
Optimization in Computer Vision, May 2008

Exercise session using MATLAB:
— Structure and Motion in Flatland

Overview

In this laboratory session you are going to use matlab to study structure and motion es-
timation using theL∞-norm with 1D cameras. In this so-called flatland problem, one
assumes that the world consists of a 2D plane and that the cameras capture 1D image
lines of the 2D scene structure. Important references are ”An L∞ Approach to Structure
and Motion Problems in 1D-Vision” by Åström et al. as well as the lectures notes on
”Quasiconvexity: Optimization over SO(3)”.

First, unless you have already done so, download and unpackOCV2008.zip from the
course homepage.

http://www2.imm.dtu.dk/projects/OCVschool/Materials.html

To start the correct version of MatLab on DTU’s unix terminals you should typematlab72
in the terminal window. Remember to runstartup.m to get the correct paths. The files
you are going to use can be found in the subdirectoryFlatland. Some of the instructions
here are matlab commands that you are supposed to try.

Structure and Motion in Flatland

In this session we will study three specific instances of Structure and Motion with 1D
cameras. Each example setup consists of 10 points in the 2D plane which are viewed by
3 calibrated 1D cameras.

Recall that the (perspective) camera equation can be written

λu = PU

whereu = [cos(α),sin(α)]T denotes a point on the image line (or rather circle) and the
elements ofU are homogeneous coordinates for a point in the world plane. Also, P
denotes a 2×3 camera matrix. Since the camera is calibrated one can assume that the
matrix has the form:

P =

[

a b t1
−b a t2

]

wherea = cos(θ), b = sin(θ) andθ is the rotational angle of the camera. Without loss of
generality one can assume that the first camera isP1 = [I |0] by choice of coordinate sys-
tem. One may think of the camera device as measuring angles topoints in the scene, and
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hence it makes sense to minimize residuals between measuredand reprojected angles. A
convenient way of expressing this residual between a measured angleα̃ and a reprojected
angleα - which depends onP andU - is through

u×PU
u ·PU

=
|u||(PU)|sin(α− α̃)

|u||(PU)|cos(α− α̃)
= tan(α− α̃). (1)

Herea×b denotes the scalara1b2−a2b1. Sinceu ·PU> 0, checking whether|α− α̃| ≤ ∆
is equivalent to

|u×PU| ≤ tan(∆)(u ·PU). (2)

Example 1. This first example is just for illustration purposes in orderto get acquinted
with the problem. Not only the 3 imagesu1,u2,u3 are provided, but also the ground truth
camera matricesP1, P2 andP3 as well as the true 2D structureU are given. Run the script
OCV_demo.m to learn more.

Example 2. In this second example, the rotational part of the camera matrices, that is,
the first 2×2 blocks of the camera matrices,R1, R2 andR3 are given, and your task is
to solve for 2D structureU and camera translations (the third row of the camera matrix).
The images are encoded as previously inu1, u2 andu3. Typeload OCV_example2 to
load the data.

Recall that for a given angle∆ (in radians), the problem of testing whether there exists
a solution with error equal or less than∆ (a so-called feasibility problem) can be solved
with Linear Programming, cf. (2). This feasibility test hasalready been implemented in
the functionlp_knownrotation.m.

Task: Solve for the optimal∆∗ and plot your solution (both 2D points and camera centres)
in a figure.

Example 3. In the last example,OCV_example3, only the imagesu1, u2 and u3 are
given, and the task is to solve for both 2D structure and camera motion. This can be
done by branch and bound over the camera rotation anglesθ2 and θ3 for the domain
[0,2π]× [0,2π]. (Note thatθ1 = 0 according to the chosen coordinate system).

Suppose that there exists a solution with maximum errordmax radians. Now consider the
square[θ2−∆,θ2+∆]× [θ3−∆,θ3+∆] in the domain of rotation angles. Then, we know
(Lemma 2) that there are no feasible solutions in this squareprovided that the following
feasibility problem isinfeasible:

|u1×P1U| ≤ tan(dmax)(u1 ·P1U), (3)

|u2×P2U| ≤ tan(dmax +∆)(u2 ·P2U), (4)

|u3×P3U| ≤ tan(dmax +∆)(u3 ·P3U), (5)

whereP2 = P2(θ2) andP3 = P3(θ3). (Note thatdmax + ∆ should be less thanπ/2 for
the statement to be valid). This can be used to discard squares in the domain of possible
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poses. If the above problem turns out to be feasible, then there may exist a better solution
in the square, and one has to subdivide the square into smaller squares.

Task: Use branch and bound to find a solution with a min-max error better thandmax ≤
0.03 radians. Also, locate the possible regions of the(θ2,θ3)-plane where such solutions
may exist. What is the best solution you are able to compute?
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