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Forward

MeshMed 2011, a workshop on mesh processing in medical image analysis, was held at Westin Harbor Castle
in Toronto, Canada on September 18, 2011. This workshop, the first of its kind, was a joint effort supported
from the Center for Integrated Biomedical Computing at the Scientific Computing and Imaging Institute and
Department of Mathematical Modeling at the Technical University of Denmark. The generous support of DTU
and the CIBC was integral in making this workshop possible.

The primary goal of this event was to bring together the geometry processing, computer graphics, and medical
imaging communities to foster joint efforts and specific research. A fundamental theme, the image analysis
pipeline and the significant role of geometric computation within it, was a central focus of the submitted works
and discussions. Many of the technologies currently being developed by researchers in these communities are
done so in an independent and isolated manner. We believe there is significant, fruitful research to be done that
requires cross pollination of the geometry and imaging communities. Developing more sophisticated understanding
of the interplay between surface and volume representations (meshes) and the clinical analysis and simulation is
of utmost importance.

Of the nearly twenty submissions, we accepted eight for presentation along with our three plenary talks
representative of the meshing, surfacing, and medical imaging communities. These works covered a broad range
of topics, including integrating recent software tools, evaluation and comparisons of meshing techniques, and
surface feature identification and deformation techniques. These great research ideas were then applied to image
data acquired from cardiac, cerebral, and orthopedic domains.

We would like to thank the program and organizing committees for contributing both their time and ideas.
Their efforts pushed this international project forward and enriched both its content and structure. Additionally,
we would like to thank all authors who submitted works. Their provided material made this workshop a success,
which we hope will initiate a new interest and appreciation on this topic. Finally, we are exceptionally grateful to
the invited speakers for contributing their time and attracting external interest for the workshop.

Rasmus R. Paulsen and Joshua A. Levine
MeshMed Co-organizers
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Mesh-based vs. Image-based Statistical
Appearance Model of the Human Femur:
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Creation of Finite Element Meshes
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and Mauricio Reyes1
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Abstract. Statistical models have been recently introduced in computa-
tional orthopaedics to investigate the bone mechanical properties across
several populations. A fundamental aspect for the construction of sta-
tistical models concerns the establishment of accurate anatomical corre-
spondences among the objects of the training dataset. Various methods
have been proposed to solve this problem such as mesh morphing or im-
age registration algorithms. The objective of this study is to compare a
mesh-based and an image-based statistical appearance model approaches
for the creation of finite element(FE) meshes. A computer tomography
(CT) dataset of 157 human left femurs was used for the comparison. For
each approach, 30 finite element meshes were generated with the mod-
els. The quality of the obtained FE meshes was evaluated in terms of
volume, size and shape of the elements. Results showed that the quality
of the meshes obtained with the image-based approach was higher than
the quality of the mesh-based approach. Future studies are required to
evaluate the impact of this finding on the final mechanical simulations.

1 Introduction

Over the past years, statistical models have been introduced in computational
orthopaedics as a useful investigation tool. They have been used for implant
design evaluation [19,4], for fracture risk assessment [6,25] and for the discrimi-
nation of pathological from non pathological subjects [5]. The major advantage
of statistical models consists in the ability of describing a dataset variations in
terms of both shape and intensity. Moreover they allow creating new instances of
the same dataset object, which belong to the same probability density function
as the training dataset. This drives to the creation of a dense map of FE simula-
tions and consequently a richer analysis of the bone mechanical behavior. These



characteristics have allowed overcoming one of the limitations of the studies in
the field, which have been mainly performed on a small amount of data [16,13,23],
limiting the generalization of these models to a complete population.

The definition of accurate correspondences is crucial for the creation of reli-
able statistical models [9]. For a correct modeling of both surface and volumetric
information, correspondences have to be properly defined not only on the dataset
object surface, but also inside the object volumes. Two different approaches ex-
ist to establish the anatomical correspondences: mesh morphing techniques and
image registration techniques. In the first case, the dataset objects are repre-
sented as meshes and a chosen volume reference mesh is morphed to the other
dataset [6,14]. In the second case, the dataset objects are represented by volume
images and they are registered to the one chosen as reference [20,27].

Both approaches have strong features and weaknesses. The mesh-based ap-
proach provides an output that is directly compatible with finite element (FE)
calculations. However, the smoothing required for the creation of well-shaped
elements can penalize the accuracy of the anatomical correspondences. On the
other hand, the image-based approach has no constraints related to node po-
sitioning since the FE mesh is created after the instantiation of synthetic new
images. Therefore the accuracy of the correspondence establishment is less prob-
lematic for FE simulations. However, due to the nature of these techniques, the
correspondence establishment at the interface background-object is more sensi-
tive to errors as compared to pure surface-based registration techniques. Volume
meshes are created separately for each instance, implying the impossibility of
comparing simulation results on a element-wise basis. Finally deformation vec-
tor fields have to be invertible for the creation of new instances. To the authors’
knowledge there is no study that compares the two different approaches used by
the community in order to determine which is the most suitable for the creation
of FE meshes.

The purpose of the paper is therefore to compare two existing methodologies
which aim to create FE meshes from statistical models of appearance [10]. A
comprehensive evaluation of surface or volumetric-based registration techniques
is beyond the scope of this study. In the first part of this paper, we present
the creation of two different pipelines, namely mesh-based and image-based. For
each pipeline, starting from the same dataset, bone anatomical correspondences
are determined, a statistical appearance model is built and new instances, which
can be directly used for FE simulations, are created. In a second step, the quality
of the FE meshes obtained with the two pipelines is compared based on common
objective metrics.

2 Mesh-based and Image-based Pipelines for the
Creation of FE Meshes

Two statistical appearance model approaches for the creation of finite element
meshes are presented. The two approaches, namely mesh-based and image-based,
had overlapping steps, as shown in Fig 1. The main difference between the two



approaches consisted in a different representation of the dataset objects. In the
mesh-based approach, the bone objects were considered as meshes from the first
step of the pipeline, whereas in the image-based approach they were represented
by volumetric images for the whole pipeline. In this case, the images were trans-
formed to FE meshes in the very final step. For completeness and reproducibility
purpose, details about data and implementation can be found in Appendix A.

Segmented CT images were the input for both pipelines. Mesh morphing and
image registration were used to find anatomical correspondences, respectively
for the mesh-based and the image-based approaches. For both the mesh-based
and the image-based pipelines, the same principals were used to calculate the
statistical appearance models and to create new instances.
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Fig. 1: Mesh-based and image-based statistical appearance model pipelines for
the creation of femur finite element meshes. On the left side, the steps for the
mesh-based approach are shown, whereas on the right side the steps for the
image-based pipeline are depicted.

1. Surface Mesh Creation. In the mesh-based pipeline, for each bone of
the dataset a surface mesh was created following the steps shown in Fig. 2.
From each segmented CT image (Fig. 2a), a surface mesh was created using
the marching cube algorithm [17] (Fig. 2b). The obtained mesh resulted too
dense and rough and could not be directly used for the following processing.
Therefore, in order to improve the mesh quality, each mesh was decimated and
smoothed using the Laplacian operator. Since in many cases the node removal



caused the loss of mesh topology, node connections were reestablished using
MRFSurface [18] (Fig. 2c).

(a) (b) (c)

Fig. 2: Creation of femur surface mesh from CT image. (a) Sagittal view of a
segmented femur head CT image. (b) Surface mesh obtained from the marching
cube algorithm. (c) Surface mesh topology reconstruction.

2. Finding Correspondences: Mesh Morphing and Image Registra-
tion. In order to find anatomical correspondences among the dataset objects,
mesh morphing was used for the mesh-based pipeline, whereas image registra-
tion was performed for the image-based approach. In both cases, correspondences
were calculated with respect to the same reference bone. The choice of the ref-
erence bone was done in the image-based pipeline using an iterative procedure.
In the first step, one bone of the dataset was randomly picked as the reference
and all the remaining bones of the dataset were registered to it. The average
transformation was then calculated and the bone whose transformation was the
closest to the average transformation was considered as the new reference femur.
These steps were repeated until convergence.

The mesh morphing was performed using the algorithm developed by [15]
and extended by [3]. First, a volumetric mesh was created for the reference bone.
From the surface mesh, the volume mesh was created using NETGEN [24]. The
reference volumetric mesh was composed of 130000 quadratic tetrahedrons, in
order to satisfy the necessary level of mesh refinement for femur FE simula-
tions [28]. Then, the reference bone volumetric mesh was warped to all dataset
surface meshes to create iso-topological tetrahedral FE meshes. To compute the
mesh morphing, 10 landmarks were manually selected on the surface of both the
reference volume mesh and the bone dataset surfaces meshes, as shown in Fig. 3.
Four landmarks were selected in correspondence to the main anatomical features
of the femur head (Fig. 3a) and 6 at easily detectable points in the condyle area
(Fig. 3b). The landmarks were used as constraints during the morphing compu-
tations. The mesh morphing was executed first on the surface mesh and then
on the volume mesh. From the reference volume mesh, the surface mesh was
extracted. For each bone, both the reference surface mesh and the current bone
surface mesh were projected on a disc of unitary radius. The position of the bone
landmarks with respect to the reference bone landmarks was used as constraint
for the moving of all bone surface nodes. The new position of the femur surface



nodes was then calculated using radial basis functions (RBF), where the center
of the functions was represented by the landmarks. The bone surface nodes were
then reprojected back from the parametric space to the physical space, and their
positions smoothed. As second step, the reference volumetric mesh was morphed
to the current bone new surface mesh. The position of the volumetric mesh inner
nodes was calculated using RBF. In this case, the RBF center was represented
by the just computed surface nodes.

(a) (b)

Fig. 3: Landmarks selection for mesh morphing. (a) Selection of four landmarks
in the femur head. (b) Selection of six landmarks in the femur condyles (two
landmarks not visible).

In the image-based pipeline, correspondences were detected using image reg-
istration. We used the Log-Domain Demons (LDD) registration algorithm regu-
larized with a femur-specific polyaffine model [26]. The LDD finds Deformation
Vector Fields (DVF) which are smooth and invertible [27]. This characteristic
enables the creation of new instances, as explained in Section 2.4. In the LDD,
DVF are generated through the exponential of Stationary Velocity Fields (SVF),
which are the primary results of the registration process [2]. The LDD iteratively
minimizes the energy functional composed of two terms, namely the ‘correspon-
dence’ term, which calculates the SVF and the ‘regularization’ term, which im-
poses smoothness on the SVF [7]. In our case, the regularization term was re-
placed by a polyaffine model, which allowed us to capture the main anatomical
variation of the femur. In the model, three regions were defined: femur head,
shaft and condyle area. The parameters of the polyaffine model were jointly es-
timated using a closed form least square solution during each iteration step of
the LDD.

