a sum of severed edge weights
- Minimum cost *s-t* cut can be found in polynomial time

Minimum *s*-*t* cuts algorithms

Augmenting paths [Ford & Fulkerson, 1962]

Push-relabel [Goldberg-Tarjan, 1986]

"Augmenting Paths"

Find a path from S to T along non-saturated edges

 Increase flow along this path until some edge saturates

A graph with two terminals

"Augmenting Paths"

A graph with two terminals

- Find a path from S to T along non-saturated edges
- Increase flow along this path until some edge saturates
- Find next path...Increase flow...

"Augmenting Paths"

A graph with two terminals

 $\mathsf{MAX}\;\mathsf{FLOW}\;\Leftrightarrow\;\mathsf{MIN}\;\mathsf{CUT}$

- Find a path from S to T along non-saturated edges
- Increase flow along this path until some edge saturates

Iterate until ... all paths from S to T have at least one saturated edge Implementation notes (sequential version)

Boykov & Kolmogorov, EMMCVPR 2001 PAMI 2004

- empirical comparison of different versions of *augmenting paths* and *push-relabel* algorithms on grid-graphs typical in
 vision
- "tuned" version of augmenting paths is proposed (freely available implementation)
- graph cuts can be used for problems in vision in near real time
- empirical complexity is near linear with respect to image size

Implementation notes (parallel version)

Push-relabel algorithm can be implemented in parallel on all graph nodes [e.g. Goldberg 86]

Parallel *Push-Relabel* algorithm and typical in vision grids give a perfect combination for GPU (graphics card) hardware acceleration [work in progress...]

Examples of Graph-Cuts in vision

- Image Restoration (e.g. Greig at.al. 1989)
- Segmentation
 - Wu & Leahy 1993
 - Nested Cuts, Veksler 2000
- Multi-scan-line Stereo, Multi-camera stereo
 - Roy & Cox 1998, 1999
 - Ishikawa & Geiger 1998, 2003
 - Boykov, Veksler, Zabih 1998, 2001
 - Kolmogorov & Zabih 2002, 2004
- Object Matching/Recognition (Boykov & Huttenlocher 1999)
- N-D Object extraction (photo-video editing, medical imaging)
 - Boykov, Jolly, Funka-Lea 2000, 2001, 2004
 - Boykov & Kolmogorov 2003
 - Rother, Blake, Kolmogorov 2004
- Texture synthesis (Kwatra, Schodl, Essa, Bobick 2003)
- Shape reconstruction (Snow, Viola, Zabih 2000)
- Motion (e.g. Xiao, Shah 2004)

Graph-cuts video textures

(Kwatra, Schodl, Essa, Bobick 2003)

3D generalization of "image-quilting" (Efros & Freeman, 2001)

Graph Cut Textures

Figure 2: (Left) Schematic showing the overlapping region between two patches. (Right) Graph formulation of the seam finding problem, with the red line showing the minimum cost cut.

$$M(s,t,\mathbf{A},\mathbf{B}) = \|\mathbf{A}(s) - \mathbf{B}(s)\| + \|\mathbf{A}(t) - \mathbf{B}(t)\|$$

Graph-cuts video textures

(Kwatra, Schodl, Essa, Bobick 2003)

original short clip

synthetic infinite texture

Multi-view Stereo via Volumetric Graph-cuts

George Vogiatzis, Philip H. S. Torr Roberto Cipolla CVPR 2005

Volumetric Graph cuts

3D MRF for 3D modelling

Labelling cost:

 Constant bias towards being foreground

Compatibility cost:

 Pair of neighbour voxels prefers having opposite
 labels if photo-consistent

Face - Slice

Face - Slice with graph cut

- Ballooning' force
 - favouring bigger volumes
- L.D. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d images. *PAMI*, 15 (11):1131–1147, November 1993.

- Ballooning' force
 - favouring bigger volumes
- L.D. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d images. *PAMI*, 15 (11):1131–1147, November 1993.

Results, Model House

Results, Model House – Visual Hull

Results, Model House

Results, Stone carving

Results, Haniwa

3D Models

3D models

Middlebury evaluation (temple)

	Accuracy / Completeness		
	Full (312 images)	Ring (47 images)	SparseRing (16 images)
Hernandez [10]	0.36mm / 99.7%	0.52mm / 99.5%	0.75mm / 95.3%
Goesele [9]	0.42mm / 98.0%	0.61mm / 86.2%	0.87mm / 56.6%
Hornung [12]	0.58mm / 98.7%	_	_
Pons [20]	_	0.60mm / 99.5%	0.90mm / 95.4%
Furukawa [8]	0.65mm / 98.7%	0.58mm / 98.5%	0.82mm / 94.3%
Vogiatzis [29]	1.07mm / 90.7%	0.76mm / 96.2%	2.77mm / 79.4%
Present method	0.50mm / 98.4%	0.64mm / 99.2%	0.69mm / 96.9%

Advantages

Accurate

- sub-millimetre accuracy on sequence with ground truth
- Simple
 - Can work with about 15-30 images
- Fast
 - Approximately 45' of computation for these models
 - We believe we can bring this down to few minutes

Extensions

Boykov and co workers-flux

Pollefeys and co workers-constraining graph cuts via the occluding contours...

User Assist: Research Issues

- We are allowed to take the video and precompute all our favourite SFM primitives
 - Calibration
 - Point Tracks
 - Volumetric Stereo
- Questions
 - What are the best user edits for this?
 - What algorithms could be useful for the edits?

Graph Cuts for Image Segmentation

Part I: Boykov and Jolly ICCV 2001

Part II: How to set up graphs from MRF

MRF for Image Segmentation

Boykov et al. [ICCV 2001], Blake et al. [ECCV 2004]

Energy_{MRF} =
$$E(\mathbf{x}) = \sum_{i \in S} \left(\phi(\mathbf{D} | \mathbf{x}_i) + \sum_{j \in N_i} (\phi(\mathbf{D} | \mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j)) \right) + \text{const}$$

Unary likelihood Contrast Term Potts Model Prior

MAP solution $\mathbf{x}^* = \arg \min_{\mathbf{x}} E(\mathbf{x})$

Data (**D**)

Unary likelihood

Pair-wise Terms

MAP Solution

Grabcut demo

First place rectangle round

Object plus alpha mask segmented by new secret method.

Watch out they are coming!!...note alpha mask

Chop off Van Gogh's head without one click!!

Consider the case of two segments.

