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Markov Random Fields 

Image Data Nodes (y) 

Hidden Scene Nodes (x) 

Sensor model 

Prior model 

xi 

Neighbourhood Ni 

Pair wise Markov Random Field: 
Model commonly used to represent images 



Slide Stealing!!!! 

 Many many thanks to Yuri Boykov for 
allowing me to use his slides 



“Normal” MRF 

 This is a pairwise MRF 

 First order according to Besag 

 Second order pseudo Boolean function 

 Higher order cliques??? 



Part I Shortest Path: 

Dynamic Programming 

Applications 



Shortest paths on graphs (examples) 

 Object extraction (Segmentation) 
•  live-wire      [Falcao, Udupa, Samarasekera, Sharma 1998] 
•  intelligent scissors         [Mortensen, Barrett 1998] 

 Scan line stereo (& Optic Flow)     
•  Ohta & Kanade, 1985 
•  Cox, Hingorani, Rao, 1996  

 Texture Synthesis 
•  Efros & Freeman, 2001 



Dynamic Programming  
(examples) 

 Snakes 
• Amini, Weymouth, Jain, 1990 

 Scan-line stereo  
•  e.g. Ohta&Kanade’85, Cox at.al.’96 

 Object Matching / Registrations            
•  Pictorial structures [Felzenszwalb & Huttenlocher, 2000] 



Discrete Snakes 

First-order interactions 

Second-order interactions 

control points 

Energy E  is minimized via Dynamic Programming 

[Amini, Weymouth, Jain, 1990] 



Dynamic Programming (DP) 

Complexity:              ,  Worst case = Best Case 

In this talk we mainly concentrate on first-order interactions 

states 
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Note: Similar to Viterbi Algorithm 

 Viterbi, developed in speech to solve HMM’s 



Higher Order Interaction 

 Second order can be done by considering 
trellises where states corresponding to the joint 
labelling of two points. 

 Problem m2 labels and complexity in square of 
labels. 

 Similar idea for higher order interactions… 



Left image Right image 

Example: 

DP in vision: 
Scan-line stereo 

• Baker & Binford 1981 
• Ohta & Kanade, 1985 
• Geiger at.al. 1992 

• Belhumeur & Mumford 1992 
• Cox at.al. 1996 
• Scharstein & Szelisky 2001 

color consistency regularization Disparities of pixels 
in the scan line 

p p+ d p 



DP in vision: 
Object matching / registration 

Pictorial structures [Felzenszwalb & Huttenlocher, 2000] 

FH’00 beat O(nm^2) complexity of DP for a class of first-order energies 

Tree-based 
object  
model 

DP can be applied to trees! 



Hierarchical Part-Based Human Body 
Pose Estimation 

BMVC 2005 

* Ramanan Navaratnam 

* Arasanathan Thayananthan 

† Prof. Phil Torr  

* Prof. Roberto Cipolla 
* University Of Cambridge † Oxford Brookes University 



Hierarchical Parts 



Template Search 



Pose Estimation in a Single Frame 



Pose Estimation in a Single Frame 



 DP can be “implemented” via  
Shortest Path algorithm for graphs 

DP  =>  graph algorithms 



Shortest Paths on weighted graphs  

A 

B 

Dijkstra algorithm 

- processed nodes (distance to A is known) 
- active nodes (front) 
- active node with the smallest distance value 



Shortest paths on graphs  
(examples) 

 Texture Synthesis 
•  Image quilting  [Efros & Freeman, 2001] 

 Object extraction 
•  live-wire      [Falcao, Udupa, Samarasekera, Sharma 1998] 
•  intelligent scissors         [Mortensen, Barrett 1998] 

 Scan line stereo            
•  Ohta & Kanade, 1985 
•  Cox, Hingorani, Rao, 1996  



Shortest paths:  
Texture synthesis 

“Image quilting”  
Efros & Freeman, 2001 



Shortest paths:  
Texture synthesis 

“Image quilting”  
Efros & Freeman, 2001 



Graph edges are “cheap” in places with high intensity gradients  

Example: 

Shortest paths:  
object extraction 

• live-wire      [Falcao, Udupa, Samarasekera, Sharma 1998] 
• intelligent scissors         [Mortensen, Barrett 1998] 

1 

2 
3 

4 



Matching space 
(one scanline pair) 

  compare every pixel in the left 
scanline with every pixel in right 
scanline (subject to r≤l) 
  use a similarity metric, Mn(l, r), for 

comparisons 
  e.g. sum of squared differences 

(SSD) over 3x3 windows centred 
on the pixels in question 

  normalise s.t. 0 ≤ Mn ≤ 1 

  High similarity ⇒ low cost 
  (light points) 

  Low similarity ⇒ high cost 
  (dark points) 



State of the art: 
‘Three-move’ graph 
  Path planning on graph 

  Three edges into each node (l, r): 
  Matched from (l-1, r-1) 

  weight Mn(l, r) 
  Left Occlusion from (l, r-1) 

  weight β   (‘occlusion cost’) 

  Right Occlusion from (l-1, r) 
  weight β   (‘occlusion cost’) 

Three-move model 



Minimum cost path: 
Dynamic programming step 
  Build up minimum cost graph in ordered, 

greedy fashion from bottom left to top right 
  Maintain backward links table 



Minimum cost path 

  Following backward 
links gives minimum 
cost path through graph 

  Over all scanlines these 
paths form a depth map 

  Create synthetic new 
view (Criminsi, Torr 
ICCV 2003) 

Disparity 
(depth) map 

Synthetic 
new view 



    Snakes (via DP)                      Live wire / Int. scissors 

           Scan-line stereo                          Scan-line stereo  
                 (via DP)                              (via Shortest paths) 

DP  ~   Shortest Paths 

•  DP and Shortest paths are comparable optimization tools 

- 1D structures only 

- first- and second-order interactions:  (DP~                           ) 

- similar theoretical complexities 

     Note about practical complexities: 
(DP)    “Average Case”   =  “Worst Case” 
(SP)    “Average Case”    <  “Worst Case” 



DP / Shortest-paths  

 Efficient global optimization tools   
 Good for 1-D optimization problems only  

• Can’t deal with dependent scan-lines in stereo 
• Can’t handle bubbles (N-D snakes) or              

object boundaries in volumetric data 

•  Graph-Cuts can be seen as a “generalization” to N-D 



Summary Part I 

 Dynamic Programming 
 Shortest path algorithm 
 Examples 

•  Snakes 
• Textures 
•  Stereo 



Part II Graph Cuts 

Graph Cuts vs Shortest Path 
Augmenting Path Algorithm 

Given an energy how to create the graph to be cut. 
Multi Way Cuts 

Examples 



Stereo example 

Independent 
scan-lines 
(via DP) 

Multi-scan line 
(via Graph Cuts) Ground truth 



Graph Cuts for Solving MRF’s 

  segmentation, object extraction, stereo, motion, image 
restoration, pattern recognition, shape reconstruction, 
object matching/recognition, augmented reality, 
texture synthesis, … 



Shortest paths 
approach 

1D Graph cuts   =   shortest paths 

Example:  
find the shortest  

closed contour in a given 
domain of a graph 

Compute the shortest path  
p ->p  for a point p.  

p 

Graph Cuts 
approach 

Compute the 
minimum cut  that 

separates red region 
from blue region 

Repeat for all points on the 
gray line. Then choose the 

optimal contour. 



Graph cuts   vs.   shortest paths 

  On 2D grids graph cuts and shortest paths give optimal 1D contours.  