3. Statistical Models. The statistical appearance model was created as a
combination of the parameters obtained from the statistical shape model and
the statistical intensity model [10].

In the mesh-based approach, the statistical shape model was computed on
the volume mesh coordinates. In order to calculate the principal component



analysis (PCA), the volume meshes were aligned to the average mesh using the
Procrustes method [11]. The model was then built on the aligned meshes [9]. In
the image-based approach, instead, the statistical shape model was computed as
a statistical deformation model [21]. Therefore PCA was directly calculated on
the SVF obtained from the image registration process.

For the mesh-based approach, the statistical intensity model was created on
the image intensity values at the corresponding mesh node positions. For the cre-
ation of valid FE meshes, the assignment of correct grey levels to the mesh nodes
is crucial. In fact CT information and bone mechanical properties are strictly
linked [22]: CT image grey levels represent the bone mineral density [8], which is
related to the Young’s modulus through empirical relationships [12]. One critical
aspect affecting the Young’s modulus assignment is the partial volume effect that
occurs on the bone surface [13]. Therefore the bone outer layer was first eroded
to delete the partial volume effect area and then dilated to rebuild the canceled
outer cortical bone. At each node of the mesh, intensities were calculated as a
26-voxel connectivity linear interpolation. The computed intensities were finally
used for the PCA calculation. On the other side, for the image-based approach,
the statistical intensity model was created through the calculation of the PCA
on the original images warped to the reference bone in order to have spatial
correspondence among the gray levels of the dataset images.

For both the mesh-based and the image-based approaches, the statistical ap-
pearance model was built on the combination of shape and intensity parameters,
as shown in Eq. 1.

b =

(
Wsbs
bg

)
=

(
WsΦ

T
s (x− x̄)

ΦT
g (g − ḡ)

)
, (1)

where b represents the combined parameters, composed by the shape param-
eters bs and the intensity parameters bg; ΦT

s and ΦT
g represent respectively the

transposition of the modes calculated from the statistical shape model and the
statistical intensity model; x and g are the initial mesh coordinate and inten-
sity dataset; x̄ and ḡ are the average shape and intensity, respectively. Since the
shape and the intensity parameters were represented by different units, the shape
parameters were multiplied by the matrix Ws in order to make the parameters
homogeneous. Ws was calculated as Ws = rI, where r is the square root of the
ratio between the total variation obtained from the statistical intensity model
and the total variation calculated from the statistical shape model, and I is the
identity matrix.

4. Instantiation of New Samples. For both the mesh-based and the
image-based pipelines, new instances were created from the statistical appear-
ance model. The new shape x̃ was created using Eq. 2 and the corresponding
intensity distribution g̃ using Eq. 3:

x̃ = x̄+ ΦsW
−1
s Φc,sc (2)

g̃ = ḡ + ΦgΦc,gc, (3)



where

Φc =

(
Φc,s

Φc,g

)
, (4)

represents the combined eigenvectors derived from the calculation of PCA on
the combined parameters b, divided in its shape component Φc,s and intensity
component Φc,g. The parameter c was calculated as −2

√
λi ≤ c ≤ +2

√
λi,

where λi is the current eigenvalue, whereas the weight between −2 and +2 was
calculated using the latin hypercube sampling method.

In the mesh-based approach, the new shape was built assigning to the ref-
erence topology the new node coordinates. The calculated gray levels were then
associated to the mesh nodes. In the image-based pipeline, the new image inten-
sity were calculated in the reference shape. The obtained image was then warped
to the new shape calculated, thanks to the invertibility of the Demons DVF.

5. Volume Mesh Creation. At the end of the image-based approach, for
each new instance, a FE mesh was created. Similar to the processing performed
in steps 1 and 2, from each new image, a surface mesh was created using the
marching cubes algorithm. To ensure good mesh quality, the mesh was then
simplified and smoothed, and its topology reconstructed using MRFSurface. Fi-
nally from the obtained surface mesh, a tetrahedral quadratic FE mesh of about
130000 elements was created using NETGEN.

6. FE Mesh Quality Assessment. Three different criteria were used to
evaluate the quality of the finite element meshes. We evaluated mesh elements
in terms of volume, size and shape, using the following metrics:

a Jacobian. It is a volume metric which describes the distortion of the element
from the ideal shape. At its extremes, +1 and -1, the element shape was
considered perfect and distorted, respectively; at 0 the element had null
volume.

b Edge ratio. It is a size metric which is calculated as the ratio between the
longest and the shortest edge of the element.

c Minimum angle. It is a shape metrics that evaluates the smallest angle of
the element sides.

3 Experiments on Femur CTs

To compare the two pipelines, we conducted calculations on left femur bone CT
images. In the following paragraphs we show the results that we obtained for
the steps of the pipeline. The numbering of the steps refers to Fig 1.

Finding Correspondences: Mesh Morphing and Image Registration
(step 2). A total of 196 segmented CT images were used in this study. Accord-
ing to a visual evaluation, mesh morphing failed for 25 meshes, whereas image
registration failed for 24 images. Both mesh morphing and image registration



succeeded in 157 cases, which were considered as input dataset for the statistical
appearance models.

Statistical Models (step 3). The results of the statistical appearance mod-
els are shown in Table 1. The variations of the dataset were described in a more
compact way by the model obtained with the mesh-based approach than with
the image-based approach (Table 1a). The evaluation of the computational time
showed that the mesh-based approach was less time and memory consuming
than the image-based one, even on a less powerful machine (Table 1b). In the
mesh-based pipeline, computations were done in a few minutes, whereas hours
of calculations were required in the image-based pipeline.

Table 1: Statistical appearance model computation results. (a) Model compact-
ness for the mesh-based and the image-based pipelines. (b) Computational costs
for the calculations.

(a)

model compactness mesh-based pipeline image-based pipeline
(# modes) (# modes)

50% 2 1
75% 6 6
80% 10 9
90% 40 40
95% 75 85
100% 157 157

(b)

mesh-based pipeline image-based pipeline

Shape Model 5 min1 5 hrs2

Intensity Model 2 min1 1.5 hrs2

Appearance Model 9 min1 6.5 hrs1

1 Processor: Intel Core Duo, E8500 @ 3.16GHz. RAM: 8GB
2 Processor: Intel Xeon CPU, X5550 @ 2.67GHz. RAM: 48GB

Instantiation of New Samples (step 4). A total of 30 new instances were
created for each pipeline. In order to create samples that represented the 90% of
variation of the population, 40 modes were used for the mesh-based approaches,
whereas 86 modes were used for the image-based approach.

FE Mesh Quality Assessment (step 6). The evaluation of the mesh
element quality resulted as follows:



a Jacobian. Two of the 30 meshes created with the mesh-based pipeline had
respectively 1 and 64 elements with a zero or negative Jacobian (Fig. 4a).
None of the 30 volume meshes created with the image-based pipeline had
distorted elements.

b Edge ratio. For the meshes created with the mesh-based pipeline, both the
average and the standard deviation of the edge ratio were greater and spread
in a wider range than for the image-based approach (Fig. 4b). One mesh had
2 elements whose edge ratio was greater than 10 [1], therefore the mesh could
not be used for FE calculation. For the image-based pipeline, meshes had a
smaller edge ratio with less variations.

c Minimum angle. As for the previous metric, for the meshes created with the
mesh-based pipeline, the minimum angle results were more spread than for
the meshes created with the image-based approach (Fig. 4c). Moreover, the
meshes created with the mesh-based approach had a smaller minimum angle
with larger variations. Six meshes had from 1 to 37 elements whose minimum
angle was less then 10 degrees [1], compromising the meshes usability in
mechanical simulations.

4 Conclusion

In this study we presented a preliminary comparison between two existing differ-
ent statistical appearance model pipelines for the creation of FE meshes, namely
a mesh-based and an image-based approaches. The mesh-based pipeline allowed
the calculation of a more compact statistical model of appearance and the direct
creation of iso-topological meshes as output of the statistical model. On the other
hand, in the image-based approach the correspondence among mesh elements is
lost since each mesh is created separately. Moreover the image-based approach
is computational expensive and has the issue of the inversion of the DVF for
new instances creation. In both pipelines, the ability of the models at describ-
ing the training dataset variation resulted to be similar. However the quality of
the mesh tetrahedrons created with the image-based pipeline was higher. Image-
based pipeline meshes performed better in terms of element distortion, size and
shape.

Future work is required to merge the strengths of both pipelines, to compare
the mechanical properties assignment in the two approaches and to evaluate the
implication for finite element simulations.
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Fig. 4: FE mesh quality assessment. (a) Mesh with distorted elements (tetra-
hedrons with zero or negative Jacobian are coloured in pink). (b) Edge ratio
evaluation. For each mesh the average of the edge ratio of its elements vs. the
standard deviation is plotted. The image-based pipeline meshes showed a better
edge ratio. (c) For each mesh, the average of the minimum angle of each element
vs. the standard deviation is plotted. The meshes created with the image-based
pipeline showed higher minimum angle.

5 Appendix A

Supplementary data associated with this study can be found at
https://sites.google.com/site/serenabonaretti/
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Abstract. Mesh generation on 3D segmented images is a fundamental
step for the construction of realistic biomechanical models. Mesh ele-
ments with low or large dihedral angles are undesirable, since they are
known to underpin the speed and accuracy of the subsequent finite el-
ement analysis. In this paper, we present an algorithm for meshing 3D
multi-label images. A notable feature of our method is its ability to
produce tetrahedra with very good dihedral angles respecting, at the
same time, the interfaces created by two or more adjoining tissues. Our
method employs a Delaunay refinement scheme orchestrated by special
point rejection strategies which remove poorly shaped elements without
deteriorating the representation of the objects’ anatomical boundaries.
Experimental evaluation on CT and MRI atlases have shown that our al-
gorithm produces watertight meshes consisting of elements of very good
quality (all the dihedral angles were between 19 and 150 degrees) which
makes our method suitable for finite element simulations.

1 Introduction

Meshing multi-labelled medical images (like those obtained by segmenting MRI
or CT images) provides the means for constructing accurate bio-mechanical mod-
els for subsequent finite element analysis. Multi-material mesh generation im-
poses challenges, since it should meet two conflicting requirements: fidelity and
quality.