- $W(\mathbf{x}_i, p_j) \propto appearance component$ $W(\mathbf{x}_j, \mathbf{x}_k) \propto boundary component$

What really happens? Building the graph

 $E_{MRF}(a_1, a_2)$

What really happens? Building the graph

If we cut a link to source or sink this indicates label

What really happens? Building the graph

 $E_{MRF}(a_1, a_2) = 2a_1$

What really happens? Building the graph

 $E_{MRF}(a_1, a_2) = 2a_1 + 5\bar{a}_1$

What really happens? Building the graph

 $E_{MRF}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2$

What really happens? Building the graph

 $E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2$

What really happens? Building the graph

 $E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

What really happens? Building the graph

$$E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$

What really happens? Building the graph

 $E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

What really happens? Building the graph

 $E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

What really happens? Building the graph

 $E_{MRF}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 + constant \text{ term K}$ + Constant term K

$$a_1 = 1 \quad a_2 = 0$$

Cost of st-cut = 8 $E_{MRF}(1,0) = 8$

Posiform

 $E_{\mathsf{MRF}}(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 + constant \text{ term K}$

Posiform is a multilinear polynomials in binary variables with positive coefficients

Computing the st-mincut using max-flow

Find the maximum flow from the source node s to the sink node t subject to the edge capacity and flow balance constraints:

$$f_{ij} \le c_{ij} \quad \forall (i,j) \in E$$

$$\sum_{i \in N(x) \setminus \{s,t\}} (f_{xi} - f_{ix}) = f_{sx} - f_{xt} \quad \forall x \in V \setminus \{s,t\}$$

The Max-flow problem

Key Observation

Adding a constant to both the t-edges of a node is equivalent to adding a constant amount of flow and does not change the edges constituting the st-mincut. Efficiently Solving Dynamic Markov Random Fields using Graph Cuts (ICCV 2005)

Pushmeet Kohli Philip H.S. Torr

Recycling Computations

Our Contributions

- A fully dynamic algorithm for the st-mincut problem.
 - Exact
 - Minimize dynamic energy functions.
 - Running time proportional to the number of changes in the problem
- Efficient image segmentation in videos

- Given a solution of [min E_a] compute [min E_b]
 - Compute the st-mincut on G_b using the flows in G_a
- Some flows may violate new edge capacity constraints!
 - if new edge capacities are less than the edge flow
- Re-parameterize the problem to satisfy constraints

Partial Solution

- Boykov and Jolly, Interactive Image Segmentation [ICCV01]
 - limited to unary energy terms (t-edge capacities)

Our Contributions

- Arbitrary changes in the energy (graph)
- Re-cycle search trees
 - (substantial speedup observed)

Dynamic unary terms

$$\mathsf{Energy}_{\mathsf{MRF}} = \sum_{i \in S} \left(\phi(\mathbf{D} | \mathbf{x}_i) + \sum_{j \in N_i} \left(\phi(\mathbf{D} | \mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j) \right) \right)$$

- Corresponds to change in t-edge capacities
- Applications: Interactive Image Segmentation

Dynamic pair-wise terms

$$\mathsf{Energy}_{\mathsf{MRF}} = \sum_{i \in S} \left(\phi(\mathbf{D} | \mathbf{x}_i) + \sum_{j \in N_i} \left(\phi(\mathbf{D} | \mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j) \right) \right)$$

- Corresponds to change in n-edge capacities
- Applications: Efficient Image Segmentation in Videos

Computing the st-mincut from Max-flow algorithms

- The Max-flow Problem
 - Edge capacity and flow balance constraints
- Notation
 - Residual capacity (edge capacity – current flow)
 - Augmenting path
- Simple Augmenting Path based Algorithms
 - Repeatedly find augmenting paths and push flow.
 - Saturated edges constitute the st-mincut. [Ford-Fulkerson Theorem]

Reparametrization

Key Observation

Adding a constant to both the t-edges of a node does not change the edges constituting the st-mincut.

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$
$$E^*(a_1, a_2) = E(a_1, a_2) + \alpha(a_2 + \bar{a}_2)$$
$$= E(a_1, a_2) + \alpha \qquad [a_2 + \bar{a}_2 = 1]$$

Reparametrization

Key Observation

All it does is change the constant term.

$$E(a_{1},a_{2}) = 2a_{1} + 5\bar{a}_{1} + 9a_{2} + 4\bar{a}_{2} + 2a_{1}\bar{a}_{2} + \bar{a}_{1}a_{2}$$
$$E^{*}(a_{1},a_{2}) = E(a_{1},a_{2}) + \alpha(a_{2} + \bar{a}_{2})$$
$$= E(a_{1},a_{2}) + \alpha \qquad [a_{2} + \bar{a}_{2} = 1]$$

Reparametrization, second type

Other type of reparametrization

All reparametrizations of the graph are sums of these two types.

Both maintain the solution and add a constant α to the energy.

Reparameterisation

Reparametrization for shortest path 1

<u>Definition</u>. θ' is a reparametrization of θ ($\theta' \equiv \theta$) if they define the same energy:

 $E(\mathbf{x} | \theta') = E(\mathbf{x} | \theta)$ for any \mathbf{x}

Maxflow, BP and TRW perform reparameterisations

Reparametrization

Nice result (easy to prove)

All other reparametrizations can be viewed in terms of these two basic operations.

Proof in Hammer, and also in one of Vlad's recent papers.

Graph Re-parameterization

Graph Re-parameterization

• Capacity changes from 5 to 2

Capacity changes from 5 to 2

 edge capacity constraint violated!

Updated residual graph

G`

- Capacity changes from 5 to 2

 edge capacity constraint violated!
- Reduce flow to satisfy constraint

Updated residual graph

- Capacity changes from 5 to 2

 edge capacity constraint violated!
- Reduce flow to satisfy constraint
 causes flow imbalance!

Updated residual graph

 $\mathbf{\hat{z}}$

Capacity changes from 5 to 2

 edge capacity constraint violated!

- Reduce flow to satisfy constraint
 causes flow imbalance!
- Push excess flow to/from the terminals
- Create capacity by adding α = excess to both t-edges.

Updated residual graph

Updated residual graph

- Capacity changes from 5 to 2

 edge capacity constraint violated!
- Reduce flow to satisfy constraint
 causes flow imbalance!
- Push excess flow to the terminals
- Create capacity by adding α = excess to both t-edges.

Complexity analysis of MRF Update Operations

MRF	Graph Operation	Complexity
Operation		
modifying a unary term	Updating a t-edge capacity	O(1)
modifying a pair-wise term	Updating a n-edge capacity	O(1)
adding a latent variable	adding a node	O(1)
delete a latent variable	set the capacities of all edges of a node zero	O(k)*

*requires k edge update operations where k is degree of the node

Outline of the Talk

- Markov Random Fields
- Energy minimization using graph cuts
- Minimizing dynamic energy functions
- Experimental Results

Optimizing the algorithm

How to find augmenting paths?

- A trivial technique
 - Perform a breadth first search from the source to the sink.
 - Extremely computationally expensive operation
- Dual-tree maxflow algorithm [Boykov & Kolmogorov PAMI 2004]
 - Reuses search trees after each augmentation.
 - Empirically shown to be substantially faster.

Our Idea

- Reuse search trees from previous graph cut computation
- Saves us search tree creation tree time [O(m)]

Reusing Search Trees

c' = measure of change in the energy

- Algorithmic complexity:
 - Dynamic algorithm O(m + c')
 - Optimized dynamic algorithm O(c')
- Example:

- Duplicate image frames (No time is needed)

Outline of the Talk

- Markov Random Fields
- Energy minimization using graph cuts
- Minimizing dynamic energy functions
- Experimental Results

- Compared results with the best static algorithm.
- On typical video sequences a speed-up in the order of 4-5 times observed.
- Stress testing on videos with substantial jitter. (MRF changes considerably)

Interactive Image segmentation (update unary terms)

Image segmentation in videos (unary & pairwise terms)

Image resolution: 720x576

static: 190 msec dynamic : 140 msec dynamic (optimized): 60 msec

Dynamic Graph Cuts

Graph Cuts

Running time of the dynamic algorithm

MRF consisting of 2x10⁵ latent variables connected in a 4-neighborhood.

Conclusions

• An exact dynamic algorithm (always gives the optimal solution)

- Sub-modular energy functions which change dynamically can be solved rapidly.
- Substantial speed-up in problems involving minimal change.
- Running time roughly proportional to the number of changes in the energy terms.