A Cut  separates regions  

A 

B 

A Path  connects points 

  Shortest paths still give optimal 1-D contours on N-D grids 

  Min-cuts give optimal hyper-surfaces on N-D grids 



Graph Cuts as 
hyper-surface in 3D 

Object extraction [Boykov, Jolly, Funkalea 2001, 2004] 



Graph Cuts Basics  
(simple 2D example) 

Red/blue nodes can be “identified”  
into two super nodes (terminals) 

 Goal: divide the graph into two parts separating red and blue nodes 



Graph Cuts Basics 
(simple 2D example) 

s-t graph cut 

A graph with two terminals S and T 

“source” 

S T 
“sink” 

•  Cut cost is a sum of severed edge weights  
•  Minimum cost s-t cut can be found in polynomial time 

 Goal: divide the graph into two parts separating red and blue nodes 



Minimum s-t cuts algorithms 

 Augmenting paths [Ford & Fulkerson, 1962] 

 Push-relabel [Goldberg-Tarjan, 1986] 



“Augmenting Paths” 

  Find a path from S to 
T along non-saturated 
edges 

“source” 

A graph with two terminals 

S T 
“sink” 

  Increase flow along 
this path until some 
edge saturates 



“Augmenting Paths” 

  Find a path from S to 
T along non-saturated 
edges 

“source” 

A graph with two terminals 

S T 
“sink” 

  Increase flow along 
this path until some 
edge saturates 

  Find next path… 
  Increase flow… 



“Augmenting Paths” 

  Find a path from S to 
T along non-saturated 
edges 

“source” 

A graph with two terminals 

S T 
“sink” 

  Increase flow along 
this path until some 
edge saturates 

               Iterate until …      all 
paths from S to T have at 
least one saturated edge 

MAX FLOW  MIN CUT 



Implementation notes 
(sequential version) 

 Boykov & Kolmogorov, EMMCVPR   2001                                    
       PAMI   2004  

 - empirical comparison of different versions of augmenting 
paths    and push-relabel algorithms on grid-graphs typical in 
vision 

    - “tuned” version of augmenting paths is proposed                    
 (freely available implementation) 

    - graph cuts can be used for problems in vision in near real time 
 - empirical complexity is near linear with respect to image size  



Implementation notes 
(parallel version) 

  Push-relabel algorithm can be implemented in parallel 
on all graph nodes         [e.g. Goldberg 86] 

  Parallel Push-Relabel algorithm and typical in vision 
grids give a perfect combination for GPU (graphics card) 
hardware acceleration           [work in progress…]   



Examples of Graph-Cuts in vision 
  Image Restoration (e.g. Greig at.al. 1989) 
  Segmentation  

•  Wu & Leahy 1993 
•  Nested Cuts, Veksler 2000  

  Multi-scan-line Stereo, Multi-camera stereo 
•  Roy & Cox 1998, 1999  
•  Ishikawa & Geiger 1998, 2003  
•  Boykov, Veksler, Zabih 1998, 2001  
•  Kolmogorov & Zabih 2002, 2004 

  Object Matching/Recognition (Boykov & Huttenlocher 1999) 
  N-D Object extraction (photo-video editing, medical imaging) 

•  Boykov, Jolly, Funka-Lea 2000, 2001, 2004 
•  Boykov & Kolmogorov 2003 
•  Rother, Blake, Kolmogorov 2004 

  Texture synthesis (Kwatra, Schodl, Essa, Bobick 2003) 
  Shape reconstruction (Snow,Viola,Zabih 2000) 
  Motion (e.g. Xiao, Shah 2004) 



s-t graph cuts for 
video textures 

Graph-cuts video textures  
(Kwatra, Schodl, Essa, Bobick 2003) 

Short video clip 

 2 1 

  Long video clip 

a cut 

3D generalization of “image-quilting” (Efros & Freeman, 2001)  



Graph Cut Textures 



s-t graph cuts for 
video textures 

original short clip synthetic infinite texture 

Graph-cuts video textures  
(Kwatra, Schodl, Essa, Bobick 2003) 



Multi-view Stereo via  
Volumetric Graph-cuts 

George Vogiatzis, Philip H. S. Torr  
Roberto Cipolla 

CVPR 2005 



Volumetric Graph cuts 

Source 

Sink 

Min cut 



3D MRF for 3D modelling 

  Labelling cost: 
•  Constant bias towards being 

foreground 
 Compatibility cost: 

•  Pair of neighbour voxels 
prefers having opposite 
labels if photo-consistent 
region is between them 

•  Optimal voxel labelling can be computed using graph-cuts 

•  Computation takes approx. 7mins for 512x512x512 grid on 
Pentium IV 2.6Ghz 



Graph 



Face - Slice 



Face - Slice with graph cut 



Protrusion problem 

  ‘Ballooning’ force 
•  favouring bigger volumes 

L.D. Cohen and I. Cohen. Finite-element methods for active 
contour models and balloons for 2-d and 3-d images. PAMI, 15
(11):1131–1147, November 1993. 



Protrusion problem 

  ‘Ballooning’ force 
•  favouring bigger volumes 

L.D. Cohen and I. Cohen. Finite-element methods for active 
contour models and balloons for 2-d and 3-d images. PAMI, 15
(11):1131–1147, November 1993. 



Protrusion problem 



Protrusion problem 



Results, Model House 



Results, Model House – Visual Hull 



Results, Model House 



Results, Stone carving 



Results, Haniwa 



3D Models 



3D models 



Middlebury evaluation (temple) 



Advantages 

 Accurate 
•  sub-millimetre accuracy on sequence with ground 

truth 
 Simple 

• Can work with about 15-30 images 
 Fast 

• Approximately 45’ of computation for these 
models 

• We believe we can bring this down to few minutes 



Extensions 

 Boykov and co workers-flux 

 Pollefeys and co workers-constraining graph 
cuts via the occluding contours… 



User Assist: Research Issues 

 We are allowed to take the video and pre-
compute all our favourite SFM primitives 
• Calibration 
•  Point Tracks 
• Volumetric Stereo 

 Questions 
• What are the best user edits for this? 
• What algorithms could be useful for the edits? 



Graph Cuts for Image Segmentation 

Part I:     Boykov and Jolly ICCV 2001 

Part II:    How to set up graphs from MRF 



MRF for Image Segmentation 

EnergyMRF = 

Pair-wise Terms MAP Solution Unary likelihood Data (D) 

Unary likelihood Contrast Term Potts Model Prior 

Boykov et al. [ICCV 2001], Blake et al. [ECCV 2004] 

MAP solution x* = arg min x 



Segmentation with Alpha Matting 



Grabcut demo 



First place rectangle round 
object 



Object plus alpha mask segmented 
by new secret method. 



Watch out they are coming!!…note alpha mask 



Chop off Van Gogh’s head with 
one click!! 



Graph Cuts 

•  W(xi,pj)     appearance component 
•  W(xj,xk)     boundary component 

x1 x2 x3 … 

xj … … … 

xk … … xn 

ph 

pt 

W(x1,ph) 

W(xn,pt) 

W(xj,xk) 

Cut 

Consider the case of two segments. 



x1 x2 x3 … 

xj … … … 

xk … … xn 

ph 

pt 

W(x1,ph) 

W(xn,pt) 

W(xj,xk) 

Graph Cuts 



Energy Minimization using Graph cuts 

EMRF(a1,a2) 

Sink (0) 

Source (1)  

a1 a2 

What really happens? Building the graph 



Energy Minimization using Graph cuts 

If we cut a link to source or sink this indicates label 

Sink (0) 

Source (1)  

a1 a2 

What really happens? Building the graph 



Energy Minimization using Graph cuts 

Sink (0) 

Source (1)  

a1 a2 

EMRF(a1,a2) = 2a1  

2 

What really happens? Building the graph 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1 

Sink (0) 

Source (1)  

a1 a2 

2 

5 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 

1 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 

1 

n-edges 
(pair-wise term) 

t-edges 
(unary terms) 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 

1 
a1 = 1  a2 = 1 

EMRF(1,1) = 11 
Cost of st-cut = 11 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 

1 
a1 = 1  a2 = 0 

EMRF(1,0) = 8 
Cost of st-cut = 8 



Energy Minimization using Graph cuts 

What really happens? Building the graph 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 

2 

1 
a1 = 1  a2 = 0 

EMRF(1,0) = 8 
Cost of st-cut = 8 

+ CONSTANT TERM K 



Energy Minimization using Graph cuts 

Posiform 

EMRF(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 
+ CONSTANT TERM K 

Posiform is a multilinear polynomials in binary 
variables with positive coefficients 



Computing the st-mincut using max-flow 

Find the maximum flow from the 
source node s to the sink node t 
subject to the edge capacity and 
flow balance constraints: 

Sink (0) 

Source (1)  

a1 a2 

2 

5 

9 

4 
2 

1 1 

2 



The Max-flow problem 

9 + α 

4 + α 

Adding a constant to both the 
t-edges of a node is equivalent 
to adding a constant amount of 
flow and does not change the 
edges constituting the st-mincut. 

