
Optimization in Computer Vision, May 2008

Exercise session using MATLAB:
Quasiconvex Optimixation

Overview

In this laboratory session you are going to use matlab to study structure and motion esti-
mation using theL∞-norm as well as how to create panoramic images by stitching.For
further reading, see the PAMI paper by Kahl/Hartley.

First, download and unpackOCV2008.zip from the course homepage.

http://www2.imm.dtu.dk/projects/OCVschool/Materials.html

To start the correct version of MatLab on DTU’s unix terminals you should typematlab72
in the terminal window. Remember to runstartup.m to get the correct paths. The
files you are going to use can be found in the subdirectoryQuasiConvexity. Some of
the instructions here are matlab commands that you are supposed to try. To relieve you
of some of the tedious typing, we have collected some of thosecommands in a script
qc_cheats.m.

Structure and Motion under the L∞-Norm

Brief Introduction

This section is just to recapitulate some basic facts about optimization with theL∞-norm
for geometric problems. If this is already familiar to you, then proceed directly to the next
section.

The traditional way of minimizing the sum of squares error can sometimes fail. The
problem is that many reconstruction problems are non-convex and the optimization may
get stuck in local non-optimal solutions. The globally optimal solution can be hard to
compute. However, instead of minimizing the sum of squares of reprojection errors, it
turns out to be a simpler problem to minimize themaximum error for certain structure
and motion problems. This corresponds to changing the two-norm (denotedL2) to the
max-norm (denotedL∞) of the residual vector in our optimization problem.

More specifically, letd denote the (Euclidean) distance between the measured imagepoint
x̃ = (x̃, ỹ)T and the reprojected image pointx = (x,y)T , that is,d = ||(x̃−x, ỹ−y)||. From

1

the camera equation, we know that the reprojected point is obtained through

λ
[

x
1

]

= PX

whereP is the camera matrix andX the homogeneous coordinates of the 3D point. Letpi

denote theith row of camera matrixP. The distanced can then be expressed by

d = ||(x̃−
pT

1 X
pT

3 X
, ỹ−

pT
2 X

pT
3 X

)|| =
||(x̃pT

3 X−pT
1 X, ỹpT

3 X−pT
2 X)||

pT
3 X

.

Now suppose we are given a number of measured pointsx̃i. Instead of minimizing the
sum of squared distances∑i d2

i , we will minimize maxi di. This can be hard to do directly,
but if we introduce an extra unknown scalarα (serving as an upper bound), the problem
can equivalently be written

min α
such that di ≤ α,

and things will become simpler. The reason is that for a given, hypothesizedα, the prob-
lem of checking if there is a solution withdi ≤α for all i is usuallyeasy and can be solved
by intersecting convex cones. Each constraintdi ≤ α can be geometrically interpreted as
a second-order cone (just as the solution set to the inequality aT x ≤ b can be interpreted
as a half space). If such a solution exists, then the optimalαopt must be lower, otherwise
the optimalαopt must be higher thanα. Hence, we have turned the optimization problem
into a one-dimensional search forαopt .

The Triangulation Problem

We will first look at the triangulation problem. A synthetic three-view problem has al-
ready been generated. Type

load sam_example

to load the data for this example. The image coordinates can be found inu and the camera
matrices inP. Type

drawscene

to plot the configuration of the three image planes with one measured point in each image.
The blue lines correspond to the viewing rays of the image points. Recall that a viewing
ray for an image point is the set of points in front of the camera that projects exactly to the
image point. You can rotate the figure by holding down the leftmouse button and moving
the mouse pointer at the same time.

The triangulation problem consists of finding a 3D pointX such that its projection is as
close to the measured image point as possible. Notice that the blue lines do not intersect,
so there does not exist a 3D point which projects exactly to the image points. Suppose we

2

start by looking for a 3D point which projects within 2 pixelsin one of the images. Then
the 3D points must lie with a viewing cone whose radius is 2 when crossing the image
plane. Type

nbrcones=1;

radius=2;

drawscene

to plot such a viewing cone. Changenbrcones to first 2 and then 3 to study the other
viewing cones.