Computer Vision is hard to perform fully automatically.

- Computer Vision is hard to perform fully automatically.
- Many things can be done with a little user input.

- Computer Vision is hard to perform fully automatically.
- Many things can be done with a little user input.
- But human time is a valuable resource.

- Computer Vision is hard to perform fully automatically.
- Many things can be done with a little user input.
- But human time is a valuable resource.
- So how can we make algorithms that give an optimal power assist to the human?

Power Assistance

Assumption

• We have off line time in which to do number crunching calculating useful features.

Resulting Research Areas

- What features do we computer offline?
- What should the online user input be?
- Can we develop good algorithms to combine offline information with user input?

First Example: SFM

3D model of scene

Problems

It is not perfect apart from in ICCV papers!

- Needs lots of views
- Occlusions
- Ambiguities
- Lighting
- Non rigidity

Wouldn't it be great if we could easily touch up our results?

User Assist: Research Issues

- We are allowed to take the video and precompute all our favourite SFM primitives
 - Calibration
 - Point Tracks
 - Volumetric Stereo
- Questions
 - What are the best user edits for this?
 - What algorithms could be useful for the edits?

The Dream

- Suppose the user could sketch on images in the video
- and we could use his sketches to fill out and make the 3D better:

The Dream

- Suppose the user could sketch on images in the video
- and we could use his sketches to fill out and make the 3D better:

Example

Video Trace: SIGGRAPH 07

Play Video!!!

ObjCut & PoseCut:

How to combine top down and bottom up information

How to provide power assisted segmentation

Combine theory of MRF's with Object Recognition

- Combination of Top Down and Bottom Up Cues..
- Classical Vision Problem.
- Combine theory of MRF's with Object Recognition

Objective

Segmentation of Object in Video

MRF for Interactive Image Segmentation, Boykov and Jolly [ICCV 2001]

$$\mathsf{Energy}_{\mathsf{MRF}} = E(\mathbf{x}) = \sum_{i \in S} \left(\phi(\mathbf{D} | \mathbf{x}_i) + \sum_{j \in N_i} (\phi(\mathbf{D} | \mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j)) \right) + \mathsf{const}$$

Unary likelihood Contrast Term Uniform Prior
(Potts Model)

Maximum-a-posteriori (MAP) solution $x^* = \arg \min_{x} E(x)$

However...

This energy formulation rarely provides realistic (target-like) results.

Segmentation

To distinguish cow and horse?

First segmentation problem

Aim

Given an image, to segment the object

Cow Image

Segmented Cow

Segmentation should (ideally) be

- shaped like the object e.g. cow-like
- obtained efficiently in an unsupervised manner
- able to handle self-occlusion

Challenges

Intra-Class Shape Variability

Intra-Class Appearance Variability

Self Occlusion

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother *et al.* SIGGRAPH 04)

Object Seed Pixels

Cow Image

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother *et al.* SIGGRAPH 04)

Object Seed Pixels

Background Seed Pixels

Cow Image

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother *et al.* SIGGRAPH 04)

Segmented Image

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother *et al.* SIGGRAPH 04)

Object Seed Pixels

Background Seed Pixels

Cow Image

Current methods require user intervention

- Object and background seed pixels (Boykov and Jolly, ICCV 01)
- Bounding Box of object (Rother *et al.* SIGGRAPH 04)

Segmented Image

Motivation Problem

- Manually intensive
- Segmentation is not guaranteed to be 'object-like'

Non Object-like Segmentation

Our Method

Combine object detection with segmentation

• Borenstein and Ullman, ECCV '02

• Leibe and Schiele, BMVC '03

Incorporate global shape priors in MRF

- Detection provides
 - Object Localization
 - Global shape priors
- Automatically segments the object
 - Note our method completely generic
 - Applicable to any object category model

MRF

Probability for a labelling consists of

- Likelihood
 - Unary potential based on colour of pixel
- Prior which favours same labels for neighbours (pairwise potentials)

Example

Likelihood Ratio (Colour)

Prior

Contrast-Dependent MRF

Probability of labelling in addition has

Contrast term which favours boundaries to lie on image edges

Example

Cow Image

Likelihood Ratio (Colour)

Background Seed Pixels Object Seed Pixels

Prior + Contrast

Integrating Shape-Prior in MRFs

MRF for segmentation

Integrating Shape-Prior in MRFs

Cow Image

Cow Image

200

250

200 250 50 100 150 200 250 300 350 Likelihood + Distance from Θ 50 100 150 260 360 350 Prior + Contrast

Detection

BMVC 2004

OXFORE Layered Pictorial Structures (LPS) Generative model Composition of parts + spatial layout Layer 2 Ţ Layer 1 **Spatial Layout** (Pairwise Configuration)

Parts in Layer 2 can occlude parts in Layer 1

Layered Pictorial Structures (LPS)

Layered Pictorial Structures (LPS)

Layered Pictorial Structures (LPS)

How to learn LPS

From video via motion segmentation see Kumar Torr and Zisserman ICCV 2005.

How to learn LPS

LPS for Detection

Learning

• Learnt automatically using a set of examples

Detection

- Matches LPS to image using Loopy Belief Propagation
- Localizes object parts

Pictorial Structures (PS)

Fischler and Eschlager. 1973

PS = 2D Parts + Configuration

Aim: Learn pictorial structures in an unsupervised manner

Parts + Configuration + *Relative depth*

Layered Pictorial Structures (LPS)

- Identify parts
- Learn configuration
- Learn relative depth of parts

Features

Outline: z₁ Chamfer distance Interior: z₂ Textons

Model joint distribution of z₁ z₂ as a 2D Gaussian.

Chamfer Match Score

Outline (z₁) : minimum chamfer distances over multiple outline exemplars

Image

Edge Image

Distance Transform

Texton Match Score

Texture (z_2) : MRF classifier

- (Varma and Zisserman, CVPR '03)
- Multiple texture exemplars **x** of class *t*

- Textons: 3 X 3 square neighbourhood
- VQ in texton space
- Descriptor: histogram of texton labelling
- χ^2 distance

2. Fitting the Model

Cascades of classifiers

• Efficient likelihood evaluation

Solving MRF

- LBP, use fast algorithm
- GBP if LBP doesn't converge
- Could use Semi Definite Programming (2003)
- Recent work second order cone programming method best CVPR 2006.

Efficient Detection of parts

- Cascade of classifiers
- Top level use chamfer and distance transform for efficient pre filtering
- At lower level use full texture model for verification, using efficient nearest neighbour speed ups.

Cascade of Classifiers-for each part

Fig. 1. Cascade of Classifiers. (a) A cascade of classifiers for a single object class where each classifier has a high detection and moderate false positive rate. (b) Classifiers in a tree structure; in a tree-based object recognition scheme each leaf corresponds to a single object class. When objects in the subtrees have similar appearance, classifiers can be used to quickly prune the search. A binary tree is shown here, but the branching factor can be larger than two.

Y. Amit, and D. Geman, 97?; S. Baker, S. Nayer 95

High Levels based on Outline

Low levels on Texture

- The top levels of the tree use outline to eliminate patches of the image.
- Efficiency: Using chamfer distance and pre computed distance map.
- Remaining candidates evaluated using full texture model.