Key Observation 

Sink (0) 

Source (1)  

a1 a2 

2 

5 
2 

1 



Efficiently Solving Dynamic Markov Random 
Fields using Graph Cuts (ICCV 2005) 

Pushmeet Kohli Philip H.S. Torr 



Overview 

Recycling Computations 



Overview 

computationally 
expensive operation  

cheaper 
operation 

PA 
solve 

PB SB 

SA 

differences 
between 
A and B 

A and B 
similar 

Simpler 
problem PB* 



Overview 

differences 
between 
A and B 

computationally 
expensive operation  

cheaper 
operation 

A and B 
similar 

Simpler 
problem 

solve 

SB 

SA 

PB* 

tan(cos-1(sqrt(0.79)) - 1/9) 

2*tan(cos-1(sqrt(0.79)) - 1/9) + 5 



Overview 

2* , + 5 

computationally 
expensive operation  

cheaper 
operation 

A and B 
similar 

Simpler 
problem 

solve 

SB 

0.81 

2 * 0.81 + 5 

tan(cos-1(sqrt(0.79)) - 1/9) 

2*tan(cos-1(sqrt(0.79)) - 1/9) + 5 



Overview 

2* , + 5 

computationally 
expensive operation  

cheaper 
operation 

A and B 
similar 

Simpler 
problem 

solve 
0.81 

2 * 0.81 + 5 

tan(cos-1(sqrt(0.79)) - 1/9) 

2*tan(cos-1(sqrt(0.79)) - 1/9) + 5 6.62 



Our Contributions 

•  A fully dynamic algorithm for the st-mincut problem. 

-  Exact  
-  Minimize dynamic energy functions. 
-  Running time proportional to the number of 
changes in the problem 

•  Efficient image segmentation in videos 



Minimizing dynamic energy functions 

•  Given a solution of [min Ea] compute [min Eb] 

-  Compute the st-mincut on Gb using the flows in Ga 

•  Some flows may violate new edge capacity constraints! 

-  if new edge capacities are less than the edge flow 

•  Re-parameterize the problem to satisfy constraints 



Minimizing dynamic energy functions 



segmentation problem MAP solution 

Ga 

Minimizing dynamic energy functions 

Gb 

second segmentation 
problem ( cow and 
camera moved )    

Maximum flow 

residual graph (Gr) 

G` 

difference 
between 
G and Gb 

updated residual 
graph 



Minimizing dynamic energy functions 

Partial Solution  
•  Boykov and Jolly, Interactive Image Segmentation [ICCV01] 

- limited to unary energy terms (t-edge capacities) 

Our Contributions 
•  Arbitrary changes in the energy (graph) 
•  Re-cycle search trees  

- (substantial speedup observed) 



additional  
segmentation 

cues 

Original Image 

EnergyMRF = 

Dynamic unary terms 

solve 

refined segmentation initial segmentation 

•  Corresponds to change in t-edge capacities 

•  Applications: Interactive Image Segmentation 



Dynamic pair-wise terms 

EnergyMRF = 

•  Corresponds to change in n-edge capacities 

•  Applications: Efficient Image Segmentation in Videos 



•  The Max-flow Problem 
-  Edge capacity and flow balance constraints  

Computing the st-mincut from Max-flow algorithms 

•  Notation 
-  Residual capacity  
  (edge capacity – current flow) 
-  Augmenting path 

•   Simple Augmenting Path based Algorithms 
-  Repeatedly find augmenting paths and push flow. 
-  Saturated edges constitute the st-mincut. 
   [Ford-Fulkerson Theorem] 

Sink (1) 

Source (0)  

a1 a2 

2 

5 

9 

4 
2 

1 



9 + α 

4 + α 

Adding a constant to both the 
t-edges of a node does not 
change the edges constituting 
the st-mincut. 

Key Observation 

Sink (1) 

Source (0)  

a1 a2 

2 

5 

2 

1 

E (a1,a2)  =  2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

E*(a1,a2 ) = E(a1,a2) + α(a2+ā2)  

       = E(a1,a2) + α      [a2+ā2 =1] 

Reparametrization 



9 + α 

4 + α 

All it does is change the 
constant term. 

Key Observation 

Sink (1) 

Source (0)  

a1 a2 

2 

5 

2 

1 

E (a1,a2)  =  2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

E*(a1,a2 ) = E(a1,a2) + α(a2+ā2)  

       = E(a1,a2) + α      [a2+ā2 =1] 

Reparametrization 



9 + α 

4 

All reparametrizations of the 
graph are sums of these two 
types. 

Other type of reparametrization 

Sink (1) 

Source (0)  

a1 a2 

2 

5 + α 
2 + α 

1 - α 

Reparametrization, second type 

Both maintain the solution and 
add a constant α to the energy. 



Reparameterisation 

0 0 3 

4 

1 0 2 

5 

  Definition.         is a reparametrization of 
 if they define the same energy: 

4 -1 

1 -1 0 +1 

  Maxflow, BP and TRW perform reparameterisations 

1 
Reparametrization 
for shortest 
path 



Reparametrization 

 Nice result (easy to prove) 

 All other reparametrizations can be viewed in 
terms of these two basic operations. 

 Proof in Hammer, and also in one of Vlad’s 
recent papers. 



s  

G 
t  

original graph 

0/9 

0/7 

0/5 

0/2 0/4 

0/1 

xi xj 

flow/residual capacity 

Graph Re-parameterization 



s  

G 
t  

original graph 

0/9 

0/7 

0/5 

0/2 0/4 

0/1 

xi xj 

flow/residual capacity 

Graph Re-parameterization 

t  
residual graph 

xi xj 0/12 

5/2 

3/2 

1/0 

2/0 4/0 st-mincut 

Compute 
Maxflow 

Gr 

Edges cut 



Update t-edge Capacities 

s  

Gr 
t  

residual graph 

xi xj 0/12 

5/2 

3/2 

1/0 

2/0 4/0 



Update t-edge Capacities 

s  

Gr 
t  

residual graph 

xi xj 0/12 

5/2 

3/2 

1/0 

2/0 4/0 

capacity 
changes from 

7 to 4 



Update t-edge Capacities 

s  

G` 
t  

 updated residual graph 

xi xj 0/12 

5/-1 

3/2 

1/0 

2/0 4/0 

capacity 
changes from 

7 to 4 

edge capacity 
constraint violated! 
(flow > capacity) 

= 5 – 4 = 1 

excess flow (e) = flow – new capacity 



add e to both t-edges  
connected to node i 

Update t-edge Capacities 

s  

G` 
t  

 updated residual graph 

xi xj 0/12 

3/2 

1/0 

2/0 4/0 

capacity 
changes from 

7 to 4 

edge capacity 
constraint violated! 
(flow > capacity) 

= 5 – 4 = 1 

excess flow (e) = flow – new capacity 

5/-1 



Update t-edge Capacities 

s  

G` 
t  

 updated residual graph 

xi xj 0/12 

3/2 

1/0 

4/0 

capacity 
changes from 

7 to 4 

excess flow (e) = flow – new capacity 

add e to both t-edges  
connected to node i 

= 5 – 4 = 1 

5/0 

2/1 

edge capacity 
constraint violated! 
(flow > capacity) 



Update n-edge Capacities 

s  

Gr 

t  
residual graph 

xi xj 0/12 

5/2 

3/2 

1/0 

2/0 4/0 

•  Capacity changes from 5 to 2 



Update n-edge Capacities 

s  

t  
Updated residual graph 

xi xj 0/12 

5/2 

3/-1 

1/0 

2/0 4/0 

G` 

•  Capacity changes from 5 to 2 
- edge capacity constraint violated! 
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Update n-edge Capacities 

Updated residual graph 

•  Capacity changes from 5 to 2 
- edge capacity constraint violated! 

•  Reduce flow to satisfy constraint 
-  causes flow imbalance! 

•  Push excess flow to the terminals 

•  Create capacity by adding α = excess to 
both t-edges.  

G` 

xi xj 0/11 

5/3 

2/0 

2/0 

3/0 4/1 

s  

t  



Complexity analysis of MRF Update Operations 

MRF 
Operation 

Graph Operation Complexity 

modifying a unary 
term 

modifying a pair-wise 
term  

adding a latent 
variable 

delete a latent 
variable 

Updating a t-edge 
capacity 

Updating a n-edge 
capacity 

adding a node 

set the capacities of all 
edges of a node zero 

O(1) 

O(1) 

O(1) 

O(k)* 

*requires k edge update operations where k is degree of the node  



Outline of the Talk 

•  Markov Random Fields 

•  Energy minimization using graph cuts 

•  Minimizing dynamic energy functions 

•  Experimental Results 



Optimizing the algorithm 

  A trivial technique  
•  Perform a breadth first search from the source to the sink.  
•  Extremely computationally expensive operation 

  Dual-tree maxflow algorithm [Boykov & Kolmogorov PAMI 2004] 
•  Reuses search trees after each augmentation. 
•  Empirically shown to be substantially faster. 