Question: Is there a 3D point in the intersection of the three cones and hence a 3D point
which projects to less than 2 pixels in all three images?

Try other values of the radius for the viewing cones, for example:

nbrcones=3;

radius=0.5;

drawscene

Question: Is there a 3D point which projects to less than 0.5 pixels in all three images?

Try to figure out approximately what the smallest radius is such that there is a common
intersection of all three viewing cones by visually examining the figure for different values
of radius.

Checking whether the intersection of three (second-order)cones is empty or not can also
be done by solving a convex program. This has already been implemented for you. Try
the following commands:

radius=2;

U = intersect_cones(u,P,radius);

If the intersection is non-empty, a 3D pointU is returned which lies in the intersection.

Question: What are theactual image reprojection errors for the pointU which is returned
with radius=2? (It must be less than 2 pixels, right?)

Try to find out approximately what the smallest radius is suchthat there is a common in-
tersection of all three viewing cones by testing different values ofradius for the function
intersect_cones.

The one-dimensional search for the smallest radius can alsobe automated by usingbisec-
tion. This has been implemented in a function calledlinf_triangulation. It can be
called by the following command.

U = linf_triangulation(u(1:2,:),P);

Question: What is the min-max reprojection error for the three-view triangulation prob-
lem? Is the maximum reprojection error attained in all threeimages?

3

Homographies and Panoramas

Two (or more) images that are taken at the same location (thatis, the corresponding cam-
era centres are the same) are homographically related. Thismeans that there exists a
homography which can be represented by a 3×3 matrixH such that if a point in image 2
has coordinatesx2, then the corresponding point in image 1 can be found at position Hx2.
This observation is frequently used for creating panoramicimages by stitching together
several images to one big mosaic.

Given corresponding points in two images, it is possible to estimate the homography re-
lating the images. A homography has 8 degrees of freedom, 9 parameters defined up
to scale. (What is the minimum number of corresponding points needed to be able to
compute it?) Moreover, it is possible to estimate the homography using min-max opti-
mization. The difference compared to the triangulation problem is that now the convex
cones are parametrized by the 8 degrees of freedom in the homography. The computa-
tions are done in a similar manner: we need to check a series ofcone intersections and
determine if they are empty or not in order to determine the maximum residual error.

Load and plot two images of a mountain including 6 corresponding image points, stored
in the variablesu1 andu2. The images were taken at the same location.

load snowpoints;

im1=imread(’snow1.jpg’);

im2=imread(’snow2.jpg’);

figure(1);clf;subplot(1,2,1);

image(im1);

hold on;rita(u1,’g*’);

subplot(1,2,2);

image(im2);

hold on;rita(u2,’g*’);

The homograpy relating the two images can be estimated with the following command.

H=linf_homography(u1(1:2,:),u2);

Verify the quality of the computed homographyH by transferring the points in image 2
to image 1.

u2t=pflat(H*u2);

subplot(1,2,1);

rita(u2t,’ro’);

Zoom in on the original points (green stars) and the transferred points (red circles).

Question: What is the maximum residual error for the estimated homography H? How
many of the correspondences attain the maximum residual error?

4

Click on some more point locations in image 2 and transfer them to image 1 to see that
this is not only true for the 6 original correspondences. Thefollowing commands can be
used.

while 1,

disp(’click on a point in image 2’);

x=ginput(1)’;

subplot(1,2,2);

rita(x,’b+’);

subplot(1,2,1);

rita(pflat(H*[x;1]),’b+’);

end

Alright, now the images can be stitched together to create a large mosaic of the two
pictures! Look at the scriptstitch.m and try it out. The stitching for this example is
rather primitive as you can see from the result.

Problem: Suggest a method to make the transition between the two images smoother in
the resulting panoramic image.