Efficient Nearest Neighbour

• Goldstein, Platt and Burges (MSR Tech Report, 2003)

Conversion from fixed distance to rectangle search

• bitvectorⁱ_j(R_k) = 1 = 0 $R_k \in I_i$ in dimension j

- Nearest neighbour of **x**
- Find intervals in all dimensions
- 'AND' appropriate bitvectors
- Nearest neighbour search on pruned exemplars

Recently solve via Integer Programming

- SDP formulation (Torr 2001, AI stats)
- SOCP formulation (Kumar, Torr & Zisserman this conference)
- LBP (Huttenlocher, many)

Results

- Different samples *localize* different parts well.
- We cannot use only the MAP estimate of the LPS.

Best labelling found efficiently using a Single Graph Cut

Results

Using LPS Model for Cow

Image

Using LPS Model for Cow

In the absence of a clear boundary between object and background

Image

Results

Using LPS Model for Cow

Image

Do we really need accurate models?

Do we really need accurate models?

Segmentation boundary can be extracted from edges

Rough 3D Shape-prior enough for region disambiguation

Energy of the Pose-specific MRF

But what should be the value of **θ**?

The different terms of the MRF

Can segment multiple views simultaneously

Solve via gradient descent

- Comparable to level set methods
- Could use other approaches (e.g. Objcut)
- Need a graph cut per function evaluation

Formulating the Pose Inference Problem

 $\Theta_{opt} = \arg\min_{\Theta}(\min_{\mathbf{x}} \Psi_3(\mathbf{x}, \Theta))$

But...

... to compute the MAP of E(x) w.r.t the pose, it means that the unary terms will be changed at **EACH** iteration and the maxflow recomputed!

However...

 Kohli and Torr showed how dynamic graph cuts can be used to efficiently find MAP solutions for MRFs that change minimally from one time instant to the next: Dynamic Graph Cuts (ICCV05).

Dynamic Graph Cuts

Segmentation Comparison

Combine Recognition and Segmentation

Using all the information should help...

- E.g. segmentation result can be used to eliminate false positives.
- Face/Head and shoulders segmentation particularly useful for applications such as Skype or Windows Messenger.

ObjCut Face Segmentation

Fig. 3. Different terms of the shape-prior + MRF energy function. The figure shows the different terms of the energy function for a particular face detection and the corresponding image segmentation obtained.

Face Detector and ObjCut

Segmentation + Recognition

to prune false positives (see also recent work D Ramanan CVPR 07)

Fig. 4. The figure shows an image from the INRIA pedestrian data set. After running our algorithm, we obtain four face segmentations, one of which (the one bounded by a black square) is a false detection. The energy-per-pixel values obtained for the true detections were 74, 82 and 83 while that for the false detection was 87. As you can see the energy of false detection is significantly higher than that of the true detections, and can be used to detect and remove it.

Initialisation

Use off-the-shelf face detector to find location of face in an image

Initialisation

Place shape prior relative to face detection Define region over which to perform segmentation

Adjustment

Vary parameters of shape prior to find lowest segmentation energy

Other Applications of Dynamic Graph Cuts

Computing Max-marginals

Image (MSRC)	Segmentation	Max-Marginal (Fg)

Graph Cuts: 300 msec per MM (51.2 days)

Dynamic: 0.002 msec per MM (1.2 secs) **Graph Cuts**

Parameter Learning in CRFs

Maximum Likelihood Parameter Learning

- Kumar and Herbert
- NIPS 2004, EMMCVPR 2005

Shape Priors For Reconstruction

Shape Priors For Reconstruction

Multi Label Problems

So far we have considered generic cuts or 2 label problems

Now we consider multi label problems

s-t graph-cuts for multi-label problems

Multi-scan-line stereo

- Roy & Cox 1998, 1999
- Ishikawa & Geiger 1999 (occlusion handling)
- "Linear" interaction energy
 - Ishikawa & Geiger 1998
 - BVZ 1998
- Convex interaction energy
 - Ishikawa 2000, 2003

Multi-scan-line stereo with *s-t* graph cuts (Roy&Cox'98)

Scan-line stereo vs. Multi-scan-line stereo

Dynamic Programming (single scan line optimization)

s-t Graph Cuts (multi-scan-line optimization)

OXFORE *s*-*t* graph-cuts for multi-label energy minimization Ishikawa 1998, 2000, 2003 Modification of construction by Roy&Cox 1998 $E(L) = \sum_{p} -D_{p}(L_{p}) + \sum_{pq \in N} V(L_{p}, L_{q})$ $L_{p} \in \mathbb{R}^{1}$ Linear interactions "Convex" interactions V(dL) V(dL)

dL=Lp-Lq

dL=Lp-Lq

Extensions

Ishikawa work generalizes nicely by Schlesinger and Flach

We have an ICML case that deals with partial optimality non sub modular energies

On Partial Optimality in Multi-label MRFs

Pushmeet Kohli Alexander Shekhovtsov Carsten Rother Vladimir Kolmogorov Philip Torr PKOHLI@MICROSOFT.COM SHEKHOVT@CMP.FELK.CVUT.CZ CARROT@MICROSOFT.COM VNK@ADASTRAL.UCL.AC.UK PHILIPTORR@BROOKES.AC.UK

More details from Sasha who is here

Pixel interactions:

"convex" vs. "discontinuity-preserving"

Pixel interactions: BRC "convex" vs. "discontinuity-preserving"

truncated "linear" V

Graph cuts and Potts energy minimization

Binary Potts energy (Ising model)

s-t graph cuts (Greig at.al. 1989)

Multi-label Potts energy

Multi-way graph cuts (BVZ 1998,2001)

Graph cuts in computer vision:

Part I: *s-t* graph cuts

Part II: multi-way graph cuts

- applications
- general energy minimization tool

Multi-object Extraction

Obvious generalization of binary object extraction technique (Boykov, Jolly, Funkalea 2004)

stereo vision

depth map

original pair of "stereo" images

Stereo/Motion with slanted surfaces (Birchfield &Tomasi 1999)

Labels = parameterized surfaces

EM based: E step = compute surface boundaries M step = re-estimate surface parameters

Graph-cut textures (Kwatra, Schodl, Essa, Bobick 2003)

similar to "image-quilting" (Efros & Freeman, 2001)

Graph Cut Textures

Figure 2: (Left) Schematic showing the overlapping region between two patches. (Right) Graph formulation of the seam finding problem, with the red line showing the minimum cost cut.

$$M(s,t,\mathbf{A},\mathbf{B}) = \|\mathbf{A}(s) - \mathbf{B}(s)\| + \|\mathbf{A}(t) - \mathbf{B}(t)\|$$

Graph Cut Textures

Figure 3: (Left) Finding the best new cut (red) with an old seam (green) already present. (Right) Graph formulation with old seams present. Nodes s_1 to s_4 and their arcs to **B** encode the cost of the old seam.