  Our Idea  
•  Reuse search trees from previous graph cut computation 
•  Saves us search tree creation tree time [O(m)] 

How to find augmenting paths? 



Reusing Search Trees 

c’ = measure of change in the energy 

• Algorithmic complexity: 
–  Dynamic algorithm O(m + c’) 
–  Optimized dynamic algorithm O(c’) 

• Example: 
– Duplicate image frames (No time is needed) 



Outline of the Talk 

•  Markov Random Fields 

•  Energy minimization using graph cuts 

•  Minimizing dynamic energy functions 

•  Experimental Results 



•  Compared results with the best static algorithm. 

•   On typical video sequences a speed-up in the 
order of 4-5 times observed. 

•  Stress testing on videos with substantial jitter.  
  (MRF changes considerably) 

Experimental Analysis 



Experimental Analysis 

additional  
segmentation 

cues 

user segmentation cues 
static: 150 msec 
dynamic : 60 msec 
dynamic (optimized): 10 msec 

static : 145 msec 

Interactive Image segmentation (update unary terms)  



Experimental Analysis 

static: 190 msec 
dynamic : 140 msec 
dynamic (optimized): 60 msec 

Image segmentation in videos (unary & pairwise terms)  

Image resolution: 720x576 

Graph Cuts Dynamic Graph Cuts 



Experimental Analysis 

MRF consisting of 2x105 latent variables connected 
in a 4-neighborhood. 

Running time of the dynamic algorithm 



Conclusions 

•  An exact dynamic algorithm (always gives the 
optimal solution) 

•  Sub-modular energy functions which change 
dynamically can be solved rapidly. 

•  Substantial speed-up in problems involving minimal 
change.  

•  Running time roughly proportional to the number of 
changes in the energy terms. 



Philosophy 

 Computer Vision is hard to perform fully 
automatically. 
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Philosophy 

 Computer Vision is hard to perform fully 
automatically. 

 Many things can be done with a little user 
input. 

 But human time is a valuable resource. 
 So how can we make algorithms that give an 

optimal power assist to the human? 



Power Assistance 

 Assumption 
•  We have off line time in which to do number crunching 

calculating useful features. 

 Resulting Research Areas 
•  What features do we computer offline?  
•  What should the online user input be? 
•  Can we develop good algorithms to combine offline 

information with user input? 



First Example: SFM 

3D model of 
scene 



Problems 

 It is not perfect apart from in ICCV papers! 
• Needs lots of views 
• Occlusions 
• Ambiguities 
• Lighting 
• Non rigidity 

 Wouldn’t it be great if we could easily touch up 
our results? 



User Assist: Research Issues 

 We are allowed to take the video and pre-
compute all our favourite SFM primitives 
• Calibration 
•  Point Tracks 
• Volumetric Stereo 

 Questions 
• What are the best user edits for this? 
• What algorithms could be useful for the edits? 



The Dream 
 Suppose the user could sketch on images in 

the video  
 and we could use his sketches to fill out and 

make the 3D better: 



The Dream 
 Suppose the user could sketch on images in 

the video  
 and we could use his sketches to fill out and 

make the 3D better: 



Example 



Video Trace: SIGGRAPH 07 

 Play Video!!! 



ObjCut & PoseCut: 

How to combine top down and bottom up 
information 

How to provide power assisted segmentation 

Combine theory of MRF’s with Object 
Recognition 



ObjCut and PoseCut: 

 Combination of Top Down and Bottom Up 
Cues.. 

 Classical Vision Problem. 
 Combine theory of MRF’s with Object 

Recognition 



Objective 

Image Segmentation Pose Estimate?? 

Segmentation of Object in Video 



MRF for Interactive Image 
Segmentation,  
Boykov and Jolly [ICCV 2001] 

EnergyMRF 

Pair-wise Terms MAP Solution Unary likelihood Data (D) 

Unary likelihood Contrast Term Uniform Prior 
(Potts Model) 

Maximum-a-posteriori (MAP) solution x* = arg min E(x) 
x 

= 



However… 

  This energy formulation rarely provides realistic (target-like) 
results.  



Segmentation 

 To distinguish cow and horse? 

First segmentation problem 



Aim 

 Given an image, to segment the object 

Segmentation should (ideally) be 
•  shaped like the object e.g. cow-like 
•  obtained efficiently in an unsupervised manner 
•  able to handle self-occlusion 

Segmentation 

Object 
Category  

Model 

Cow Image Segmented Cow 



Challenges 

Self Occlusion 

Intra-Class Shape Variability 

Intra-Class Appearance Variability 



Motivation Magic Wand 

Current methods require user intervention 
•  Object and background seed pixels (Boykov and Jolly, ICCV 01) 
•  Bounding Box of object (Rother et al. SIGGRAPH 04) 

Cow Image 

Object Seed Pixels 



Motivation Magic Wand 

Current methods require user intervention 
•  Object and background seed pixels (Boykov and Jolly, ICCV 01) 
•  Bounding Box of object (Rother et al. SIGGRAPH 04) 

Cow Image 

Object Seed Pixels 

Background Seed Pixels 



Motivation Magic Wand 

Current methods require user intervention 
•  Object and background seed pixels (Boykov and Jolly, ICCV 01) 
•  Bounding Box of object (Rother et al. SIGGRAPH 04) 

Segmented Image 



Motivation Magic Wand 

Current methods require user intervention 
•  Object and background seed pixels (Boykov and Jolly, ICCV 01) 
•  Bounding Box of object (Rother et al. SIGGRAPH 04) 

Cow Image 

Object Seed Pixels 

Background Seed Pixels 



Motivation Magic Wand 

Current methods require user intervention 
•  Object and background seed pixels (Boykov and Jolly, ICCV 01) 
•  Bounding Box of object (Rother et al. SIGGRAPH 04) 

Segmented Image 



Problem  
•  Manually intensive 

•  Segmentation is not guaranteed to be ‘object-like’ 

Non Object-like Segmentation 

Motivation 



Our Method 

  Combine object detection with segmentation 

• Borenstein and Ullman, ECCV ’02 
•  Leibe and Schiele, BMVC ’03 

  Incorporate global shape priors in MRF 

  Detection provides 
•   Object Localization 
•   Global shape priors 

  Automatically segments the object 
•  Note our method completely generic 
•  Applicable to any object category model 



MRF 

Probability for a labelling consists of 
•  Likelihood  

•  Unary potential based on colour of pixel 
•  Prior which favours same labels for neighbours (pairwise potentials) 

Prior Ψxy(mx,my) 

Unary Potential Φx(D|mx) 

D (pixels) 

m (labels) 

Image Plane 

x 

y 

mx 

my 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior 

x … 

y … 

… 

… 

x … 

y … 

… 

… 

Φx(D|obj) 

Φx(D|bkg) 
Ψxy(mx,my) 

Likelihood Ratio (Colour) 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior Likelihood Ratio (Colour) 



Contrast-Dependent MRF 

Probability of labelling in addition has 
•  Contrast term which favours boundaries to lie on image edges 

D (pixels) 

m (labels) 

Image Plane 

Contrast Term  
Φ(D|mx,my) 

x 

y 

mx 

my 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior + Contrast 

x … 

y … 

… 

… 

x … 

y … 

… 

… 

Likelihood Ratio (Colour) 

Ψxy(mx,my)
+ 
Φ(D|mx,my) 

Φx(D|obj) 

Φx(D|bkg) 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior + Contrast Likelihood Ratio (Colour) 



Integrating Shape-Prior in MRFs 

Unary potential 

Pairwise potential 

Label
s 

Pixels 

Prior Potts 
model 

MRF for segmentation 



Integrating Shape-Prior in MRFs 

Θ 

Unary potential 

Pairwise potential 

Pose 
parameters 

Label
s 

Pixels 

Prior Potts 
model 

Pose-specific MRF 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior + Contrast Distance from Θ 

Shape Prior Θ 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior + Contrast Likelihood + Distance from Θ 

Shape Prior Θ 



Example 

Cow Image Object Seed 
Pixels 

Background Seed 
Pixels 

Prior + Contrast Likelihood + Distance from Θ 

Shape Prior Θ 



Detection  

 BMVC 2004 



Layered Pictorial Structures (LPS) 
  Generative model 
  Composition of parts + spatial layout 

Layer 2 

Layer 1 

Parts in Layer 2 can occlude parts in Layer 1 

Spatial Layout 
(Pairwise Configuration) 



Layer 2 

Layer 1 

Transformations 

Θ1 

P(Θ1) = 0.9 

Cow Instance 

Layered Pictorial Structures (LPS) 



Layer 2 

Layer 1 

Transformations 

Θ2 

P(Θ2) = 0.8 

Cow Instance 

Layered Pictorial Structures (LPS) 



Layer 2 

Layer 1 

Transformations 

Θ3 

P(Θ3) = 0.01 

Unlikely Instance 

Layered Pictorial Structures (LPS) 



How to learn LPS 

  From video via motion 
segmentation see Kumar 
Torr and Zisserman 
ICCV 2005. 



