Optimization in Computer Vision, May 2008

Exercise session using MATLAB:
— Structure and Motion in Flatland

Overview

In this laboratory session you are going to use matlab toysstrdicture and motion es-
timation using the_.-norm with 1D cameras. In this so-called flatland problemg on
assumes that the world consists of a 2D plane and that theraaroapture 1D image
lines of the 2D scene structure. Important references arel’:AApproach to Structure
and Motion Problems in 1D-Vision” by Astrom et al. as well &% flectures notes on
"Quasiconvexity: Optimization over SO(3)".

First, unless you have already done so, download and unpeid008.zip from the
course homepage.

http://www2.imm.dtu.dk/projects/0CVschool/Materials.html

To start the correct version of MatLab on DTU’s unix termgwabu should typeatlab72

in the terminal window. Remember to rémartup.m to get the correct paths. The files
you are going to use can be found in the subdirectaat1land. Some of the instructions
here are matlab commands that you are supposed to try.

Structure and Motion in Flatland

In this session we will study three specific instances of G&tme and Motion with 1D
cameras. Each example setup consists of 10 points in the&i2 pthich are viewed by
3 calibrated 1D cameras.

Recall that the (perspective) camera equation can be writte
Au=PU

whereu = [cos(a),sin(a)]T denotes a point on the image line (or rather circle) and the
elements ofU are homogeneous coordinates for a point in the world plankso, A
denotes a % 3 camera matrix. Since the camera is calibrated one can asthanthe
matrix has the form:

p_ { a b tl]
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wherea = cos(8), b = sin(0) and@ is the rotational angle of the camera. Without loss of
generality one can assume that the first cameRa is [I | O] by choice of coordinate sys-
tem. One may think of the camera device as measuring angpesrits in the scene, and
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hence it makes sense to minimize residuals between meamuta@projected angles. A
convenient way of expressing this residual between a medsungled and a reprojected
anglea - which depends o andU - is through

uxPU  |ul|(PU)|sin(a
u-PU  |ul|(PU)|coga

)
)

Herea x b denotes the scalagb, —apb;. Sinceu-PU > 0, checking whethdo —a| <A
is equivalent to

=tan(a —&). (1)

—a
—a

lux PU| < tanA)(u-PU). (2)

Example 1. This first example is just for illustration purposes in orteget acquinted
with the problem. Not only the 3 images, u,, us are provided, but also the ground truth
camera matriceBs, P> andP3 as well as the true 2D structutkare given. Run the script
0CV_demo .m to learn more.

Example 2. In this second example, the rotational part of the cameraiceat that is,
the first 2x 2 blocks of the camera matricd?;, R, andR3 are given, and your task is
to solve for 2D structuré) and camera translations (the third row of the camera matrix)
The images are encoded as previouslyinu, andus. Typeload 0CV_example2 tO
load the data.

Recall that for a given angla (in radians), the problem of testing whether there exists
a solution with error equal or less than(a so-called feasibility problem) can be solved
with Linear Programming, cf. (2). This feasibility test halseady been implemented in
the functionlp_knownrotation.m.

Task: Solve for the optimal* and plot your solution (both 2D points and camera centres)
in a figure.

Example 3. In the last exampleQCV_example3, only the imagesi;, up anduz are

given, and the task is to solve for both 2D structure and cammestion. This can be
done by branch and bound over the camera rotation artijlesid 63 for the domain
[0, 211 x [0, 211]. (Note thatd; = 0 according to the chosen coordinate system).

Suppose that there exists a solution with maximum edggx radians. Now consider the
squargf, — A, 02+ A] x [83 — A, 03+ 4] in the domain of rotation angles. Then, we know
(Lemma 2) that there are no feasible solutions in this sqpereided that the following
feasibility problem isnfeasible:

|ug x P1U| < tan(dmax) (us - P1U), (3)
|uz x PoU| < tan(dmax +4) (uz - PoU), 4)
luz x P3U| < tan(dmax +A)(usz - P3U), (5)

whereP, = P2(02) andP3 = P3(03). (Note thatdyax + A should be less thar/2 for
the statement to be valid). This can be used to discard sgjuatee domain of possible
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poses. If the above problem turns out to be feasible, thee thay exist a better solution
in the square, and one has to subdivide the square into sreqllares.

Task: Use branch and bound to find a solution with a min-max erraeb#&tandyay <
0.03 radians. Also, locate the possible regions of(fe63)-plane where such solutions
may exist. What is the best solution you are able to compute?