Graph-cut textures (Kwatra, Schodl, Essa, Bobick 2003)

- Equivalent to Potts energy minimization
- NP-hard problem (3 or more labels)
 - two labels can be solved via *s*-*t* cuts (Greig at. al., 1989)

a-expansion approximation algorithm (BVZ 1998,2001)

- guaranteed approximation quality
 - within a factor of 2 from the global minima (Potts model)
- applies to a wide class of energies with robust interactions
 - Potts model (BVZ 1989)
 - "Metric" interactions (BVZ 2001)
 - "Submodular" interactions (KZ 2002,2004)

a-expansion move

Basic idea: break multi-way cut computation into a sequence of binary *s-t* cuts

Iteratively, each label competes with the other labels for space in the image

a-expansion moves

In each *a*-expansion a given label "a'' grabs space from other labels

For each move we choose expansion that gives the largest decrease in the energy: **binary optimization problem**

Optimal *a*-expansion move via *s*-*t* graph cuts

a-expansion algorithm

- 1. Start with any initial solution
- 2. For each label "a'' in any (e.g. random) order

Compute optimal a-expansion move (s-t graph cuts)
 Decline the move if there is no energy decrease

3. Stop when no expansion move would decrease energy

a-expansions for energies with *metric* interactions

$$V(a,a) = 0$$

$$V(a,b) \ge 0$$

$$V(a,b) \le V(a,c) + V(c,b)$$
Triangular
inequality

- *Example*: any truncated metric is also a metric
- => *Metric* case includes many **robust interactions**

a-expansions: examples of *metric* interactions

• *a*-expansions algorithm further generalizes to *submodular* pair-wise interactions

 $V(c,c) + V(a,b) \le V(a,c) + V(c,b)$

 follows from complete characterization of binary energies that can be minimized via *s-t* graph cuts (KZ 2002, 2004)

a-expansion algorithm

... can be compared to general discrete energy minimization algorithms

(simulated annealing, ICM,...)

a-expansion algorithm vs. standard **BROOKES** discrete energy minimization techniques

single "one-pixel" move (simulated annealing, ICM,...)

single *a*-expansion move

- Only one pixel can change its label at a time
- Finding an optimal move is computationally trivial

- Large number of pixels can change their labels simultaneously
- Finding an optimal move is computationally intensive O(2ⁿ) (*s*-*t* cuts)

a-expansion move vs."standard" moves

Potts energy minimization

a local minimum w.r.t. expansion moves

a local minimum w.r.t. "one-pixel" moves

a-expansions vs. simulated annealing

n**simalazed avorealatig**n, startlførh**ønns**,al 200,324.31% err

a-expansions (BVZ 89,01) 90 seconds, 5.8% err

a-expansion algorithm vs. B local-update algorithms (SA, ICM, ...)

	a-expansions		simulated annealing,
•	Finds <i>local</i> minimum of energy with respect to very strong <i>moves</i>	•	Finds <i>local</i> minimum of energy with respect to small "one-pixel" <i>moves</i>
•	In practice, results do not depend on initialization	•	Initialization is important
•	solution is within the factor of 2 from the global minima	•	solution could be arbitrarily far from the global minima
•	In practice, one cycle through all labels gives sufficiently good results	•	May not know when to stop. Practical complexity may be worse than exhaustive search
•	Applies to a restricted class of energies	•	Can be applied to anything

General low-level optimization method Screws strongly "competing" with Graph-Cuts

Belief Propagation (also discrete optimization)

Level-sets (variational/continuous optimization)

Geometry of s-t graph cuts on grids

Boykov & Kolmogorov 2003

- Minimum *s-t* cuts on an appropriately constructed grid-graphs approximate geodesics/minimum-surfaces in continuous Riemannian metric spaces
- Graph cuts (BFJ'01,04) can be seen as discrete analogues of geometric contour/surface models (Caselles at.al.'97, Yezzi at.al'97)

s-*t* graph cuts vs. level sets

[Osher&Sethian'88,]	Graph Cuts [Greig et. al.'89, Ishikawa et. al.'98, BVZ'98,]			
variational optimization method for	combinatorial optimization for			
fairly general continuous energies	a restricted class of energies [e.g. KZ'02			
finds a local minimum	finds a global minimum			
near given initial solution	for a given set of boundary conditions			
numerical stability has to be carefully addressed [Osher&Sethian'88]: <i>continuous formulation -> "finite differences"</i>	numerical stability is not an issue <i>discrete formulation ->min-cut algorithms</i>			
anisotropic metrics are harder	anisotropic Riemannian metrics			
to deal with (e.g. slower)	are as easy as isotropic ones			
Gradient descent method VS. Global minimization tool (restricted class of energies)				

Summary III (Graph Cuts)

- Graph Cuts vs Shortest Path
- Augmenting Path Algorithm
- Given an energy how to create the graph to be cut.
- Multi Way Cuts
- Dynamic Graph Cuts
- Examples

Comparison of graph cuts and belief propagation

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters, ICCV 2003. Marshall F. Tappen William T. Freeman

(a) Tsukuba Image

(b) Graph Cuts

(c) Synchronous BP

(d) Accelerated BP

Figure 3. Results produced by the three algorithms on the Tsukuba image. The parameters used to generate this field were s = 50, T = 4, P = 2. Again, Graph Cuts produces a much smoother solution. Belief Propagation does maintain some structures that are lost in the Graph Cuts solution, such as the camera and the face in the foreground.

Ground truth, graph cuts, and belief propagation disparity solution energies

	Energy of MRI	F Labelling Re		
			Synchronous	% Energy from Occluded
Image	Ground-Truth	Graph Cuts	Belief Prop	Matching Costs
Map	757	383	442	61%
Sawtooth	6591	1652	1713	79%
Tsukuba	1852	663	775	61%
Venus	5739	1442	1501	76%

Figure 2. Field Energies for the MRF labelled using ground-truth data compared to the energies for the fields labelled using Graph Cuts and Belief Propagation. Notice that the solutions returned by the algorithms consistently have a much lower energy than the labellings produced from the ground-truth, showing a mismatch between the MRF formulation and the ground-truth. The final column contains the percentage of each ground-truth solution's energy that comes from matching costs of occluded pixels.

Unifying View is the LP

Both TRW (a modified form of BP) and
PD (a modified form of a-expansion) optimize the following LP:

 $\sum x_i \partial_i + \sum x_{ij} \partial_{jj}$ Xi = to Oas' Xij - Oas'

Reduce, Reuse & Recycle Efficiently Solving Multi-Label MRFs

Karteek Alahari Pushmeet Kohli* Philip H. S. Torr

Oxford Brookes University

*Now at Microsoft Research, Cambridge

Roadmap

Energy Functions on MRFs

Solving MRFs

- Exact Methods
- Approximate Methods
- Efficient Energy Minimization
 - Recycling
 - Reducing
 - Reusing
- Results

Roadmap

Energy Functions on MRFs

Solving MRFs

- Exact Methods
- Approximate Methods
- Efficient Energy Minimization
 - Recycling
 - Reducing
 - Reusing
- Results

Energy Functions on MRFs

MAP Inference

Courtesy: Pushmeet Kohli

Energy Functions on MRFs MAP Inference Energy Minimization

Energy Functions on MRFs

Pairwise Energy Functions

$$E(x) = \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j)$$

Unary Pairwise

Energy Functions on MRFs

Pairwise Energy Functions

$$E(x) = \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j)$$

Unary

Pairwise

Roadmap

Energy Functions on MRFs

Solving MRFs

- Exact Methods
- Approximate Methods
- Efficient Energy Minimization
 - Recycling
 - Reducing
 - Reusing
- Results

Solving MRFs

- Minimizing a general MRF energy -- NP-hard
- Exact solutions exist for certain sub-classes
 - Graphs with no loops [Felzenszwalb & Huttenlocher '04]
 - Submodular energy functions [Ishikawa '03, Kolmogorov & Zabih '04, Schlesinger $f(a, b) + f(a + 1, b + 1) \leq f(a, b + 1) + f(a + 1, b), \quad \forall a, b \in \mathcal{L}$

What about the rest?