How to learn LPS 



LPS for Detection 
  Learning 

•   Learnt automatically using a set of examples 

  Detection 
•  Matches LPS to image using Loopy Belief Propagation 
•  Localizes object parts 



Pictorial Structures (PS) 

PS =     2D Parts       +      Configuration 

Fischler and Eschlager. 1973 

Aim: Learn pictorial structures in an unsupervised manner          

•  Identify parts 
•  Learn configuration 
•  Learn relative depth of parts 

Parts + 
Configuration + 
Relative depth 

Layered 
Pictorial 
Structures 
(LPS) 



Features 

 Outline: z1 Chamfer distance 
 Interior: z2 Textons 

 Model joint distribution of z1 z2 as a 2D 
Gaussian. 



Chamfer Match Score 

   Outline (z1) : minimum chamfer distances over multiple 
outline exemplars 

   dcham= 1/n Σi min{ minj ||ui-vj ||, τ } 

Image Edge Image Distance Transform 



Texton Match Score 

   Texture(z2) : MRF classifier  
•  (Varma and Zisserman, CVPR ’03) 

   Multiple texture exemplars x of class t 

   Textons: 3 X 3 square neighbourhood 
   VQ in texton space 
   Descriptor: histogram of texton labelling 
   χ2 distance 



2. Fitting the Model 

 Cascades of classifiers 
• Efficient likelihood evaluation 

 Solving MRF 
• LBP, use fast algorithm 
• GBP if LBP doesn’t converge 
• Could use Semi Definite Programming (2003) 
• Recent work second order cone programming 

method best CVPR 2006. 



Efficient Detection of parts 

 Cascade of classifiers 
 Top level use chamfer and distance transform 

for efficient pre filtering 
 At lower level use full texture model for 

verification, using efficient nearest neighbour 
speed ups. 



Cascade of Classifiers-for each part 

f Y. Amit, and D. Geman, 97?;  S. Baker, S. Nayer 95 



High Levels based on Outline 

(x,y) 



Low levels on Texture 

 The top levels of the tree use outline to 
eliminate patches of the image. 

 Efficiency: Using chamfer distance and pre 
computed distance map. 

 Remaining candidates evaluated using full 
texture model. 



Efficient Nearest Neighbour 
•  Goldstein, Platt and Burges (MSR Tech Report, 2003) 

Conversion from fixed 
distance to rectangle  
search 

•  bitvectori
j(Rk) = 1 

                      = 0 
•  Nearest neighbour of x 
•  Find intervals in all dimensions 
•  ‘AND’ appropriate bitvectors 
•  Nearest neighbour search on 
  pruned exemplars 

Rk Є Ii 
in dimension j 



Recently solve via Integer Programming 

 SDP formulation (Torr 2001, AI stats) 

 SOCP formulation  (Kumar, Torr & Zisserman 
this conference) 

 LBP (Huttenlocher, many) 



Results 

•  Different samples localize different parts well. 
•  We cannot use only the MAP estimate of the LPS. 



M-Step 

Cow Image Shape Θ2 

w2 = P(Θ2|m’,D) 

Θ2 

Image Plane D (pixels) 

m (labels) 

•  Best labelling found efficiently using a Single Graph Cut 



Segmentation Image 

Results 
Using LPS Model for Cow 



In the absence of a clear boundary between object and background 

Segmentation Image 

Results 
Using LPS Model for Cow 



Segmentation Image 

Results 
Using LPS Model for Cow 



Layer 2 

Layer 1 

Transformations 

Θ1 

P(Θ1) = 0.9 

Cow Instance 

Do we really need accurate models? 



Do we really need accurate models? 

  Segmentation boundary can be extracted from edges 

  Rough 3D Shape-prior enough for region disambiguation 



Energy of the Pose-specific MRF 
Energy to be 

minimized Unary term 

Shape prior 

Pairwise 
potential Potts model 

But what should be the value of θ? 



The different terms of the MRF 

Original 
image 

Likelihood of being 
foreground given a 

foreground 
histogram 

Grimson-
Stauffer 

segmentation 

Shape prior 
model 

Shape prior 
(distance 
transform) 

Likelihood of 
being foreground 

given all the 
terms 

Resulting 
Graph-Cuts 

segmentation 



Can segment multiple views simultaneously 



Solve via gradient descent 

 Comparable to level set methods  

 Could use other approaches (e.g. Objcut) 

 Need a graph cut per function evaluation 



Formulating the Pose Inference Problem 



But… 

ν  Kohli and Torr showed how dynamic graph cuts can 
be used to efficiently find MAP solutions for MRFs 
that change minimally from one time instant to the 
next: Dynamic Graph Cuts (ICCV05). 



Dynamic Graph Cuts 

PB SB 

cheaper 
operation 

computationally 
expensive operation  

Simpler 
problem PB* 

differences 
between 
A and B 

A and B 
similar 

PA SA 
solve 



Segmentation Comparison 



Segmentation 



Combine Recognition and Segmentation 

 Using all the information should help… 
• E.g. segmentation result can be used to eliminate 

false positives. 

 Face/Head and shoulders segmentation 
particularly useful for applications such as 
Skype or Windows Messenger. 



ObjCut Face Segmentation 



Face Detector and ObjCut 



Segmentation + Recognition 
to prune false positives 
(see also recent work D Ramanan CVPR 07) 



Initialisation 

 Use off-the-shelf face detector to find location 
of face in an image 



Initialisation 

 Place shape prior relative to face detection 
 Define region over which to perform 

segmentation 



Adjustment 

 Vary parameters of shape prior to find lowest 
segmentation energy 



Other Applications of Dynamic Graph Cuts 



Computing Max-marginals 

Graph Cuts 

Dynamic 
Graph Cuts 

Image (MSRC) Segmentation Max-Marginal (Fg) 

: 0.002 msec per MM (1.2 secs) 

: 300 msec per MM (51.2 days) 

1 

0 

0.5 



Parameter Learning in CRFs 

 Maximum Likelihood Parameter Learning 
• Kumar and Herbert  
• NIPS 2004, EMMCVPR 2005 



Shape Priors For Reconstruction 

+ 
Parametric 

Model 

Images 

Silhouettes 

Pose 

 Estimate 

Reconstruction 

Sun, Kohli, Bray & Torr (ICVGIP06) 



Shape Priors For Reconstruction 

Sun, Kohli, Bray & Torr (ICVGIP06) 

Visual Hull 

Our 

Reconstruction 

Shape Model 



Multi Label Problems 

 So far we have considered generic cuts or 2 
label problems 

 Now we consider multi label problems 



s-t graph-cuts for 
multi-label problems 

 Multi-scan-line stereo  
•  Roy & Cox 1998, 1999 
•  Ishikawa & Geiger 1999 (occlusion handling) 

  “Linear” interaction energy 
•  Ishikawa & Geiger 1998 
•  BVZ 1998 

 Convex interaction energy 
•  Ishikawa 2000, 2003 



Multi-scan-line stereo  
with s-t graph cuts (Roy&Cox’98) 

x 

y 



Multi-scan-line stereo  
with s-t graph cuts (Roy&Cox’98) 

s 

t cut 

L(p) 

p 

“cut” 

x 

y 

la
be
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x 

y D
is
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y 
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Scan-line stereo vs.  
Multi-scan-line stereo 