Fidelity measures the capability of the mesher to preserve the boundaries
formed by two or more adjoining tissues. Quality regards the shape of the el-
ements: tetrahedra with small or large dihedral angles (i.e., low quality tetra-
hedra) result in interpolation errors and in ill-conditioned stiffness matrices un-
dermining in this way the accuracy and speed of the associated finite element
analysis [1].

The difficulty in mesh generation is that the need to preserve high-curvature
creases of the object’s surface (i.e., high fidelity) deteriorates the quality of the
meshes; on the other hand, the quality of mesh elements should be as high as
possible when dealing with isotropic materials [2].
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In this paper, we propose a Delaunay meshing algorithm able to respect
the interfaces of multi-material domains and produce tetrahedra with very good
dihedral angles and radius-edge ratios (and therefore very good aspect ratios),
offering at the same time control over the size of the mesh.

1.1 Previous work

In the literature, there has been work on multi-tissue meshing but the issue of
high quality has not been adequately addressed.

Meyer et al. [3] employ a particle-based scheme producing watertight meshes
that respect the interfaces formed by adjoining tissues. However, elements with
practically zero dihedral angles (slivers) do appear in the final meshes. Further-
more, the execution times reported range from 3 to 12 hours even for small
datasets.

Liu et al. [4] compress a body-centered cubic lattice (BCC) using a point-
based registration method. The dihedral angles, however, can be as low as 4◦.
Also, the uniform lattice results in an unnecessary large number of elements in
the interior of the objects.

Chentanez et al. [5] model the insertion of needles into soft tissues. The
resulting conforming meshes are observed to consist of elements of angles more
than 10.3◦ and less than 160◦. It is worth noting that their goal is to represent a
1-dimensional curvilinear object (the needle) as a subset of a single-tissue mesh,
which is a goal quite different from ours.

Goksel and Salcudean [6] present a variational meshing technique which com-
bines both meshing and segmentation. They report minimum angles as large as
20◦. The synthetic data they used for the evaluation is a sphere, that is, a 2-
manifold. Usually, multi-tissue domains consists of complicated geometries, i.e.,
non-manifold parts which intersect with more than one tissues. These domains
impose challenges to any meshing technique and are the focus of this work.

Zhang et al. [7] develop an octree-based meshing algorithm. Although edge-
contraction and smoothing schemes are employed for quality improvement, the
authors do not report the dihedral angles observed in their meshes.

Hu et al. [8] and Hartmann and Kruggel [9] develop uniform meshes for multi-
material domains achieving dihedral angles more than 10◦, albeit without good
fidelity: their meshes suffer from the “staircase” effect.

Based on previous work on single material Delaunay surface [10] and volume
meshing [11], Pons et al. [12] present a meshing algorithm for multi-tissue do-
mains. Recently, Boltcheva et al. [13] extend the work of Pons et al. [12], so that
0- and 1-junctions are preserved in the final meshes. Both these methods apply
sliver exudation [14] in order to improve the quality of the mesh. Edelsbrunner
and Guoy [15], however, have shown that in most cases sliver exudation does not
remove all poor tetrahedra: elements with dihedral angles less than 5◦ survive.
Indeed, Pons et al. [12] and Boltcheva et al. [13] report dihedral angles as low as
4◦.
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1.2 Our contribution

In this paper, we present a Delaunay refinement algorithm for meshing multi-
tissue medical data so that the boundaries between neighboring tissues are con-
forming. It works directly on segmented images meshing both the surface and
the volume of the tissues.

A notable feature of our method is its ability to produce tetrahedra with
very good dihedral angles: in all the experiments on synthetic and real images
we ran, our algorithm produces watertight meshes consisting of tetrahedra with
dihedral angles larger than 19◦ and smaller than 150◦.

The technique we employ for quality improvement is inspired by the work of
Shewchuk [16]. Therein, poor tetrahedra are eliminated by inserting the center
of their circumball, giving priority to tetrahedra with larger radius-edge ratio.
Shewchuk, however, meshes input domains bounded by polyhedral surfaces. In
this paper, we extend this technique to deal with multi-tissue domains bounded
by curved surfaces. The main difficulty is that vertices near the surface might be
inserted during quality improvement. This fact in turn hurts fidelity: edges that
cross interfaces or holes appear. To overcome this problem, we propose special
point rejection strategies. They improve the quality of elements preventing the
insertion of points near the surface; rather, carefully chosen points are inserted
precisely on the surface. This allows to achieve both good quality and good
fidelity meshes.

The rest of the paper is organized as follows: Section 2 outlines the concept
of Delaunay refinement. The multi-tissue capability of our algorithm and the
point rejection strategies are described in Section 3. Lastly, Section 4 presents
results on CT and MR multi-label images and Section 5 concludes the paper.

2 Background

Delaunay meshes have been shown to successfully approximate the surface of
both manifold and non-manifold surfaces [10], due to the properties of the re-

stricted Delaunay triangulations, first introduced by Amenta and Bern [17].
Let V ⊂ R3 be a set of vertices and D (V ) their Delaunay triangulation. Any

Delaunay triangulation satisfies the empty ball property: the circumscribing open
ball (a.k.a circumball) of each tetrahedron in D (V ) does not contain any vertex.

The voronoi point of a tetrahedron t ∈ D (V ) is defined as the center (a.k.a
circumcenter) of t’s circumball. The voronoi edge of a triangle f ∈ D (V ) is the
segment containing those points of R3 such that (a) they are equidistant from
f ’s vertices and (b) they are closer to f ’s vertices than to any other vertex in V .

Let O be the multi-label domain to be meshed. We denote O’s surface with
∂O. The restriction of D (V ) to O (denoted with D|O (V )) is defined as the set
of tetrahedra in the triangulation whose circumcenter lies inside O.

It can be shown [10, 11] that if V samples ∂O sufficiently densely, then the set
of boundary triangles (a.k.a restricted facets) of D|O (V ) is a good approximation
of ∂O in a both topological and geometric sense. The approximation guarantees
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(a) (b) (c)

Fig. 1. (a) Sample set V of a liver’s surface. (b) The Delaunay triangulation D (V ) of
the samples. (c) The restricted triangulation D|O (V ).

hold as long as ∂O does not have sharp corners. This is a reasonable assumption,
since biological tissues do not exhibit sharp features on their surface. See Figure 1
for a single-tissue example. The same idea extends to more than one tissues as
well.

As an interesting consequence of the way D|O (V ) is defined, only the voronoi
edges of the restricted facets intersect the surface ∂O, a property that we will
exploit in Section 3 to improve quality.

3 Our method

The input of our algorithm is an image I containing the multi-material object
O. Image I can be seen as a function f : R3 7→ {0, 1, 2, . . . , n}, such that f (p)
is the label that point p ∈ R3 belongs to. More precisely, f (p) is the label of the
voxel that p lies in. Usually, a label of 0 denotes voxels outside O.

Points on the surface ∂O of object O are classified as those points lying in
a voxel of label i which is incident to at least one other voxel of label j, such
that i < j. In this way, surface ∂O contains not only the portions of the image
that separate O from the background, but it also contains the interfaces that
separate any adjoining tissues. The goal is to recover ∂O and mesh the volume
(induced by ∂O) at the same time.

Our algorithm first creates a box by inserting its 8 corners. The box contains
O such that the (shortest) distance between the box and ∂O is larger than
2δ
√
2. Parameter δ is the only parameter that the users have to specify. This

parameter determines how densely ∂O will be sampled: lower values indicate a
denser sampling which in turn implies a better surface approximation. Notice
that the calculation of the corners of the box is a quite trivial task, since it
requires just one image traversal.

Next, the Delaunay triangulation of these corners is computed. This triangu-
lation is the initial mesh (consisting of 12 tetrahedra) where the actual refinement
starts from.

The refinement is governed by 2 steps, namely, mesh conformity and point

rejection quality improvement. Upon termination, the tetrahedra whose circum-
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Fig. 2. (a) The closest surface point p to circumcenter c is inserted, (b) c is inserted
but p is not, (c)-(d) c does not lie inside the box and therefore it is not inserted. Its
projection c′ is inserted and the vertices closer than δ to c′ are deleted from the mesh.

center belongs to label i constitute the mesh representing the ith tissue. Below,
we outline each step separately.

3.1 Mesh conformity

As noted in Section 2, vertices on ∂O have to be inserted in order for the mesh
boundary (i.e., triangles incident to 2 or more tetrahedra of different labels) to
be a good approximation of ∂O. For this reason, we keep track of the tetrahedra
whose circumball B intersects the surface ∂O. We call such elements intersecting
tetrahedra.

Suppose that an intersecting tetrahedron t is found. We compute the clos-
est surface point —say p —to the center c of t’s circumball B. To facilitate the
computation of such a point, we make use of an image euclidean distance trans-
formation [18]. If p is not closer than δ to any other surface vertex (already
inserted in the mesh), then p is inserted (see Figure 2(a)). Otherwise, and if the
radius of B is larger than 2δ, c is inserted instead (see Figure 2(b)). In this way,
we can show that this step does not cause the insertion of infinite number of
vertices and therefore, termination is not compromised.

For the same reason, we also require that no vertex is ever inserted outside
the box. When the circumcenter c of an intersecting tetrahedron is chosen for
insertion, however, cmight lie outside the box. To prevent such cases, c is rejected
and its projection on the box is inserted instead. See Figure 2(c) and Figure 2(d)
for a couple of examples.

At the end of this step, all the vertices that do not lie on ∂O are deleted
from the triangulation. At this moment, the restricted facets of the mesh are a
good approximation of ∂O, because the vertices remained in the triangulation
form a dense sample of ∂O (see Section 2). Also, we can show that no 2 vertices
are closer than δ and this is why δ controls the size of the mesh.

3.2 Point rejection quality improvement

Our algorithm keeps track of poor tetrahedra, i.e., tetrahedra with small or large
dihedral angles. Poor tetrahedra are eliminated by inserting their circumcenter.



6 Panagiotis Foteinos and Nikos Chrisochoides

Priority is given to the tetrahedra with higher radius-edge ratio as in [16]. The
radius-edge ratio of a tetrahedron t is defined as the length of t’s circumball
radius divided by the length of t’s shortest edge.

Problems arise, however, when the circumcenter of a poor tetrahedron (about
to be eliminated) lies close to the surface. If this is the case, the restricted facets in
the triangulation are not any more a good approximation of ∂O. See Figure 3(a)
for an example: the boundary facets have vertices that do not lie precisely on
the surface.