For instance, Potts model $f(x_i, x_j) = \begin{cases} 0 & \text{if } x_i = x_j, \\ \gamma & \text{otherwise,} \end{cases}$

is not submodular

Approximate Methods

Move making algorithms [Boykov et al. '01]

- Expansion
- Swap
- Message passing algorithms
 - Belief propagation (BP) [Pearl '98]
 - Tree reweighted message passing (TRW) [Wainwright et al. '05, Kolmogorov '06]
 - Dual decomposition [Komodakis et al. '07]

Roadmap

Energy Functions on MRFs

Solving MRFs

- Exact Methods
- Approximate Methods
- Efficient Energy Minimization
 - Recycling
 - Reducing
 - Reusing

Efficient Energy Minimization

- Take considerable time for large problemsRunning time depends on
 - Initialization used for primal and dual variables
 - The number of variables in the problem
- Efficient methods do exist
 - Limited to submodular dynamic MRFs [Kohli & Torr '05, Juan & Boykov '06]
 - Fast-PD [Komodakis et al. '07]

Efficient Energy Minimization

Our primary goals are

- To generate a good initialization for the current problem instance (Recycle & Reuse)
- To reduce the number of variables involved in the energy function (Reduce)

Move Making Algorithms

Courtesy: Pushmeet Kohli

Move Making Algorithms

Example: α -expansion

Status: ExipalizeSkijiseTdee

Courtesy: Pushmeet Kohli

Example: α -expansion

- Variables take label α or retain current label $\bar{\alpha}$
- In one iteration, moves w.r.t. each label $\alpha \in \mathcal{L}$ are made
- Binary energy function for an lpha move is

$$E^{\alpha}(x^{\alpha}) = \sum_{i \in \mathcal{V}} \phi_i^{\alpha}(x_i^{\alpha}) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \phi_{ij}^{\alpha}(x_i^{\alpha}, x_j^{\alpha}),$$

where $x_i^{\alpha}, x_j^{\alpha} \in \{0, 1\},\$

$$\phi_i^{\alpha}(x_i^{\alpha}) = \begin{cases} \phi_i(x_i = \alpha) & \text{if } x_i^{\alpha} = 0, \\ \phi_i(x_i = \bar{\alpha}) & \text{if } x_i^{\alpha} = 1, \end{cases}$$

$$\phi_{ij}^{\alpha}(x_i^{\alpha}, x_j^{\alpha}) = \begin{cases} 0 & \text{if } x_i^{\alpha} = 0, x_j^{\alpha} = 0, \\ \gamma(1 - \delta(x_i - x_j)) & \text{if } x_i^{\alpha} = 1, x_j^{\alpha} = 1, \\ \gamma & \text{otherwise.} \end{cases}$$

Example: α -expansion

- $E^{\alpha}(x^{\alpha})$ is submodular if E(x) is metric
- Can be solved by the st-mincut/maxflow algorithm
- Primal solution -- labels assigned to x_i^{α}
- Dual solution -- feasible flow solution of the maxflow problem
- How to recycle results
 - Single MRF
 - Dynamic MRF

α -expansion: Single MRF

α -expansion: Single MRF

Object Segmentation

[Shotton et al. '06]

Total times

Standard: 1.88s

1 Graph: 1.66s

Dynamic: 0.64s

Stereo (Tsukuba)

Total times Standard 4.69s 1 Graph: 4.29s Dynamic: 1.39s

α -expansion: Dynamic MRF

α -expansion: Dynamic MRF

Multi-label Video Segmentation

Roadmap

Energy Functions on MRFs

Solving MRFs

- Exact Methods
- Approximate Methods

Efficient Energy Minimization

- Recycling
- Reducing
- Reusing
- Results

Reducing Energy Functions

Reducing Energy Functions

Solved Problem : Examples

Partially Optimal Algorithm

- Construction of *k* auxiliary problems
- The energy corresponding to an auxiliary problem \mathcal{P}_m

$$E^{m}(\mathbf{x}^{m}) = \sum_{i \in \mathcal{V}} \phi_{i}^{m}(x_{i}^{m}) + \sum_{(i,j) \in \mathcal{E}} \phi_{ij}^{m}(x_{i}^{m}, x_{j}^{m}),$$

where $x_i^m, x_j^m \in \{0, 1\}$.

$$\phi_i^m(x_i^m) = \begin{cases} \phi_i(x_i = l_m) & \text{if } x_i^m = 0, \\ \phi_i(x_i = l_{\min}) & \text{if } x_i^m = 1, \end{cases}$$

where $l_{\min} = \arg \min_{l \in \mathcal{L} - \{l_m\}} \phi_i(x_i = l)$

$$\phi_{ij}^{m}(x_{i}^{m}, x_{j}^{m}) = \begin{cases} 0 & \text{if } x_{i}^{m} = 0, x_{j}^{m} = 0, \\ 0 & \text{if } x_{i}^{m} = 1, x_{j}^{m} = 1, \\ \gamma & \text{otherwise.} \end{cases}$$

Kovtun, DAGM'03

Partially Optimal Algorithm

- $E^m(\mathbf{x}^m)$ defines a submodular energy function
- The partially optimal solution of $E(\mathbf{x})$ w.r.t. $l_m \in \mathcal{L}$ is extracted as:

$$x_i = \begin{cases} l_m & \text{if } x_i^m = 0, \\ \epsilon & \text{otherwise.} \end{cases}$$

- Repeat this for all labels
- For further efficiency: '*Fix*' the partially optimal variables (Project)

Reducing Energy Functions

Reducing : Results

Reducing : Results

TRW-S

Object Segmentation Problem (Labels: 5)

Reducing : Results

BP

Object Segmentation Problem (Labels: 7)

Performance of Par. Opt.

Effect of increase in '*difficulty*'

Reducing

Reducing

Reusing Flow from PO

Key Observation

- Sub-problems of **PO** and **Expansion** have same form
- Can be made similar by choosing particular starting configurations for expansions (Reuse flow)
- Example: Potts (again) **Expansion**

PO auxiliary problem

 $\phi_{i}^{\alpha}(x_{i}^{\alpha}) = \begin{cases} \phi_{i}(\alpha) & \text{if } x_{i}^{\alpha} = 0, \\ \phi_{i}(x_{i}) & \text{if } x_{i}^{\alpha} = 1, \end{cases} \qquad \phi_{i}^{m}(x_{i}^{m}) = \begin{cases} \phi_{i}(x_{i} = l_{m}) & \text{if } x_{i}^{m} = 0, \\ \phi_{i}(x_{i} = l_{min}) & \text{if } x_{i}^{m} = 1, \end{cases} \\ l_{\min} = \arg\min_{l \in \mathcal{L} - \{l_{m}\}} \phi_{i}(x_{i} = l) \end{cases} \\ \phi_{ij}^{\alpha}(x_{i}^{\alpha}, x_{j}^{\alpha}) = \begin{cases} 0 & \text{if } x_{i}^{\alpha} = 0, x_{j}^{\alpha} = 0, \\ \gamma \delta(x_{i} - x_{j}) & \text{if } x_{i}^{\alpha} = 1, x_{j}^{\alpha} = 1, \end{cases} \\ \gamma & \text{otherwise,} \end{cases} \qquad \phi_{ij}^{m}(x_{i}^{m}, x_{j}^{m}) = \begin{cases} 0 & \text{if } x_{i}^{m} = 0, x_{j}^{m} = 0, \\ 0 & \text{if } x_{i}^{m} = 1, x_{j}^{m} = 1, \\ \gamma & \text{otherwise.} \end{cases}$