L(p) 

p 

“cut” 

x 

y 

la
be

ls
 

la
be

ls
 

x 

L(p) 

p 

Dynamic Programming 
(single scan line optimization) 

s-t Graph Cuts 
(multi-scan-line optimization) 



s-t graph-cuts for  
multi-label energy minimization 

  Ishikawa 1998, 2000, 2003 
 Modification of construction by Roy&Cox 1998 

V(dL) 

dL=Lp-Lq 

V(dL) 

dL=Lp-Lq 

Linear interactions “Convex” interactions 



Extensions 

 Ishikawa work generalizes nicely by 
Schlesinger and Flach 

 We have an ICML case that deals with partial 
optimality non sub modular energies 

More details from Sasha who is here 



Pixel interactions: 
“convex” vs. “discontinuity-preserving”   

V(dL) 

dL=Lp-Lq 

Potts  
model 

Robust 
“discontinuity preserving” 

interactions 

V(dL) 

dL=Lp-Lq 

“Convex” 
interactions 

V(dL) 

dL=Lp-Lq 

V(dL) 

dL=Lp-Lq 

“linear”  
model 



Pixel interactions: 
“convex” vs. “discontinuity-preserving” 

   “linear” V 

truncated  
“linear”  V    



Graph cuts and 
Potts energy minimization 

Binary Potts energy 
(Ising model) 

s-t  graph cuts 
(Greig at.al. 1989) 

a cut 

Multi-label  
Potts energy 

Multi-way graph cuts 
(BVZ 1998,2001) 



Graph cuts in computer vision: 

Part I:          s-t graph cuts 

Part II:    multi-way graph cuts 
     - applications 
     - general energy minimization tool 



Multi-way graph cuts 



Multi-way graph cuts 

Equivalent to 
minimization of 

the Potts energy 
of labeling L 

n-links t-links 



Multi-way graph cuts 

Multi-object Extraction 

Obvious generalization of binary object extraction technique 
(Boykov, Jolly, Funkalea 2004)  



Multi-way graph cuts 

stereo vision 

original pair of “stereo” images 

depth map 

ground truth BVZ 1998 KZ 2002 



Multi-way graph cuts 

Stereo/Motion with slanted surfaces  
(Birchfield &Tomasi 1999)  

            Labels = parameterized surfaces 

  EM based:  E step = compute surface boundaries   
                  M step = re-estimate surface parameters  



Multi-way graph cuts 

Graph-cut textures  
(Kwatra, Schodl, Essa, Bobick 2003) 

 similar to “image-quilting” (Efros & Freeman, 2001)  

A 
B 

C D

E 
F G

H I J 

A B 

G 

D C 

F 

H I J 

E 



Graph Cut Textures 



Graph Cut Textures 



Multi-way graph cuts 

Graph-cut textures  
(Kwatra, Schodl, Essa, Bobick 2003) 



Multi-way graph cuts 

  Equivalent to Potts energy minimization 
  NP-hard problem (3 or more labels)  

•  two labels can be solved via s-t cuts (Greig at. al., 1989) 

  a-expansion approximation algorithm (BVZ 1998,2001) 
•  guaranteed approximation quality 

– within a factor of 2 from the global minima (Potts model) 
•  applies to a wide class of energies with robust interactions 

–    Potts model   (BVZ 1989) 
– “Metric” interactions   (BVZ 2001) 
– “Submodular” interactions (KZ 2002,2004) 



other labels a 

a-expansion move 
Basic idea: break multi-way cut computation 

into a sequence of binary s-t cuts 

Iteratively, each label competes with the other labels for space in the image 



a-expansion moves 

initial solution 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

In each a-expansion a given label “a”  grabs space from other labels 

For each move we choose expansion that gives the largest decrease in 
the energy:      binary optimization problem 



current 
label 

a 

Optimal a-expansion move via 
s-t graph cuts 

1D 
example 



a-expansion algorithm 

1.  Start with any initial solution 
2.  For each label  “a”  in any (e.g. random) order 

1. Compute optimal a-expansion move (s-t graph cuts) 
2. Decline the move if there is no energy decrease 

3. Stop when no expansion move would decrease energy 



a-expansions for energies with 
metric interactions 

•  a-expansion algorithm applies to pair-wise interactions 
 that are metrics on the space of labels  (BVZ, PAMI’01)  

•  Example:    any truncated metric is also a metric 

•  => Metric case includes many robust interactions 

Triangular 
inequality 



a-expansions: 
examples of metric interactions 

Potts V 

“noisy diamond” “noisy shaded diamond” 

   Truncated “linear”  V    



a-expansions for energies with  
submodular interactions 

•  a-expansions algorithm further generalizes to     
submodular  pair-wise interactions 

•   follows from complete characterization of binary 
energies that can be minimized via s-t  graph cuts     
   (KZ 2002, 2004) 



a-expansion algorithm 

… can be compared to 
general discrete energy minimization algorithms  

(simulated annealing, ICM,…)   



a-expansion algorithm vs. standard  
discrete energy minimization techniques 

single a-expansion move 

•  Large number of pixels can 
change their labels simultaneously 

•  Finding an optimal move is 
computationally intensive  O(2^n)     
       (s-t cuts) 

single “one-pixel” move 
(simulated annealing, ICM,…) 

•  Only one pixel can change its 
label at a time 

•  Finding an optimal move is 
computationally trivial 



original image 

a-expansion move vs. 
“standard” moves 

a local minimum 
w.r.t. expansion moves 

a local minimum 
w.r.t. “one-pixel” moves 

noisy image 
Potts energy minimization 



normalized correlation, 
start for annealing, 24.7% err 

simulated annealing,  
19 hours,   20.3% err 

a-expansions (BVZ 89,01) 
90 seconds,   5.8% err 

a-expansions vs. simulated annealing 



a-expansion algorithm vs. 
local-update algorithms (SA, ICM, ...) 

•  Finds  local  minimum of 
energy with respect to very 
strong moves 

•  Finds  local  minimum of 
energy with respect to small 
“one-pixel” moves 

•  solution is within the factor 
of 2 from the global minima 

•  solution could be arbitrarily far 
from the global minima 

•  In practice, one cycle through 
all labels gives sufficiently 
good results 

•  May not know when to stop. 
Practical complexity may be 
worse than exhaustive search  

a-expansions simulated annealing, … 

•  Applies to a restricted class of 
energies  

•  Can be applied to anything 

•  In practice, results do not 
depend on initialization  

•  Initialization is important  



General low-level optimization methods  
strongly “competing” with Graph-Cuts  

 Belief Propagation (also discrete optimization) 

 Level-sets (variational/continuous optimization) 



Geometry of s-t graph cuts on grids 

 Boykov & Kolmogorov 2003 
• Minimum s-t cuts on an appropriately constructed 

grid-graphs approximate geodesics/minimum-
surfaces in continuous Riemannian metric spaces 

• Graph cuts (BFJ’01,04) can be seen as discrete 
analogues of geometric contour/surface models     
(Caselles at.al.’97, Yezzi at.al’97) 



s-t graph cuts  vs.  level sets 
              Level Sets                           Graph Cuts   
              [Osher&Sethian’88,…]                                 [Greig et. al.’89, Ishikawa et. al.’98, BVZ’98,…] 

 Gradient descent method    VS.   Global minimization tool 

 variational optimization method for                 combinatorial optimization for  
  fairly general continuous energies             a restricted class of energies [e.g. KZ’02] 

    finds a local minimum                                  finds a global minimum  
 near given initial solution                      for a given set of boundary conditions 

anisotropic metrics are harder                      anisotropic Riemannian metrics  
    to deal with (e.g. slower)                             are as easy as isotropic ones 

numerical stability has to be carefully 
addressed    [Osher&Sethian’88]: 

continuous formulation -> “finite differences” 

   numerical stability is not an issue 

discrete formulation ->min-cut algorithms 

(restricted class of energies) 



Summary III (Graph Cuts) 

 Graph Cuts vs Shortest Path 
 Augmenting Path Algorithm 
 Given an energy how to create the graph to be 

cut. 
 Multi Way Cuts 
 Dynamic Graph Cuts 
 Examples 



Comparison of graph cuts and belief 
propagation 

Comparison of Graph Cuts with Belief 
Propagation for Stereo, using Identical 
MRF Parameters, ICCV 2003. 
Marshall F. Tappen William T. Freeman 



Ground truth, graph cuts, and belief propagation 
disparity solution energies 



Unifying View is the LP 

 Both TRW (a modified form of BP) and 
 PD (a modified form of a-expansion) optimize 

the following LP: 
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Energy Functions on MRFs 