(a) (b) (c)

Fig. 3. Meshes for a kidney. All dihedral angles are between 19◦ and 150◦. (a) No
extra care has been taken to preserve fidelity and holes appear. (b) The point rejection
strategies prevented the creation of holes. (c) A cross section of the mesh in (b).

To overcome this issue, we propose special point rejection strategies. Their
goal is to make sure that all poor tetrahedra are eliminated without inserting
points close to the surface.

Our algorithm first tries to convert illegal facets to legal ones. We define
legal facets to be those restricted facets whose thee vertices lie precisely on ∂O.
Conversely, a restricted facet with at least one vertex not lying on ∂O is called
an illegal facet.

Let t be an illegal facet and e its voronoi edge (see Figure 4(a) for an illustra-
tion). Recall that e has to intersect ∂O (see Section 2) at a point p. Any vertex
v of t which does not lie precisely on ∂O is deleted from the triangulation, while
point p is inserted. Note that since only non-surface vertices are deleted from
the triangulation and since p is inserted on ∂O, this step does not introduce an
infinite loop: points that are inserted are never deleted.

In addition, the algorithm tries to keep in the Delaunay triangulation as
many legal facets as possible. Let c be the circumcenter of a poor tetrahedron
considered for insertion. If the insertion of c eliminates a legal facet t (see Fig-
ure 4(b)), then c is not inserted. Instead, a point p on the intersection of ∂O and
t’s voronoi edge e is inserted.

Figure 3(b) and Figure 3(c) show how our algorithmmeshed a kidney; observe
that now the boundary facets have vertices lying precisely on ∂O. In the next
section, we will demonstrate that our point rejection strategies work also very
well on multi-material domains.
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Fig. 4. The point rejection strategies. (a) t is an illegal facet. (b) t is a legal facet.

4 Results

We ran our experiments on a 64 bit machine equipped with a 2.80GHz quad-core
Intel i7 processor and 8GB of memory. Our algorithm was built on top of the
Computational Geometry Algorithms Library (CGAL, http://www.cgal.org).We
used the Insight Toolkit (ITK, http://www.itk.org) for image processing. Lastly,
the Visualization Toolkit (VTK, http://www.vtk.org) rendered the meshes.

Figure 5(a) illustrates the output mesh obtained for a segmented CT image
taken from IRCAD (http://www.ircad.fr). Similarly, Figure 5(b) depicts the out-
put mesh obtained for the MR brodmann atlas (http://www.sph.sc.edu/comd/
rorden/mricro.html). Observe that the mesh elements are of excellent quality.
Although we do not give guarantees on the minimum and maximum angles
achieved by our method, we observed that the point rejection strategies are able
to remove elements with angles less than 19◦ and more than 150◦ (in any image
input we tried) without creating an edge smaller than δ

10 . It would be interesting
to theoretically investigate why elements of worse quality are eliminated so eas-
ily without introducing very small edges. We leave that exploration as a future
work. See the columns “ircad” and “brodmann” of Table 1 for some statistical
results.

The last row of Table 1 shows the largest tetrahedron aspect ratio. Aspect
ratio is defined as the ratio of a tetrahedron’s circumradius to its inradius. The
reported aspect ratio is normalized such that the best aspect ratio equals 1.
Therefore, the aspect ratio ranges from 1 to +∞. A high aspect ratio is an
indication of bad quality.

Lastly, we show that the size of the mesh can be controlled directly by pa-
rameter δ. For this reason, we ran our mesher on the same CT image (obtained
by IRCAD), but this time we set the value of δ at 8. That is, we double the value
of δ used to obtain the mesh of Figure 5(a). See Figure 5(c) for an illustration
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19
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◦

(a)

19
◦

150
◦

(b)

19
◦

150
◦

(c)

Fig. 5. Whole meshes, zoomed views, cross sections, and distributions of the dihedral
angles for (a) the CT multi-label image and (b) the MR brain atlas. In (c), we show a
coarser mesh on the same input image that was used in (a).
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Table 1. Information about the images used for the evaluation, the chosen value
for parameter δ, and some quantitative results of the final meshes produced by our
algorithm.

Experiment ircad brodmann ircad(coarse)

Image size 512 × 512 × 219 181 × 217 × 181 512 × 512 × 219
Image resolution (mm) 0.961 × 0.961 × 2.4 1 × 1 × 1 0.961 × 0.961 × 2.4

#Labels 20 41 20
δ (mm) 4 2 8

Time (sec) 421 1, 066 96
#Vertices 139, 740 473, 994 41, 097

#Tetrahedra 783, 445 2, 575, 220 173, 575
Dihedral angles (degrees) 19 − 150 19 − 150 19 − 150

Max. aspect ratio (normalized) 4.67 6.22 4.55

and the last column of Table 1 for some statistical results. Observe that the
number of elements, the number of vertices, and the execution time are greatly
reduced, in the expense of worse fidelity. This is an expected trade-off: the fewer
elements a mesh has, the less likely it is to represent complex surface creases
accurately.

To evaluate our method, we compare it with CGAL (http://www.cgal.org). A
comparison with other popular meshing techniques like Tetgen (http://tetgen.
berlios.de/) or Netgen (http://www.hpfem.jku.at/netgen/) is omitted in this
paper, because they do not operate directly on images. Rather, they require
that the surface is already meshed as a piecewise linear complex. In contrast,
both our algorithm and CGAL mesh the surface and the volume at the same
time.

We run CGAL on the ircad CT image and report the achieved quality. We set
CGAL’s sizing parameters to values that gave output meshes with size similar
to the size of our mesh depicted in Figure 5(a). Furthermore, we set the quality
parameters to their best theoretical values as described in [11]. Quantitative
results for CGAL’s output mesh are shown in Table 2. Compare it with the first
column of Table 1. Observe that the quality of the CGAL mesh is lower than ours
in terms of dihedral angles and aspect ratios. Another popular quality metric
is the minimum scaled Jacobian value [19, 20]. It ranges from −1 to 1 with 1
being the best value. A negative value means that some elements are inverted.
Both our algorithm and CGAL report positive scaled Jacobian values. In fact,
the minimum Jacobian value achieved by our algorithm is 30 times larger than
that achieved by CGAL. In terms of absolute numbers, we feel that the Jacobian
values of our method is low, an issue we are looking into as future work.

5 Conclusions and future work

In conclusion, we have shown that Delaunay refinement techniques are able to
mesh multi-material domains with tetrahedra of very good angles, which makes
our method suitable for subsequent finite element analysis. The point rejection
strategies proposed in this work maintain mesh conformity and high quality
offering, at the same time, control over the mesh size.
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Table 2. Quantitative results of the final mesh produced by CGAL.

Experiment ircad

#Vertices 156, 902

#Tetrahedra 756, 462

Dihedral angles (degrees) 3− 174

Max. aspect ratio (normalized) 16, 823

Note that surface patches of high curvature need to be meshed with more
elements than patches that are not sharp. In its current state, our method meshes
the surfaces uniformly. In the future, we plan to extend our method to produce
graded triangular surfaces and, therefore, smaller meshes.
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Abstract. This paper presents a MRI-free neuronavigation technique
for repetitive transcranial magnetic stimulation (rTMS). This method is
composed of three steps: 1) surface sampling of the subject’s scalp and
face thanks to a 3D tracker, followed by Poisson surface reconstruction, 2)
non-linear surface registration of an atlas surface to the extracted surface
using an efficient modified non-linear EM-ICP algorithm [2], and 3) ex-
trapolation of the transformation to a cortical stimulation target. Results
have been obtained on a database of 10 subjects and have shown an ac-
curacy of 10.2 mm. Although clearly less accurate than neuronavigation
on the subject’s MRI, we advocate that this neuronavigation method is
reproducible and acceptable for routine application of rTMS in severe
depression.

1 Introduction

Repetitive transcranial magnetic stimulation (rTMS) is a cortical stimulation
technique where a strong electromagnetic field is generated by a coil. The field
modifies the neuronal activity beneath the coil and since the stimulation is fo-
cal, rTMS has a broad range of potential applications in psychiatry and neu-
rology [13]. It has been recently shown that there is some correlation between
the stimulation accuracy and the therapeutic efficacy [4]. Therefore, the stimu-
lation is preferably conducted using a neuronavigation system [11] that allows
one to visualize the actual stimulation locus on the subject’s MRI; thus the
clinician can move the coil so that the stimulation is at the planned anatomical
target defined on the MRI prior to stimulation. In this paper, we propose a new
method that allows neuronavigation without MRI in the context of rTMS for
severe, drug-resistant depression. It is generally admitted that a good stimula-
tion target for depression is the dorsolateral prefrontal cortex (DLPFC), defined
as Brodmann areas 9-46 in [12]. There is a huge number of patients with severe
depression that could benefit from rTMS but the cost of the MRI scan, together
with the waiting time (approximately between 5 and 15 weeks depending on
countries), is a bottleneck for widespread MRI-based neuronavigated rTMS. We



argue that a system that would allow a fast, MRI-free navigation with a slightly
degraded accuracy but an excellent reproducibility between sessions would be
valuable in clinical routine. Hence, in this paper we propose a surface-based
neuronavigation on atlas for rTMS. Firstly, the subject’s skin surface (scalp and
face) is sampled thanks to a pointer localized by a 3D tracker of the neuro-
navigation system and reconstructed using the Poisson method. Secondly, the
atlas surface, on which the stimulation target has been localized beforehand, is
registered to the subject’s surface thanks to an EM-ICP non-linear registration
technique. Thirdly, the non-linear transformation computed on the surface is ex-
trapolated to the cortical stimulation target to predict the patient’s stimulation
target for treatment-resistant depression. Accuracy was evaluated on a dataset
of 10 subjects and was found to be 10.2 mm on average. The closest work to our
method was presented in [8], where the authors used a small number of surface
points (22) to register a database of 56 subjects so as to create a functional
probabilistic atlas. In our paper, the atlas is deformed toward the subject using
a large number of points (generally, several thousands) and an anatomical target
is transformed and used in the neuronavigation system to guide a rTMS coil.

2 Material and method

2.1 Method overview

An overview of the method is presented in Figure 1. For a given subject, a
surface sampling is first performed, using a pointer tracked by a 3D localizer
of the neuronavigation system. Then, the segmented surface of the atlas X is
registered to the subject’s surface Y and the resulting transformation T is used
to map the coordinates of the target into the subject’s space. The data are then
used by the neuronavigation system to guide the rTMS coil. The next sections
will describe the following steps: surface acquisition and reconstruction of Y in
Section 2.2 and surface registration of X to Y in Section 2.3. Visual results are
presented in Section 3.