Reusing Flow from PO

- Key Observation
 - Sub-problems of **PO** and **Expansion** have same form
 - Can be made similar by choosing particular starting configurations for expansions (Reuse flow)
 - Example: Potts (again)

Reducing & Reusing : Results

	Time (in seconds)						
	α -exp	Fast-PD	opt α -exp	BP	opt BP	TRW-S	opt TRW-S
Colour-based Segmentation:							
Cow (3)	2.53	1.31	0.21	95.93	0.32	98.36	0.33
Cow (4)	3.75	1.72	0.38	108.32	0.42	111.69	0.43
Garden (4)	0.28	0.14	0.04	5.59	0.17	5.89	0.21
Stereo:							
Tsukuba (16)	5.74	1.47	0.84	38.19	4.47	41.74	4.67
Venus (20)	11.87	3.07	3.03	67.04	14.97	71.46	16.02
Cones (60)	42.23	9.48	4.36	173.35	29.41	182.66	30.70
Teddy (60)	44.25	9.56	8.27	172.30	60.35	182.50	63.77
Texture-based Segmentation:							
Plane (4)	0.39	0.35	0.15	9.41	0.29	9.89	0.30
Bikes (5)	0.82	0.54	0.22	10.69	0.64	11.19	0.70
Road (5)	0.91	0.51	0.18	10.67	0.60	11.26	0.62
Building (7)	1.32	0.89	0.38	12.70	2.57	13.52	2.66
Car (8)	0.99	0.53	0.11	13.68	0.23	14.42	0.24

P³ & Beyond Solving Energies with Higher Order Cliques

Pushmeet Kohli

Pawan Kumar **P**hilip H. S. Torr

Oxford Brookes University

Talk Overview

- Higher Order Energy Functions
- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- Experiments

Talk Overview
Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- Experiments

Pairwise Energy Functions

Pairwise Energy Functions

Energy Functions

Pairwise Energy Functions

Pairwise Energy Functions

More expressive than pairwise

FOE: Field of Experts (Roth & Black CVPR05)

Unary

Pairwise

Higher order

MRF for Image Denoising

Original

Pairwise MRF Higher order MRF

Images Courtesy: Lan et al. ECCV06

- Computationally expensive to minimize!
- **Exponential Complexity O(L^N)**
 - L = Number of Labels
 - N = Size of Clique

Efficient BP in Higher Order MRFs

ECCV06 (Lan, Roth, Huttenlocher, Black)

- 2x2 cliques learned using FOE model
- Approximation methods to make BP feasible
- Search a restricted state space
- 16 minutes per iteration

Our Method

- Can handle cliques of thousand of variables
- Extremely Efficient (works in seconds)

Talk Overview Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- Experiments

Optimization Algorithms

General Energy Functions

- NP-hard to minimize
- Algorithms for Approximate Minimization

Easy energy functions

- Global minima in polynomial time
- Tree topology
- **Submodular** functions

st-mincut

Submodular functions

All projections on two variables are submodular.

Any function $f: \{0,1\}^2 \rightarrow \mathbb{R}$ is submodular if: $f(0,0) + f(1,1) \leq f(0,1) + f(1,0)$

In certain cases minimization equivalent to a stmincut problem:

Approximate Energy Functions

Message Passing Algorithms

Belief Propagation (BP)

Tree Reweighted (TRW)

 α -Expansion

 $\alpha\beta$ -Swap

Talk Overview Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- Experiments

Move Making Algorithms

Move Making Algorithms

Move Making Algorithms Moves using graph cuts

Boykov, Veksler, Zabih] PAMI 2001

Algorithm

- Encode move by vector t
- Transformation function $T(\mathbf{x}, \mathbf{t}) \rightarrow \mathbf{x}$
- Move Energy

 $E_m(\mathbf{t}) = E(T(\mathbf{x}, \mathbf{t}))$ Submodular

• Optimal move t*

$$\mathbf{t}^* = \arg\min_{\mathbf{t}} E(T(\mathbf{x}, \mathbf{t}))$$

Expansion Move Characteristics

- Move
 - Variables take label α or retain current label $T_{\alpha}(x_i, t_i) = \begin{cases} x_i & \text{if } t_i = 0 \\ \alpha & \text{if } t_i = 1 \end{cases}$

Algorithm

• Make a move for all α in \mathcal{L}

Expansion Move

Status: EnipalizeSkijjiseTdee

Expansion Move Characteristics

- Neighbourhood Size
 - 2^N where N is the number of variables
- Guarantee
 - Move energy is submodular for all metric energy functions. [Boykov, Veksler, Zabih] PAMI 2001

$$\psi_{ij}(a,b) = 0 \iff a = b$$

$$\psi_{ij}(a,b) = \psi_{ij}(b,a) \ge 0$$

$$\psi_{ij}(a,d) \le \psi_{ij}(a,b) + \psi_{ij}(b,d)$$

Swap Move Characteristics

- Move
 - Variables labeled α , β can swap their labels $T_{\alpha\beta}(x_i, t_i) = \begin{cases} \alpha & \text{if } x_i = \alpha \text{ or } \beta \text{ and } t_i = 0 \\ \beta & \text{if } x_i = \alpha \text{ or } \beta \text{ and } t_i = 1 \end{cases}$

Algorithm

• Make a move for all α , β in \mathcal{L}

Swap Move

Swap Sky, House

Swap Move Characteristics

- Neighbourhood Size
 - 2^N where N is the number of variables
- Guarantee
 - Move energy is submodular for all semi-metric energy functions. [Boykov, Veksler, Zabih] PAMI 2001

$$\psi_{ij}(a,b) = 0 \iff a = b$$

$$\psi_{ij}(a,b) = \psi_{ij}(b,a) \ge 0$$

Talk Overview Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- Experiments

Moves for Higher Order Cliques Form of the Higher Order Potentials

 $\psi_c(\mathbf{x}_c) = f_c(\mathcal{Q}_c(\mathbf{x}_c))$

Sum Form

$$\mathcal{Q}_c(\mathbf{x}_c) = \sum_{i,j\in c} \phi_c(x_i, x_j)$$

Max Form

$$\mathcal{Q}_c(\mathbf{x}_c) = \max_{i,j\in c} \phi_c(x_i, x_j)$$

Theoretical Results: Swap

Move energy is always submodular if

Theoretical Results: Expansion

Talk Overview Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- P^N Potts Model
- Experiments

P^N Potts Model

$$\psi_c(\mathbf{x}_c) = \begin{cases} \gamma_k & \text{if} \quad x_i = l_k, \forall i \in c \\ \gamma_{\max} & \text{otherwise.} \end{cases}$$

$$\gamma_{\max} > \gamma_k$$

Generalization of the Potts Model:

$$\phi_c(x_i, x_j) = \begin{cases} \gamma_k & \text{if} \quad x_i = x_j = l_k \\ \gamma_{\max} & \text{otherwise.} \end{cases}$$
$$\gamma_k = 0$$