Observed Variables 

Hidden Variables 

MAP Inference 

Courtesy: Pushmeet Kohli 



Energy Functions on MRFs 
MAP Inference 

Energy 
Minimization 
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Solving MRFs 
 Minimizing a general MRF energy -- NP-hard 
 Exact solutions exist for certain sub-classes 

• Graphs with no loops [Felzenszwalb & Huttenlocher ‘04] 
•  Submodular energy functions [Ishikawa ‘03, Kolmogorov & Zabih ‘04, Schlesinger 

& Flach ‘06] 

 What about the rest? For instance, Potts model  

is not submodular 



Approximate Methods 

 Move making algorithms [Boykov et al. ‘01] 
• Expansion 
•  Swap 

 Message passing algorithms 
• Belief propagation (BP) [Pearl ‘98] 
• Tree reweighted message passing (TRW)  
  [Wainwright et al. ‘05, Kolmogorov ‘06] 
• Dual decomposition [Komodakis et al. ‘07] 
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Efficient Energy Minimization 

 Take considerable time for large problems 
 Running time depends on 

•  Initialization used for primal and dual variables 
• The number of variables in the problem 

 Efficient methods do exist 
• Limited to submodular dynamic MRFs [Kohli & Torr ‘05, Juan & 

Boykov ‘06] 
•  Fast-PD [Komodakis et al. ‘07] 



Efficient Energy Minimization 

 Our primary goals are 
• To generate a good initialization for the current 

problem instance (Recycle & Reuse) 

• To reduce the number of variables involved in the 
energy function (Reduce) 



Move Making Algorithms 

Solution Space 

E
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Courtesy: Pushmeet Kohli 



Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 



Example: α-expansion 

Sky 
House 

Tree 
Ground Initialize with Tree 

Status: 
Expand Ground Expand House Expand Sky 

Courtesy: Pushmeet Kohli 



Example: α-expansion 
•  Variables take label     or retain current label 
•  In one iteration, moves w.r.t. each label             are 

made 
•  Binary energy function for an    move is 



Example: α-expansion 

             is submodular if          is metric 
 Can be solved by the st-mincut/maxflow 

algorithm 
 Primal solution -- labels assigned to 
 Dual solution -- feasible flow solution of the 

maxflow problem 
 How to recycle results 

•  Single MRF 
• Dynamic MRF 



α-expansion: Single MRF 

1-expansion 

2-expansion 

k-expansion 

Iteration 1 

Build a new graph for 
each expansion move 

1-expansion 

2-expansion 

k-expansion 

Iteration 2 

Build a new graph for 
each expansion move 

Recycle 
graphs 
(flows) 

How about recycling 
within an iteration? 



α-expansion: Single MRF 

Object Segmentation 
[Shotton et al. ‘06]  

Stereo (Tsukuba) 

Total times 

Standard:  1.88s 

1 Graph:   1.66s 

Dynamic:   0.64s 

Total times 

Standard   4.69s 

1 Graph:   4.29s 

Dynamic:   1.39s 



α-expansion: Dynamic MRF 

1-expansion 

2-expansion 

k-expansion 

Iteration 1 

1-expansion 

2-expansion 

k-expansion 

Iteration p 

Frame t Frame t+1 

1-expansion 

2-expansion 

k-expansion 

Iteration 1 

1-expansion 

2-expansion 

k-expansion 

Iteration q 

Recycle  
Labeling 

Recycle 
graphs 
(flows) 



α-expansion: Dynamic MRF 

Multi-label Video Segmentation  
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Reducing Energy Functions 

Original 
Problem 
(Large) 

Approximate 
Solution 

Approximate algorithm  
(TRW, BP, Expansion, Swap) 

(Slow) 



Reducing Energy Functions 

Original 
Problem 
(Large) 

Fast partially 
optimal 

algorithm Reduced Problem 

Solved Problem 
(Global Optima) 

Approximate 
Solution 

Approximate algorithm  
(TRW, BP, Expansion, Swap) 

Approximate 
algorithm  

(Fast) 

(Slow) 

Approximate 
Solution 



Solved Problem : Examples 



Partially Optimal Algorithm 
 Construction of k auxiliary problems 
 The energy corresponding to an auxiliary 

problem 

Kovtun, DAGM’03 



Partially Optimal Algorithm 
             defines a submodular energy function 
 The partially optimal solution of       w.r.t.        is 

extracted as: 

 Repeat this for all labels 
 For further efficiency: ‘Fix’ the partially optimal 

variables (Project) 



Reducing Energy Functions 

Original 
Problem 
(Large) 

Fast partially 
optimal 

algorithm Reduced Problem 

Solved Problem 
(Global Optima) 

Approximate 
Solution 

Approximate algorithm  
(TRW, BP, Expansion, Swap) 

Approximate 
algorithm  

(Fast) 

(Slow) 

Approximate 
Solution 



Reducing : Results 

Image 

Partial 
Labelling 

Partial 
Labelling  
+ TRW 

Times (s) 



Reducing : Results 

TRW-S 
Object Segmentation 

Problem 
(Labels: 5) 



Reducing : Results 

BP 
Object Segmentation 

Problem 
(Labels: 7) 



Performance of Par. Opt. 

 Effect of increase in ‘difficulty’ 

Stereo Problem 
Energy 1: 
Kovtun, DAGM’03 

Energy 2: 
Szeliski et al., ECCV’06 



Reducing 

Original 
Problem 
(Large) 

Fast partially 
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Problem 
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Approxima
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Solution 

Approximate algorithm  
(TRW, BP, Expansion, 

Swap) 

Approximate 
algorithm  

(Fast) 

(Slow) 

Approxima
te 

Solution 



Reducing 

Original 
Problem 
(Large) 

Fast partially 
optimal 

algorithm Reduced 
Problem 

Solved Problem 
(Global Optima) 

Approxima
te 

Solution 

Approximate algorithm  
(TRW, BP, Expansion, 

Swap) 

Approximate 
algorithm 

(Super Fast) 

(Slow) 

Approxima
te 

Solution 

Reuse 
Computation 



Reusing Flow from PO  

 Key Observation 
•  Sub-problems of PO and Expansion have same form 

•  Can be made similar by choosing particular starting 
configurations for expansions (Reuse flow) 

•  Example: Potts (again) 
Expansion PO auxiliary problem 



Reusing Flow from PO  

•  Key Observation 
•  Sub-problems of PO and Expansion have same form 

•  Can be made similar by choosing particular starting 
configurations for expansions (Reuse flow) 

•  Example: Potts (again) 



Reducing & Reusing : Results 



P3 & Beyond 
Solving Energies with Higher Order Cliques   
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Pairwise Energy Functions 

Unary Pairwise 

Markov 
Random Field 

Observed Variables 

Hidden Variables 



Pairwise Energy Functions 

Unary Pairwise 

Markov 
Random Field 



Energy Functions 

 Pairwise Energy Functions 

Unary Pairwise 

Markov 
Random Field 



Pairwise Energy Functions 

Unary Pairwise 

Markov 
Random Field 



Pairwise Energy Functions 

Unary Pairwise 

Markov 
Random Field 

  Efficient Algorithms for 
Minimization 

  Restricted Expressive 
Power! 



 Higher Order Energy Functions 

Unary Pairwise Higher 
order 

Markov 
Random Field 

More expressive 
than pairwise 

FOE: Field of Experts 
(Roth & Black CVPR05) 



Higher Order Energy Functions 

Unary Pairwise Higher 
order 

Original Pairwise MRF Higher order MRF 

Images Courtesy: Lan et al. ECCV06 

MRF for Image 
Denoising 



Higher Order Energy Functions 

Unary Pairwise Higher 
order 

 Computationally expensive to minimize! 
 Exponential Complexity  O(LN) 

•  L = Number of Labels 
•  N = Size of Clique 



Higher Order Energy Functions 

Unary Pairwise Higher 
order 

Efficient BP in Higher Order MRFs  
 ECCV06 (Lan, Roth, Huttenlocher, Black) 

•  2x2 cliques learned using FOE model 
•  Approximation methods to make BP feasible 
•  Search a restricted state space 
•  16 minutes per iteration 



Higher Order Energy Functions 

Unary Pairwise Higher 
order 

 Our Method 
• Can handle cliques of thousand of variables 
• Extremely Efficient ( works in  seconds) 
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Optimization Algorithms 

 General Energy Functions 
• NP-hard to minimize 
• Algorithms for Approximate Minimization 