2.2 Surface acquisition and reconstruction

Anatomical sampling of the subject’s scalp and face is performed using an opti-
cal tracking system (Claron Technology Inc., Toronto) composed of the Micron-
Tracker camera and recognized markers. Sampling of points is achieved by cov-
ering the subject’s head with the calibrated pointer tooltip. A software module
was developed to record 4 anatomical landmarks denoted as LY on the subject’s
head (inion, nasion, left and right tragus) used for an initial landmark-based
registration (coined the LDM method hereafter) and then at least 100 surface
points. The average number of samples was 3500 points, and the maximal sam-
pling time was 10 minutes.

Then, the set of unorganized points is processed and a closed surface is re-
constructed: firstly, the point set is processed through functions dedicated to
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Fig. 1. (a): overview of the surface-based neuronavigation on atlas. (b): a surface
rendering of the cortex with the Brodmann area 9/46, or DLPFC, dashed on the
surface. To compute Euclidean errors, the area is identified as the centroid, represented
here as the red point.

smoothing, outliers removal, normal estimation using the CGAL library [6]. The
output is an oriented, smoothed point set suitable for surface reconstruction. Sec-
ondly, a surface reconstruction algorithm is applied to generate an iso-surface
from the oriented pre-processed point set. 3D surface reconstruction from points
set is a well-studied issue. Commonly used surface reconstruction techniques are
based on Delaunay triangulation, implicit functions or parametric models. Given
that the output of the pre-processing stage is a non-uniform, outlier reduced and
smoothed point set, the reconstruction method used in our study should (1) infer
the topology of the unknown surface, (2) fit the data, and (3) fill holes. For these
reasons, the Poisson reconstruction technique is used [7]. This method allows re-
construction with greater details than other techniques. An implementation of
the Poisson surface reconstruction algorithm based on the VTK framework [3]
was used. This process produces the point set Y describing the subject’s scalp
and face, along with the landmark set LY .

2.3 Surface registration: efficient EM-ICP algorithm for linear and
non-linear registration

In this section, we show how to compute the transformation T that best super-
poses the surface of the atlas X on the surface of the subject Y (using additional
landmarks LX = (lXk ) and LY = (lYk )) so as to compute the coordinates of the
target in the subject’s space.

General scheme The EM-ICP algorithm [5] is an efficient and elegant solu-
tion for rigid registration of point sets. It relies on a probabilistic modeling of
the point-to-point correspondences that allows i) a pragmatic definition of the
superimposition of two point sets and ii) to deal with a relatively smooth cost
function to minimize (in contrast to the classical ICP algorithm). Moreover, it
is mathematically well-grounded (monotonic convergence), generic (no assump-
tion on tessellation/topology/number of points) and can be specialized in many
ways (e.g. to deal with non-linear deformations or to estimate shape models [1]).
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Most importantly, the EM-ICP algorithm [5] allows dealing very efficiently and
robustly with large point sets. This algorithm can be shown to be equivalent to
the alternated iterative minimization of a energetic criterion. In this work, we
propose a slight modification of the underlying criterion that allows one i) to use
pairs of landmarks to constrain the registration, ii) to symmetrize the estimation
of point-to-point correspondences and iii) to add a regularization on T to deal
with non-linear deformations:

E(T (X), Y, A,B) =
∑
j,k

(Ajk +Bjk)ρδ(||yj − T (xk)||2) + 2σ2β
∑
k

||lYk − T (lXk )||2

+2σ2
∑
j,k

Ajk log(Ajk) + 2σ2
∑
j,k

Bjk log(Bjk) + 2σ2αL(T ),

with ∀j,
∑
k

Ajk = 1 and ∀k,
∑
j

Bjk = 1 (1)

where

– if we drop matrix B for a moment, for the sake of clarity, A = (Ajk) is
the unknown match matrix encoding the a posteriori probabilities of corre-
spondence between points of X and Y . This probabilistic interpretation of
A is made possible thanks to the barrier function

∑
jk Ajk log(Ajk) [1]. In

essence, the greater Ajk, the more likely the point xk ∈ X to be the corre-
spondent of the point yj ∈ Y . σ2 is the Gaussian noise variance of X. This
fuzzy control on the correspondences allows one to handle problems due to
differences of sampling/number of points between X and Y : we do not look
for one-to-one correspondences between points of each surface but instead
for “fuzzy” correspondences linking each point of Y to each point of X. This
match matrix is a row stochastic matrix, which leads to many-to-one cor-
respondences. This asymmetric formulation makes the algorithm unable to
achieve a good matching in specific cases and can make the choice of the
source and target sets critical. To tackle this problem, our criterion also con-
tains a second match matrix B, that is column stochastic, in addition to the
row stochastic matrix A. The a posteriori probabilities of correspondences
between points of X and Y is encoded in both matrices A and B, making
the point-to-point matching much more symmetrical compared to [5].

– T is a transformation (to be later defined) superposing X on Y . This trans-
formation is subject to a regularizer L.

– α and β are two positive parameters weighing respectively the regulariza-
tion L(T ) term and the landmark-to-landmark discrepancy term

∑
k ||lYk −

T (lXk )||2 over the other terms.
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– the function (ρδ : r 7−→ r if r < δ and δ else) is a robust function allowing
points of X (resp. Y ) having no homologue in Y (resp. X) to be discarded
from the estimation of T .

It can be shown that the criterion E can be minimized over the three un-
known parameters T , A and B using the following two-step algorithm:

Algo NL-Sym-EM-ICP: Symmetric robust non-linear EM-ICP with landmarks

Step 1:
initialise Ã and B̃ to the null matrix
∀xk ∈ X;
S = {yj ∈ Y such that ||yj − T̃ (xk)||2 < δ} (using a kd-tree)
∀yj ∈ S;
∀yj ∈ S; Ãjk = exp(−(||yj − T̃ (xk)||2/(2σ2))
∀yj /∈ S; Ãjk is left equal to 0

B̃ = Ã

normalise Ã in rows and B̃ in columns
compute the vectors (p̃j) : ∀j, p̃j = 0 if

∑
i Ãji = 0 and 1 else

compute the vectors (q̃k) : ∀k, q̃k = 0 if
∑
i B̃ik = 0 and 1 else

Step 2: solve the approximation problem:
arg minT

∑
j,k(p̃jÃjk + q̃kB̃jk)||yj − T (xk)||2 + 2σ2β

∑
k ||T (lXk )− lYk ||2 + 2σ2αL(T )

Specifying T/L In practice, we design a coarse-to-fine approach to estimate T
by first computing the rigid transformation best superposing LX on LY and then
using the NL-Sym-EM-ICP algorithm by modeling T successively as a rigid R, an
affine F and a non-linear transformation W . For rigid and affine transformations
T , we take L(T ) = 0 and Step 2 has a closed-form solution. For the non-linear
transformation, we parametrize W as a deformation field (i.e. W (x) = x+ t(x))
and design L as a scalar Fourier-based regularizer over t:

L(t = (t1, t2, t3)T ) = L(t1)+L(t2)+L(t3),with L(ti) =
1

(2π)3

∫ ∞
−∞

|t∗i (ω)|2

φ∗(|ω|/b)
dω,

where ∗ is the Fourier transform operator, φ : R → R is an integrable function
and b is a real strictly positive rescaling factor. We choose φ as a Wu compactly
supported positive definite kernel. The advantage of such a regularization (over
the TPS regularizer for example) is that it i) provides efficient solutions for Step
2 based on sparse linear algebra [14] and ii) introduces a scaling parameter b.
The larger the b value, the more drastic the penalization of the high frequencies,
i.e. by choosing a large b value, we focus on capturing the global/high-scale
deformation superposing X and Y .
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Interpolating the target position Each estimated transformation R, F and
W is defined over R3 and has a closed-form expression. As a result, any point y
of Y (thus those representing the DLPFC) can be mapped in the space of X as
y

′
= W (F (R(y))).

2.4 Material

Phantom To assess the accuracy of the point acquisition and reconstruction
steps, a human-head phantom was used, shown in Figure 2-(a). The phantom
was scanned with an isotropic 0.5 mm resolution CT (size 512×512×841). A set
of 4099 points was acquired as described in Section 2.2. The surface of the phan-
tom was extracted using heuristic thresholding and mathematical morphology
operators.

Subjects The experiments were performed using anatomical brain MRI of 10
healthy volunteers. Each subject had a brain MRI scan using a 3D T1-weighted
sequence with 1 mm isotropic resolution, and the skin surface was extracted
using thresholding and mathematical morphology operators. On the subjects, the
surface representing the scalp and face was sampled using the process described
in Section 2.2.

MRI Atlas In the experiments, the MRI atlas described in [9] was used. The
skin surface was extracted using thresholding and mathematical morphology
operators, and the four landmark points LX were manually localized. This atlas
was used instead of the Colin27 atlas since on the latter, the surface extraction
process is difficult due to an antenna visible on the top of the atlas.

DLPFC localization Manual positioning of the DPLFC on the subjects’ MRI
and on the atlas was performed by an expert in neuroanatomy. The DLPFC was
defined as the second third, i.e. middle part, of the middle frontal gyrus along
the antero-posterior axis, corresponding to Brodmann areas 9/46 as described
in [12], and as shown in Figure 1-(b). We have chosen to characterize the position
of the DLPFC by its centroid, shown by the red dot. Therefore, hereafter the
DLPFC is considered as a point, what enables to compute Euclidean distances
between estimated targets and reference targets.

3 Validation and results

3.1 Poisson reconstruction accuracy

The point set acquired on the physical phantom was registered to the phan-
tom’s skin surface extracted from the CT using a rigid EM-ICP. The computed
transformation was then applied to the reconstructed Poisson surface. The mean
point-to-point error between the Poisson surface and the surface extracted from
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the CT scan was 1.6 mm (standard deviation 1.08 mm). Results are presented
in Figure 2. These results demonstrate the accuracy of the point sampling and
show that the reconstructed surface is valid to represent the subject’s scalp and
face.

3.2 Distance between predicted and reference DLPFC

The skin surface extracted on the MRI was registered toward the Poisson re-
constructed surface using rigid EM-ICP. On the other side, the Poisson recon-
structed surface was registered toward the atlas skin surface using the non-
linear EM-ICP. Therefore, the predicted DLPFC can be compared to the ref-
erence DLPFC. Various degrees of freedom of the transformation were tested:
landmark-based registration that corresponds to a Procrustes alignment using
the 4 anatomical landmarks (LDM), LDM followed by a rigid registration (R),
R followed by an affine registration (RA) and RA followed by a non-linear reg-
istration (NL). Table 1 shows the obtained errors for the 10 subjects for all
transformations. Firstly, it can be observed that the mean error decreases when
the degrees of freedom of the transformation increase. Secondly, the error ob-
tained with the fully non-linear method is 10.2 mm on average. These results
are discussed hereafter.