Known Rotations

Another problem that can be solved with min-max optimization is the structure and mo-
tion problem withknown rotations. If we are given sufficient number image correspon-
dences̃xi j and the first 3×3 block of the camera matrixRi, then the problem of estimating
3D pointsX j and camera centresti (corresponding to the fourth column of the camera
matrix) can be solved globally with the same technique. In detail, we want to find the
min-max reprojection error between the measured pointx̃i j and the reprojected pointxi j,
given by

λi jxi j = [Ri ti]X j for all i, j.

All we need to do is solve a series of cone intersection problems. The difference is that
the corresponding cones are not inR

3 anymore (as for the triangulation problem), but in
a higher dimension. The dimension is equal to the number of unknowns in the problem
instance.

Let us look at an example. We have already tracked 328 points in 36 images in a turn-
table sequence of a toy dinosaur. The rotations have been computed by some other means.
Load and plot the first image. The image points are stored in the variableu and the 36
rotation matrices inR.

load dino_example;

im=imread(’dino.jpg’);

figure(1);clf;image(im);hold on;

rita(u{1},’g*’)

5

Note that only a few points are visible in the first image, and not all of the 328 points. This
is common in real image sequences - image points will appear and then later disappear
and something we have to cope with.

To intersect the viewing cones, try the following commands:

radius=5;

[U,P]=intersect_cones_rot(u,R,radius)

If there is a non-empty intersection, then one point in the intersection set is returned.
Such an intersection point corresponds to 328 3D-pointsU and 36 camera matricesP. Try
different values ofradius.

Question: What is approximately the min-max image reprojection errorfor the dinosaur
sequence?

One way to check the quality of the computed solution is to reproject it to the image. Try:

figure(1);

ureproj=pflat(P{1}*U);

rita(ureproj,’ro’);

Zoom in to see if there is a reprojected point (red circle) corresponding to each measured
image point (green star).

Another way to verify the result is to plot the solution in 3D,both the camera path and the
3D points.

figure(2);clf;

rita3(U,’r*’);

hold on;

for ii=1:36;

c=pflat(null(P{ii}));

rita3(c,’b*’);

end

rotate3d on;

Can you see the shape of the dinosaur? Is the camera trajectory approximately circular
as it should be due to the turn-table setup? If the answer is yes: congratulations! You
have just reconstructed 36 cameras and 328 points and not only that, you have found the
globally optimal solution with respect to theL∞-norm.

6

Implement on your own: Triangulation with Linear Programming

Three camera matrices (of size 3× 4) P1, P2 andP3 are pre-computed for a scene and
can be found in the matlab filecameras.mat. Further, assume there is a measured image
point with(x,y)-coordinates(0,0) in each image (that is, the same coordinates in all three
images).

Image pointsx lying on a linel satisfylT x = 0 wherel andx are homogeneous 3-vectors.
Similarly, 3D pointsX on a planeπ satisfyπT X = 0 whereπ andX are homogeneous
4-vectors. Given a camera matrixP, then all points onπ = PT l project to the image linel.
(Why?) Around each image point, it is possible to form a square with side lengths. The
four lines forming this square are given byx = ±s/2 andy = ±s/2.

Questions: What are the corresponding 3D planes describing the viewingcones of 3D
points that project to this square? Express the answer usinga camera matrixP and the
side lengths. Determine if the three viewing cones intersect for side lengthss = 4, s = 2
ands = 1 and if so give a 3D point in the intersection.Hint: Each planeaX +bY + cZ +
d = 0 divides space into two halfspacesaX +bY + cZ +d ≤ 0 andaX +bY + cZ +d ≥
0. Use this to express the cones on the formA[X ,Y,Z]T ≤ b and then utilize Matlab:
X=linprog([],A,b); to compute the intersection. What is approximately the smallests
in order for the cones to have an intersection?

Optional: Back to Stitching

Implement your proposal of removing the border effects in the stitching problem in order
to create a visually appealing panorama.

7