 Easy energy functions  
• Global minima in polynomial time 
• Tree topology  
•  Submodular functions 



Submodular functions 
 All projections on two variables are submodular. 
 Any function f : {0,1}2 → R is submodular if: 

  In certain cases minimization equivalent to a st-
mincut problem: 

t 

s 

Graph Cut Minimization Problem 

st-mincut 



Approximate Energy Functions 
Message Passing 

Algorithms 
Move making 
Algorithms 

Tree Reweighted (TRW) 

Belief Propagation (BP) α-Expansion 

αβ-Swap 
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Move Making Algorithms 

Solution Space 
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Move Making Algorithms 

Solution Space 
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Search 
Neighbourhood 

Current Solution 

Optimal Move 



Move Making Algorithms  
 Moves using graph cuts  
  [Boykov, Veksler, Zabih] PAMI 2001  

 Algorithm 
• Encode move by vector t 
• Transformation function T(x,t) → x` 
• Move Energy 

• Optimal move t* 

Submodular 



Expansion Move 
Characteristics 
•  Move 

•  Variables take label α or retain current label 

 Algorithm 
• Make a move for all α in L 



Expansion Move 

Sky 
House 

Tree 
Ground Initialize with Tree 

Status: 
Expand Ground Expand House Expand Sky 



Expansion Move 
Characteristics 
•  Neighbourhood Size 

•  2N where N is the number of variables 

•  Guarantee 
•  Move energy is submodular for all 

metric energy functions.  [Boykov, Veksler, Zabih] 
PAMI 2001  



Swap Move 
Characteristics 
•  Move 

•  Variables labeled α, β can swap their labels 

 Algorithm 
• Make a move for all α, β in L 



Swap Move 

Sky 
House 

Tree 
Ground Swap Sky, House 



Swap Move 
Characteristics 
•  Neighbourhood Size 

•  2N where N is the number of variables 

•  Guarantee 
•  Move energy is submodular for all  

semi-metric energy functions. [Boykov, Veksler, 
Zabih] PAMI 2001  
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•  Form of the Higher Order Potentials 

•  Sum Form 

•  Max Form 

Moves for Higher Order Cliques 



Theoretical Results: Swap 
 Move energy is always submodular if 

non-decreasing 
concave.  

See paper for proofs 



Theoretical Results: Expansion 
 Move energy is always submodular if 

increasing 
linear 

See paper for proofs 



Talk Overview 
 Higher Order Energy Functions 

 Optimization Algorithms 

 Move making Algorithms 

 Optimal moves for Higher Order Energies 

 PN Potts Model  

 Experiments 



PN Potts Model 

•  Generalization of the Potts Model: 



Solving the PN Potts Model 
 Computing the optimal swap move 

v1 v2 vn 

Ms 

Mt ti = 0 vi ∈ Source 
tj = 1 vj ∈ Sink 

Source 

Sink 



Solving the PN Potts Model 
 Computing the optimal swap move 

Case 1: all ti = 0 (xi = α) 
Cost:  

Source 

Sink 

v1 v2 vn 

Ms 

Mt 



Solving the PN Potts Model 
 Computing the optimal swap move 

v1 v2 vn 

Ms 

Mt Cost:  

Source 

Sink 

Case 2: all ti = 1 (xi = β) 



Solving the PN Potts Model 
 Computing the optimal swap move 

Cost:  

v1 v2 vn 

Ms 

Mt 

Source 

Sink 

Case 3: ti = 0,1 (xi = α,β) 



Solving the PN Potts Model 
 Computing the optimal expansion move 

v1 v2 vn 

Ms 

Mt 

Source 

Sink 



Solving the PN Potts Model 
 Computing the optimal expansion move 

Cost:  

Source 

Sink 

v1 v2 vn 

Ms 

Mt 
Case 1: all ti = 0 (xi = xi ) 



Solving the PN Potts Model 
 Computing the optimal expansion move 

Cost:  

v1 v2 vn 

Ms 

Mt 

Source 

Sink 

Case 2: all ti = 1 (xi = α) 



Solving the PN Potts Model 
 Computing the optimal expansion move 

Cost:  

v1 v2 vn 

Ms 

Mt 

Source 

Sink 

Case 3: ti = 0,1 (xi = xi , α) 



Additivity: 

 We can add any number of these together 

v1 v2 vn 

Ms 

Mt 

Source 

Sink 

v1 v2 vn 

Ms 

Mt 

Source 

Sink 



Talk Overview 
 Higher Order Energy Functions 

 Optimization Algorithms 

 Move making Algorithms 

 Optimal moves for Higher Order Energies 

 PN Potts Model  

 Experiments 



Exemplar based Texture Segmentation 

Unary 
(Colour) 

Pairwise 
(Smoothness) 

Higher Order 
(Texture) 

Original 
Image 



Exemplar based Texture Segmentation 
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Colour Histograms Unary Cost: Tree  
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Exemplar based Texture Segmentation 
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Higher Order 
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Exemplar based Texture Segmentation 

Unary 
(Colour) 

Pairwise 
(Smoothness) 

Higher Order 
(Texture) 

Patch Dictionary Higher Order Cost: Tree  



Exemplar based Texture Segmentation 

Unary 
(Colour) 

Pairwise 
(Smoothness) 

Higher Order 
(Texture) 

Higher Order Cost: Tree  Unary Cost: Tree  



Exemplar based Texture Segmentation 

Unary 
(Colour) 

Pairwise 
(Smoothness) 

Higher Order 
(Texture) 

Original Pairwise Higher order 



Experimental Results 

Original 

Ground Truth 

Swap (3.2 sec) 

Expansion  
(2.5 sec) 

Pairwise Higher Order 

Swap (4.2 sec) 

Expansion    
(3.0 sec) 



Experimental Results 

Original 

Ground Truth 

Pairwise Higher Order 

Swap (4.7 sec) 

Expansion 
(3.7sec) 

Swap (5.0 sec) 

Expansion    
(4.4 sec) 



Conclusions & Future Work 

 Efficient minimization of certain higher 
order energies 

 Can handle very large cliques  

 Useful for many Computer Vision problems 

 Explore other interesting family of potential 
functions 



TextonBoost : 
Joint Appearance, Shape and Context Modeling for Multi-Class Object 
Recognition and Segmentation 

J. Shotton*, J. Winn†, C. Rother†, and A. Criminisi† 

* University of Cambridge 
† Microsoft Research Ltd, Cambridge, UK 



Introduction    

 Simultaneous recognition and 
segmentation 
• Explain every pixel (dense features) 
• Appearance + shape + context 
• Class generalities + image specifics 

Example Results 



Structure of Presentation 

 The MSRC 21-Class Object Recognition 
Database 

 New ‘Shape Filter’ Features 

 Conditional Random Field (CRF) Model 

 Comparative Results 



Image Databases 

  MSRC 21-Class Object Recognition Database 
•  591 hand-labelled images ( 45% train, 10% validation, 45% test ) 

  Corel ( 7-class ) and Sowerby ( 7-class ) [He et al. CVPR 
04] 



Conditional Random Field Model  

  Potts model 
•  encourages neighbouring pixels to 

have same label 

 Contrast sensitivity 
•  encourages segmentation to 

follow image edges 
image edge map 

edge potentials 

sum over 
neighbouring 

pixels 



Results on 21-Class Database 

building 



Joint Boosting for Feature Selection 

test image 

30 rounds 2000 rounds 1000 rounds 

inferred segmentation 
colour = most likely label 

confidence 
white = low confidence 
black = high confidence 

•   Boosted classifier provides bulk segmentation/recognition only 

•   Edge accurate segmentation will be provided by CRF model 



Our Work, CVPR 2008 

 Idea to use super pixels to help the 
segmentation process… 



Minimizing Higher Order Energy Functions using 
Graph Cuts 

Pushmeet Kohli 

Joint work with:  
Lubor Ladicky Pawan Kumar  Philip Torr 

IPAM, February 25th, 2008 



Variance-sensitive consistency potential 

MSRC image Meanshift segmentation Variance 



Labels Correspond to different objects 

Original Image Unary Potential Pairwise CRF Higher Order CRF Ground Truth 



Thanks 

 Questions? 



Conclusion 

 Combinatorial Optimization is an exciting field 
with many applications. 

 New Developments all the time (e.g. Tree Re-
weighted message passing) 

 Deterministic methods taking the lead over 
stochastic for discrete labels. 

 Challenge to extend success to continuous 
cases. 