4 Conclusion

In this paper, a new method was proposed to perform neuronavigation without
MRI for transcranial magnetic stimulation. The method is based on a subject’s
surface sampling and reconstruction, followed by a non-linear registration of an
atlas surface to the obtained surface. The transformation is then used to map
the coordinates of the DLPFC in the atlas to the subject’s space. Firstly, we
found the surface sampling and reconstruction on the phantom to be accurate
(mean error 1.6 mm, standard deviation 1.08 mm). Secondly, we compared the
surface-based DLPFC localization to a ground truth localization performed by
an expert in neuroanatomy. Results have shown on 10 subjects that the mean
error was 10.2 mm.

In a previous study [10], we have assessed the performance of 3 clinicians on
25 subjects to localize the DLPFC on MRI and found a large discrepancy be-
tween raters: accuracy compared to reference localization varied between 8 mm
and 14 mm (standard deviation 5.7 mm). In comparison, the mean error of
10.2 mm can be considered acceptable. In addition, we focus on rTMS appli-
cation where the electromagnetic field has some dispersion. Therefore, we ar-
gue that, although less accurate than neuronavigation using the subject’s MRI,
this MRI-free neuronavigation technique is reproducible between sessions and is
valuable for a routine clinical use of rTMS. Further work should 1) enlarge the
database of subjects and extend this technique to other stimulation targets, such
as the temporoparietal cortex to treat auditory hallucination in schizophrenia
for instance and 2) evaluate the therapeutic efficiency on patients.
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(a) (b)

(c) (d)

Fig. 2. This figure shows the validation of the acquisition and reconstruction of a point
set on a physical-head phantom. (a) shows a picture of the physical phantom used to
assess the surface acquisition and reconstruction method. (b) shows the acquired point
set and the reconstructed Poisson surface. (c) shows the skin surface extracted from
CT. (d) shows the Poisson surface registered to the CT surface. The color represents
the spatial distribution of errors after reconstruction and registration. The mean point-
to-point error was 1.6 mm with standard deviation was 1.08 mm.
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Landmark-based Rigid Affine Non-linear
Subject 1 11.3 5.7 3.5 3.3
Subject 2 13.1 13.5 12.1 11.9
Subject 3 23.8 15.1 13.6 12.3
Subject 4 27.7 10.5 8.8 9.2
Subject 5 16.8 4.7 3.2 3.1
Subject 6 22.5 9.1 7.6 6.8
Subject 7 32.9 21 20.3 19.5
Subject 8 22.7 18.7 14.2 13.6
Subject 9 21.3 19.2 15.6 15.4
Subject 10 23.3 7.7 6.4 6.7

Mean (mm) 21.54 12.52 10.53 10.18
Std.dev. (mm) 6.46 5.86 5.56 5.33

Table 1. Results of the surface-based localization of the DLPFC when compared to the
reference DLPFC. Various parametrization of the surface-based method were tested.
The fully non-linear registration provided a mean error of 10.2 mm.
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Fig. 1. Examples of intracranial sidewall aneurysms.

Abstract. Studies have found strong correlation between the risk of
rupture of intracranial aneurysms and various physical measurements
on the aneurysms, such as volume, surface area, neck length, among
others. Accuracy of risk prediction relies on the accuracy of these quan-
tities, which in turn, is determined by the precision of the underlying
segmentation algorithm. In this paper, we propose an algorithm for the
separation of aneurysms in pathological vessels. The approach is based
on conditional random fields (CRF), and exploits regional shape proper-
ties for unary, and layout constraints for pair-wise potentials to achieve
a high degree of accuracy. To this end, we construct very rich rotation
invariant shape descriptors, and couple them with randomized decision
trees to determine posterior probabilities. These probabilities define weak
priors in the unary potentials, which are also combined with strong pri-
ors determined from user interaction. Pairwise potentials are used to
impose smoothness as well as spatial ordering constraints. The proposed
descriptor is independent of surface orientation, and is richer than exist-
ing approaches due to attribute weighting. The conditional probability
of CRF is maximized through graph-cuts, and the approach is validated
with real dataset w.r.t. the groundtruth, resulting in the area overlap ra-
tio of 88.1%. Most importantly, it successfully solves the “touching vessel
leaking” problem.

? Corresponding author: Sajjad Baloch, Siemens Corporate Research, Princeton, NJ,
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1 Introduction

Intracranial aneurysms is a major vascular disease in the brain, attributed to
local weakening of the vessel wall. It manifests in the form of bulging (saccu-
lar aneurysm) or dilation (fusiform aneurysm) as shown in Fig. 1. Intracranial
aneurysms frequently occur near areas of high arterial curvature or bifurcations,
as these regions usually experience more hemodynamic stress [7]. If left un-
treated, an aneurysm grows in size, thereby further weakening the wall strength
and increasing the risk of rupture, which may lead to subarachnoid hemorrhage,
neurological deficits, and in up to 56% of cases mortality [14]. In order to prevent
its growth and reduce the risk of rupture, surgical intervention is required, where
stents, wire coils, and other embolic material or devices are placed not only to
enforce the vessel wall, but also to alter the blood flow pattern, thereby reducing
the pressure on regions more prone to rupture.

Once diagnosed, aneurysms are carefully monitored and examined, before
making a surgical decision. To this end, geometry of aneurysm plays a cru-
cial role. Physicians analyze various measurements of geometric primitives [5]
evaluated on an aneurysm, which allows them to carry out surgical planning.
Separation of the aneurysm from the healthy vessel, therefore, serves as a crit-
ical step, whose accuracy determines the eventual outcome in terms of surgical
decisions, device selection, as well as patient recovery. The problem is, however,
very challenging due to the complex topology and geometry of the underlying
blood vessel, and its large inter-patient variation.

Early approaches on aneurysms separation mainly focused on deformable
models. By grouping local shape descriptors, McLaughlin and Nobel [10] em-
ployed a region-splitting algorithm to segment the aneurysm from the neigh-
boring vasculature. Their approach, however, fails to yield reliable results for
wide-neck saccular aneurysms. Wong and Chung [16] modeled the healthy part
of the vessel as a tubular deformable model, and determine the abnormal struc-
ture of aneurysms as the complement of the healthy model. Their approach
does not provide protection against the leaking of the deformable model in-
side the aneurysm. Ford et al. [6], on the other hand, presented a method to
reconstruct the parent artery by removing the aneurysm. They also utilized de-
formable model to model vessel of parent. The method needs smooth surface
and is limited to the morphology of parent artery surface.

More recently, Mohamed el at. [11] utilized mesh based snakes for computer-
aided planning for endovascular treatment of intracranial aneurysms (CAPETA).
A major limitation of their approach was its inability to adapt to topological
changes in the aneurysm boundary, resulting in erroneous results for meshes
with touching vessels. Furthermore, due to the local nature of the snakes, their
proposed method fails to guarantee a globally optimal solution. To address these
issues, Sgouritsa el at. [13] proposed a curvature based graph-cut strategy for
segmenting the 3D vessel mesh, guided by strong priors, which in turn were
determined from user input in the form of 3 seed points. Due to its depen-
dence on strong priors, the accuracy of this approach is determined by the ac-
curacy of the prior computation algorithm, and remains highly sensitive to the
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manual user input. Also, in practical situations, the gaussian curvature is too
coarse to adequately capture underlying shape variations. It is, therefore, re-
quired to construct richer shape representations, which adequately capture the
vessel-aneurysm differences.

In this paper, we propose a novel method for aneurysm separation based on
conditional random fields (CRF) by augmenting both unary and pairwise poten-
tials. Unary potentials are decomposed into strong and weak priors. The former
are determined from interactive user input, and the latter are estimated via
randomized decision forest as posterior probabilities of novel shape descriptors.
More specifically, we propose algorithms for accurate strong prior determina-
tion. The shape descriptors, in turn, are constructed from underlying local and
regional geometry. Pairwise potentials are encoded to impose spatial ordering
as well as smoothness constraints. The conditional probability of CRF is max-
imized through graph-cuts. This formulation allows multitude of improvements
over existing approaches. Like [13], our method is not limited by topological
variations. Unlike [13], we construct shape descriptors specifically tailored for
the problem under consideration, i.e., for the separation of blob like aneurysms
on tubular vessels. Inferencing from examples allows us to specify weak priors,
thereby allowing more flexibility. Smoothness and layout constraints penalize
the assignment of inconsistent labels. We validate the proposed method with
real dataset comprising of 27 3D digital subtraction angiographic (DSA) im-
ages in the CAPETA framework [11], and carry out a comparison with [13].
The experimental results demonstrate that (1) in all cases our improved prior
seeds were in accordance with the groundtruth, and (2) our aneurysm method
consistently outperforms [13].

The rest of the paper is organized as follows: We first formulate aneurysm
separation as CRF in Section 2, followed by the construction of shape descriptors
in Section 3. Unary and pairwise potentials are developed in Section 4, along
with the algorithms for finding strong priors. Experimental results are presented
in Section 5, before we concluded in Section 6.

2 Problem Formulation

For robust aneurysm separation algorithm, we formulate the problem as Condi-
tional Random Fields (CRF) that are driven by rich shape descriptors.

2.1 Conditional Random Fields

Given a triangular mesh T := (P,E) representing a surfaceM embedded in R3,
with P := {pi = p(vi)} denoting the set of positions at vertices V = {vi}, and
E = {ek} denoting the edges connecting the respective vertices. p : V → P, vi 7→
pi, therefore, forms an isomorphism from the undirected graph G := (V,E) to
T . The problem under consideration is to find a binary labeling l : V → L =
{lv, la}, vi 7→ li := l(vi) that partitions G into two segments. For aneurysm
separation problem, this amounts to segmenting a mesh into the healthy vessel
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and the aneurysm regions, and is dictated by some feature properties of the
underlying geometry.