Solving the **P**^N Potts Model Computing the optimal swap move $\psi_c(T_{\alpha\beta}(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma_\alpha & \text{if } t_i = 0, \forall i \in c \\ \gamma_\beta & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise.} \end{cases}$ Source w_d M $\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma_{\beta}$ w_{d} w_d $w_e = \gamma_{\alpha} + \kappa$ $w_d = \gamma_\beta + \kappa$ w_e w_e w_e $t_i = 0 \iff v_i \in \text{Source}$ $t_j = 1 \iff v_j \in \text{Sink}$ M. w_e Sink

Solving the P^N Potts Model Computing the optimal swap move $\psi_c(T_{\alpha\beta}(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma_\alpha & \text{if } t_i = 0, \forall i \in c \\ \gamma_\beta & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise.} \end{cases}$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma_{\beta}$$
$$w_e = \gamma_{\alpha} + \kappa$$
$$w_d = \gamma_{\beta} + \kappa$$

Case 1: all $t_i = 0$ ($x_i = \alpha$) Cost: $\gamma_{\alpha} + \kappa$

Solving the P^N Potts Model Computing the optimal swap move $\psi_c(T_{\alpha\beta}(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma_{\alpha} & \text{if } t_i = 0, \forall i \in c \\ \gamma_{\beta} & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise.} \end{cases}$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma_{\beta}$$
$$w_e = \gamma_{\alpha} + \kappa$$
$$w_d = \gamma_{\beta} + \kappa$$

Case 2: all $t_i = 1$ ($x_i = \beta$) Cost: $\gamma_{\beta} + \kappa$

Solving the P^N Potts Model Computing the optimal swap move $\psi_c(T_{\alpha\beta}(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma_{\alpha} & \text{if } t_i = 0, \forall i \in c \\ \gamma_{\beta} & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise.} \end{cases}$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma_{\beta}$$
$$w_e = \gamma_{\alpha} + \kappa$$
$$w_d = \gamma_{\beta} + \kappa$$

Case 3:
$$t_i = 0,1$$
 ($x_i = \alpha, \beta$)
Cost: $\gamma_{\max} + \kappa$

Solving the **P**^N Potts Model Computing the optimal expansion move

$$\psi_c(T_\alpha(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma & \text{if } t_i = 0, \forall i \in c \\ \gamma_\alpha & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise,} \end{cases}$$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma$$
$$w_d = \gamma_{\alpha} + \kappa$$
$$w_e = \gamma + \kappa$$

Solving the **P**^N Potts Model Computing the optimal expansion move

$$\psi_c(T_\alpha(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma & \text{if } t_i = 0, \forall i \in c \\ \gamma_\alpha & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise,} \end{cases}$$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma$$
$$w_d = \gamma_{\alpha} + \kappa$$
$$w_e = \gamma + \kappa$$

Case 1: all $t_i = 0$ ($x_i = x_i$) Cost: $\gamma + \kappa$

Solving the **P**^N Potts Model Computing the optimal expansion move

$$\psi_c(T_\alpha(\mathbf{x}_c, \mathbf{t}_c)) = \begin{cases} \gamma & \text{if } t_i = 0, \forall i \in c \\ \gamma_\alpha & \text{if } t_i = 1, \forall i \in c \\ \gamma_{\max} & \text{otherwise,} \end{cases}$$

$$\kappa = \gamma_{\max} - \gamma_{\alpha} - \gamma$$
$$w_d = \gamma_{\alpha} + \kappa$$
$$w_e = \gamma + \kappa$$

Case 2: all $t_i = 1$ ($x_i = \alpha$) Cost: $\gamma_{\alpha} + \kappa$

Additivity:

• We can add any number of these together Source Source w_d w_d M_s M_s +UNARIES w_d w_d / w_d w_d w_d w_d V_n V_n kc. V₁ **V**₂ V₂ w_e w_e w_e w_e w_e w_e M_t M, w_e w_e **Sink Sink**

Talk Overview Higher Order Energy Functions

- Optimization Algorithms
- Move making Algorithms
- Optimal moves for Higher Order Energies
- PN Potts Model
- **Experiments**

 $E(\mathbf{x}) = \sum_{i} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j) + \sum_{c \in \mathcal{C}} \psi_c(\mathbf{x}_c)$

Unary (Colour)

Pairwise I (Smoothness)

Higher Order (Texture)

Original Image

Colour Histograms

Unary Cost: Tree

Edge Sensitive Smoothness Cost

MAP Solution

Higher Order Cost: Tree

$$E(\mathbf{x}) = \sum_{i} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j) + \sum_{c \in \mathcal{C}} \psi_c(\mathbf{x}_c)$$

Unary (Colour)

Pairwise (Smoothness)

Higher Order (Texture)

Unary Cost: Tree

Higher Order Cost: Tree

$$E(\mathbf{x}) = \sum_{i} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j) + \sum_{c \in \mathcal{C}} \psi_c(\mathbf{x}_c)$$

Unary (Colour)

Pairwise (Smoothness)

Higher Order (Texture)

Original

Pairwise

Higher order

Experimental Results

Original


```
Swap (3.2 sec)
```


Swap (4.2 sec)

Ground Truth

Expansion (2.5 sec)

Expansion (3.0 sec)

Experimental Results

Original

Swap (4.7 sec)

Swap (5.0 sec)

Ground Truth

Expansion (3.7sec)

Expansion (4.4 sec)

Conclusions & Future Work

- Efficient minimization of certain higher order energies
- Can handle very large cliques
- Useful for many Computer Vision problems
- Explore other interesting family of potential functions

TextonBoost : Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation

J. Shotton^{*}, J. Winn[†], C. Rother[†], and A. Criminisi[†]

* University of Cambridge* Microsoft Research Ltd, Cambridge, UK

Introduction

- Simultaneous recognition and segmentation
 - Explain every pixel (dense features)
 - Appearance + shape + context
 - Class generalities + image specifics

Structure of Presentation

The MSRC 21-Class Object Recognition Database

New 'Shape Filter' Features

Conditional Random Field (CRF) Model

Image Databases

- 591 hand-labelled images (45% train, 10% validation, 45% test)
- Corel (7-class) and Sowerby (7-class) [He *et al.* CVPR 04]

Conditional Random Field Model

Results on 21-Class Database

Object classes	Building	Grass	Tree	Cow	Sheep	Sky	Aeroplane	Water	Face	Car
Bike	Flower	Sign	Bird	Book	Chair	Road	Cat	Dog	Body	Boat

Joint Boosting for Feature Selection

- Boosted classifier provides *bulk* segmentation/recognition only
- Edge accurate segmentation will be provided by CRF model

test image

inferred segmentation colour = most likely label **confidence** white = low confidence black = high confidence

Object classes	Building	Grass	Tree	Cow	Sheep	Sky	Aeroplane	Water	Face	Car
Bike	Flower	Sign	Bird	Book	Chair	Road			Body	Boat

Using Joint Boost: [Torralba et al. CVPR 2004]

Our Work, CVPR 2008

Idea to use super pixels to help the segmentation process...

Minimizing Higher Order Energy Functions using Graph Cuts

Pushmeet Kohli

Joint work with:

Lubor Ladicky Pawan Kumar Philip Torr

IPAM, February 25th, 2008

Variance-sensitive consistency potential

Labels Correspond to different objects

Thanks

Questions?

Conclusion

- Combinatorial Optimization is an exciting field with many applications.
- New Developments all the time (e.g. Tree Reweighted message passing)
- Deterministic methods taking the lead over stochastic for discrete labels.
- Challenge to extend success to continuous cases.