Suppose xi defines a shape or geometric descriptor of vi in T possibly with a
non-local region of support, then the isomorphism x : V → X, vi 7→ xi := x(vi)
captures the underlying geometric description of vi and the corresponding graph
X := (xi, ei) may be exploited to find the partitioning. The optimal partition is
the one that maximizes the joint distribution of (X,L):

l∗ = arg max
l
P (X, l; θ) (1)

= arg max
l
P (X; θ)P (l|X; θ)

= arg max
l
P (l|X; θ),

where θ represents a distribution parameter. Conditional random field setting
allows one to simplify the above expression, by considering a local (1-ring) neigh-
borhood N(vi) at each vertex, vi:

P (l|X; θ) =
1

Z(θ,X)

∏
i

φi (li, X; θ)
∏
(i,j)

ψij (li, lj , X; θ) , (2)

where the unary potential, φi, captures the posterior distribution of labels at
vi, and the pairwise potential, ψij , models the neighborhood labeling relations
allowing one to impose spatial constraints. Depending on the application, one
may incorporate various constraints, such as smoothing or spatial ordering, in
the form of soft layout consistency or hard layout consistency [18].

The problem is, therefore, reduced to constructing appropriate shape descrip-
tors x, estimating posterior probabilities, and specifying a pairwise potential that
is suitable for the application. Maximization of Eq. (2) is identical to the mini-
mization of the following energy functional:

E(l|X) =
∑
i

log φi (li, X; θ) +
∑
(i,j)

logψij (li, lj , X; θ) . (3)

3 Shape Descriptors

We are interested in separating blob like structures, such as aneurysms, from
somewhat tubular regions, such as blood vessels. For each point pi on T , we
extract surface features, Fi, that are highly discriminating between these kind
of regions. They include regional shape as well as local geometry.

3.1 Local Descriptors

For local descriptors, we rely on the curvature information. We exploit Gaussian
curvature κ, mean curvature H, and maximum and minimum principal curva-
tures, κ1 and κ2. In addition, we also consider maximum and minimum principal
directions, v1 and v2, and the shape index, s:
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s =
2

π
arctan

κ2 + κ1
κ2 − κ1

, κ2 ≥ κ1. (4)

3.2 Regional Shape Descriptors

The regional shape information is captured through various shape descriptors,
namely (1) Wilmore energy, and (2) regional attribute weighted geodesic shape
contexts.

Wilmore Energy The Wilmore energy of a vertex vi ∈ G is defined in terms
of the isomorphism T , and its n-ring neighborhood, Si:

W :=

∫
Sp

(H2 − κ)dA, (5)

where dA is a surface area element of Sp.
Note that W (p) ≥ 0, with W (p) = 0 if and only if p is convex, and v and

all of its neighbors, Sp lie on a common sphere[2]. Consequently, big blob like
structures, such as aneurysms, are characterized by small Wilmore energy.

Regional Attribute Weighted Geodesic Shape Contexts Shape contexts
[1] are defined by creating bins of various spatial parameters, followed by con-
structing a histogram that counts points falling in each bin. [12] proposed 3D
shape contexts for surface matching, which bin the 3D space via spherical co-
ordinates. Such descriptors, however, are not invariant to the orientation of the
surface. To overcome this problem, we carry out geodesic binning for each point
p ∈ M, as illustrated in Fig. 2. Geodesic distances are intrinsic to a surface,
and, therefore, lead to rotation invariance. If g(p, .) is the geodesic distance from
point p, then geodesic binning, within a local neighborhood Gr(p) := {∀q ∈M :
g(p, q) ≤ r}, is defined as {i = 0, . . . , k − 1 : gi ≤ gi(p, q) < gi+1} with gk = r.
Histograms are then generated by computing the concentration of various sur-
face attributes within each bin. Although apparently similar to [18], which has
also utilized geodesic binning for layout consistent segmentation of ear impres-
sions, we consider regional binning instead of doing it globally. In problem under
consideration, global binning causes a confounding effect, as random branching
across individuals introduces noise in the sample data. Furthermore, we con-
sider various histograms of diverse surface attributes, such as Gaussian curvature
weighted point distribution, area distribution, and the distribution of connected
components.

The Gaussian curvature weighted point distribution shape context fg =
(fg0 , . . . , f

g
k−1) computes the number of points falling within each bin normal-

ized by the total number of points in all bins to create a distribution. Finally
each bin is weighted by the Gaussian curvature averaged within it. For meshes
with non-uniform triangulation, the discrete number of points does not truly
represent the underlying geometry. For this reason, we augment our feature set,
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Fig. 2. Geodesic binning
at selected vertices.

Fig. 3. Reference input provided by a user in the form of
dome, proximal, and distal points.

by computing the surface area of each bin to create a second shape context
distribution fa = (fa0 , . . . , f

a
k−1). It should be noted that this does not make

the previous shape context redundant, since for non-uniform triangulation the
point density is related to interesting features. We, therefore, retain both de-
scriptors, and will later carry out feature selection strategy to retain the most
distinguishing features.

The third and final shape context f c = (f c0 , . . . , f
c
k−1) captures the number of

connected components in each bin. This shape context is particularly important
to differentiate flat or thick regions from narrow tubular areas. The hypothe-
sis is that such a descriptor will help in segmenting a touching vessel from an
aneurysm.

Visibility from Reference Point Due to their almost convex shape, most points
on an aneurysm are visible from their centroid r. This allows us to consider a
very powerful feature in our feature design:

νr(p) :=

{
1 if p is visible from c
0 o.w.

(6)

Since the centroid is not known a priori, we assume that its rough location is
specified by a user as a reference point.

All these features are combined in a feature vector Fp := (κ,H, κ1, κ2, s,v1,v2,
W, fg, fa, f c, νr) as a local and regional descriptor of a point p ∈ T .

4 Potential Specification

After constructing the shape descriptors, we are in a position to specify unary
potentials and pairwise potentials. Unary potentials are determined from the
probability of aneurysm and pairwise potentials are used to impose smoothness
and layout constraints. In this paper, we decompose the unary potentials into
strong and weak priors; the former is determined from the user input and latter
incorporates posterior probabilities learned from shape descriptors. The term
strong highlights high confidence, and hence, large weights for such priors.



7

Major differences of our approach from [13] include: (1) rich shape descrip-
tors, as opposed to scalar descriptor (Gaussian curvature) in [13]; (2) we em-
ploy CRF framework, which naturally encodes the posterior probabilities of
aneurysm; (3) weak prior unary potentials are estimated by randomized de-
cision trees; (4) new robust algorithms for finding strong priors, where [13] finds
erroneous priors; (5) smoothness and layout constraints in pairwise potentials.

4.1 Strong Unary Potentials

For strong priors, we adopt an approach similar to recently proposed CAPETA
framework [11], where a user specifies so-called dome, proximal and distal points
as shown in Fig. 3. The dome point pD very roughly provides the location of the
aneurysm relative to the vessel, and proximal pp and distal pd points specify the
region of interest for subsequent analysis in CAPETA. The aneurysm, therefore,
always falls between the proximal and distal point input. It should be noted
that these points do not lie on the surface, but are centered inside the vessel in
the viewing direction. The closest point projection p̃D of pD is used as pref in
Eq. (10), and pD is employed as the reference point r for the visibility feature
of Eq. (6).

Vessel Prior We exploit these points for establishing strong priors in our unary
potential. [13] used two kind of contours for strong priors. The strong prior for the
vessel was determined from the proximal pp and distal pd points, by projecting
them to the mesh, p̃p and p̃d, and then using the geodesic h between them
as the vessel prior. The limitation of this approach is that frequently touches
the boundary between the aneurysm and the healthy vessel, therefore, leading
to incorrect specification of the strong vessel priors as illustrated in Fig. 4(a).
To overcome this limitation, we enforce the geodesic to stay away from the
boundary. The optimal geodesic is the one that simultaneously minimizes the
distance between p̃p and p̃d, as well as the minimum mean curvature along the
path:

h∗(p̃p, p̃d) := arg min
g∈M

∫ p̃d

p̃p

ϕ(H)π(h(p̃p, p̃d))dh, (7)

where ϕ is a decreasing functional of mean curvature H, and π is the length of
the geodesic. As shown in Fig. 4(b), the modified geodesic leads to more reliable
vessel prior Av.

Aneurysm Prior In [13], aneurysm prior was based on a planar contour C :=
T ∩ P found as an intersection between T and a plane P centered at the dome
point pD. The plane normal n was defined as the direction of a vector found as
follows. First, the closest point pc to the dome point pD is determined on the
vessel centerline between pp and pd. n is then:

n :=
pD − pc
||pD − pc||2

. (8)
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(a) (b)

Fig. 4. Problems with the strong priors of [13]: (a) Vessel prior; (b) Aneurysm prior.
Small spheres represent the reference points that lie inside the vessel. Big spheres are
the mapping of the references points to the vessel surface.

Finally, the intersection contour is employed as the strong prior for the aneurysm
region. The utility of this prior is limited to the extent that there is only one
intersection contour, which is usually not true. This problem can be resolved
by selected the correct single connected component, in the case of touching
vessels. In addition, the plane may cut across at the touching point, and the
intersection contour may consist of both aneurysm and the touching vessel part.
We exploit the minimum principal curvature to decompose the contour into
various segments, and eventually use the largest connected segment as the strong
aneurysm prior Aa.

4.2 Weak Unary Potential

Weak unary potentials are learned from examples. In general, xi can reside in
some high dimensional space, and the learning process may be quite challeng-
ing. Given a dataset of pathological vessels, and the associated expert labeled
groundtruth, a randomized decision forest is constructed for the classification
similar to [15,18], based on the extraction of the above mentioned shape de-
scriptors. The advantages of randomized forests include: (1) its built-in feature
selection mechanism, where maximum information gain is used for node split-
ting, and (2) its ability to avoid over-fitting without pruning. For test vessels,
posterior probabilities are computed and used as weak priors.

The strong priors are incorporated in the unary potential as follows:

log φi (li, X; θ) =

γ3 if pi ∈ Aa and li = lv
γ4 if pi ∈ Av and li = la
log φi (li, X; θ) o.w.

(9)

where γ3, γ4 are the penalization costs for incorrect label assignments.
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4.3 Pairwise Potential

In order to derive pairwise potential, we assume that a reference point pref is given
in the region la. A spatial layout constraint is then introduced that penalizes the
assignment of lv to a vertex that is closer in geodesic distance sense to pref than
its neighbor with a label la. Similarly, we penalize the assignment of different
labels to neighboring vertices to ensure a smoothness constraint:

−logψij (li, lj , X; θ) = exp(α(κi+κj))+

0 if li = lj
γ1 if li 6= lj , li = la, g(pi, pref) ≥ g(pj , pref)
γ2 if li 6= lj

(10)
where κi and κj denote the Gaussian curvature at points pi, pj ∈ T . The first
term on the right hand side, therefore, penalizes the assignment of identical la-
bels to neighboring vertices with high curvature edges. γ1 and γ2 are the costs
assigned empirically or inferred from data. α is an exponential shaping coeffi-
cient.

Eventually segmentation is carried out by minimizing Eq. (3) through the
α-expansion algorithm [4,9,3].

5 Experiments

In this section, we compare the proposed method with [13]. 3D Digital Subtrac-
tion Angiographic (DSA) images of 30 patients are acquired, and subsequently
thresholded as described in [11], to extract the pathological vessels. 3D triangu-
lar meshes were constructed through marching cubes, and were then decimated
using quadric decimation [8]. An expert is asked to provide manual labeling
on these meshes. Various features were computed to construct regional shape
descriptors at each mesh vertex. Curvature estimates were based on adaptive
ball approach [17] due to its robustness to noise. 10-ring neighborhood was uti-
lized for Wilmore energy, and 3mm neighborhood was considered for computing
geodesic shape contexts.

4 problem cases were identified, where [13] had failed to provide reasonable
results. These examples, along with 4 additional randomly selected meshes were
considered as the test dataset. The remaining meshes were added to the training
dataset, and training of randomized forest (comprising of 60 trees) was carried
out, to compute coarse aneurysm separation and posterior estimates. Some ex-
amples are given in Fig. 5.

For the test cases, vessel and aneurysm labels for strong priors were deter-
mined as described in Section 4.1. For comparison, results are shown in Fig. 6
for the problem cases highlighted in Fig. 4.

Energy functional of Eq. (3) was minimized via two iterations of α-expansion
algorithm. A quantitative measure was defined as QM := (A∩B)/(A∪B), where
A is an automatic separation, whereas B is the groundtruth. γ1 = 3.5, γ2 =
5, γ3 = γ4 = 109 in Eqs. (9) and (10) were determined by maximizing QM
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Fig. 5. Posterior label probabilities for example cases.

(a) (b)

Fig. 6. Strong prior labels determined by the method proposed in Section 4.1 for the
problem cases of Fig. 4: (a) Aneurysm strong prior labels; (b) Vessel strong prior labels.
Note that the modified aneurysm prior (green contour) does not go inside the touching
vessel, and the vessel prior (green contour) stays away from aneurysm region.

via alternating variables. Results are given in Fig. 7, providing a qualitative
comparison with [13]. Overall, the average QM for our method was computed to
be 88.1%, compared with 73.0% for [13]. Most importantly, the leaking problem
with [13] into the touching vessels is completely resolved by our approach.

6 Conclusions

We have proposed a CRF based method for the separation of aneurysms from
healthy vessel regions. A unique strength of the method is that it effectively
combines two sources of information, patient specific strong priors in the form
of user input, and data-driven shape priors learned from a large number of
aneurysm examples. Along with strong prior obtained from user’s interactive in-
put, posterior probabilities learned by randomized decision trees with rich shape
descriptors are considered as unary potentials. Smoothness of the segmentation
is ensured through pairwise potentials, which are also enriched with spatial or-
dering constrains. Final segmentation is achieved by minimizing the resulting
energy functional with graph-cuts. The proposed method is validated with a
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(a) (b) (c) (d)

Fig. 7. Comparison with [13]. (a) and (c) [13]; (b) and (d) The proposed method.
Latter outperforms [13] especially for the touching vessels.

real dataset with outstanding results (an accuracy measure of 88.1%). It also
perfectly resolves the touching vessel leaking problem.
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Abstract. We present a complete system for motion correction in high
resolution brain positron emission tomography (PET) imaging. It is
based on a compact structured light scanner mounted above the patient
tunnel of the Siemens High Resolution Research Tomograph PET brain
scanner. The structured light system is equipped with a near infrared
diode and uses phase-shift interferometry to compute 3D representations
of the forehead of the patient. These 3D point clouds are progressively
aligned to a reference surface and thereby giving the head pose changes.
The estimated pose changes are used to reposition a sequence of recon-
structed PET frames. To align the structured light system with the PET
coordinate system a novel registration algorithm based on the PET trans-
mission scan and an initial surface has been developed. The performance
of the complete setup has been evaluated using a custom made phantom
based on a plastic mannequin head equipped with two positron emitting
line sources. Two experiments were performed. The first simulates rapid
and short head movements, while the second simulates slow and contin-
uous movements. In both cases, the system was able to produce PET
scans with focus the PET reconstructions. The system is near ready for
clinical testing.

1 Introduction

Patient head movement during high resolution brain positron emission tomog-
raphy (PET) scanning will cause blurring and ghosting [3]. The low count rate
and resulting low contrast makes it near impossible to perform motion correc-
tion on raw PET data and therefore most methods rely on external tracking
of the head movement [10, 11, 12, 16]. The Polaris Vicra (Northern Digital Inc.)
tracking system has been used as the reference on many PET installations [6].
While the Polaris system is well tested and accurate it suffers from problems
related to attaching optical markers to the patients head. Experience shows that



in a clinical setting, the markers are difficult to attach such that they will stay
in position during the entire scan. A markerless system that fits into the narrow
PET tunnel will improve the clinical acceptance and the diagnostic value of PET
brain scans.

We have previously described a structured light (SL) based system that is
based on a small projector and two small cameras [7] for tracking patient head
pose. It has been designed to fit to the patient tunnel of the Siemens High Resolu-
tion Research Tomograph (HRRT) PET brain scanner. The HRRT PET scanner
has a spatial resolution down to 1.4 mm [8] and is therefore well suited for test-
ing new motion correction methods. The SL system is based on the progressive
reconstruction of 3D surfaces of the upper face region of the patient placed in
the scanner. The pose changes are found by computing the rigid transformation
between the current scan and the initial surface scan. The system described in [7]
was based on visible light and did not operate in real time. Visible light scanners
are not suited for repeated human facial scans. Furthermore, to be functional
the system needs to acquire frames sufficiently fast to faithfully capture patient
head movements. In this paper, we describe a system using invisible light with
a camera acquisition rate of 30 frames per second.

Fig. 1. Left: The patient tunnel of the HRRT PET scanner with the invisible structured
light system mounted. The phantom is mounted on a rotating stage rotated to the right
(-10 degrees). Right: The phantom including one of the two radioactive line sources. It
is placed in the head in the same angle as shown here simulating the brain.

While the previous paper has focused on measuring the accuracy of the SL
tracking system using a rotation stage as ground truth [7], the real interest is the
improvement of the PET scans. To be able to evaluate the quality improvement
of the PET scan a scan using a radioactive tracer must be performed. A com-
mon approach is to use a phantom and compare the resulting PET scan with
the known geometry of the phantom [8]. We have therefore designed a custom
phantom with a radioactive source and used that in the evaluation of the SL
system based motion correction. Our system setup with the SL system and the



custom phantom can be seen in Fig. 1. Compared to other external tracking sys-
tems, where the geometric alignment between the tracking system and the PET
scanner can be problematic, we investigate a novel alignment approach based on
aligning the SL system scan directly to the PET transmission scan.

2 Experiments and Methods

The SL system consists of two Point Grey Flea2 cameras (1288 x 964 pixels)
each running at 30 frames per second. The Pico Digital Light Processing (DLP)
projector from Texas Instruments is used to project phase modulated patterns.
One of the light diodes of the Pico projector has been replaced with a near
infrared (NIR) diode resulting in a non-visible projected pattern. The projector
is controlled by a GFM Pico developer kit board that also sends trigger pulses
to the cameras, in order to synchronize the projected patterns and the shutter
of the cameras. A multithreaded C++ program running on a standard portable
computer acquires the real time camera data and stores them as image files. The
3D point cloud generation, surface reconstruction, and alignment are done in a
post-processing step. The SL system and HRRT PET acquisition computer are
synchronized through an internal network time protocol (NTP) server.

The 3D point cloud generation is based on phase-shifting interferometry
(PSI) [5] where a set of 2D interferograms are projected and projector-camera
correspondence can be found using phase unwrapping. This is explained in de-
tail in [5, 7]. While three patterns are used in [7], the system is now extended
to use six patterns with varying wavelengths to make the phase unwrapping
more robust to discontinuities in the surface. Since each point cloud computa-
tion requires six frames, the effective tracking frequency is 5 Hz. A surface is
reconstructed using a modern algorithm [9] based on the point cloud acquired
in the initial position. The facial pose changes are then found by rigidly aligning
the following surface scans to this reference surface using an optimized iterative
closest point (ICP) algorithm [15].

To correct for motion, we need to know the transformation between the
HRRT PET scanner coordinate system and the SL system. To estimate this
transformation, we use the transmission scan of the HRRT PET scanner, which
is also used for the attenuation and scatter correction within normal PET re-
construction. The transmission scan is a voxel volume similar to a computed
tomography (CT) scan. The initial reference surface scan is captured by the SL
system during the transmission scan thus creating correspondence. The trans-
formation is computed using a pseudo-ICP algorithm [13]. The surface scan is
scaled to fit the volume, and manually rotated and translated into an initial
position. To find correspondence between surface sample points and the volume,
the volume is sampled in the normal direction (both positive and negative) of
the surface scan to find the point with maximum gradient. Knowing the general
orientation of the patient in the PET scanner, we use the absolute gradient in
the x (left/right) and z (axial) direction and the negative gradient for the y



(anterior/posterior) direction:
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With a point correspondence, a rigid transformation is found using the closed-
form loop to estimate the absolute transformation [4]. With an initialization,
transformation this process is iterated until the transformation of the SL scan
converges to the volume data.

In order to apply the motion correction to the PET data we apply the multi-
ple acquisition frames (MAF) method [10]. In [8] the MAF method was demon-
strated on the Siemens HRRT PET scanner using the tracking input from the
Polaris Vicra system. We divide the PET emission list mode data into equal
time length intervals and for each interval, a PET frame is reconstructed using
the 3-D ordered subset expectation maximization (3D-OSEM) algorithm with
resolution modeling and incorporating a spatially invariant point spread func-
tion [14]. These frames are then repositioned to a reference position using the
SL tracking system.

A custom phantom with known geometry was designed. It consists of a hollow
plastic mannequin head with a very low attenuation coefficient. Two radioac-
tive line sources are inserted into the head to provide activity for the HRRT
PET scanner. The activity of the line sources are 2×7.8 MBq each created by a
positron-emitting germanium-68/gallium-68 generator. As can be seen in Fig. 1,
the line sources goes through the head from the back of the skull to the forehead.
The phantom was mounted onto a rotation stage by Thorlabs and placed in the
patient tunnel of the HRRT PET scanner.

Two experiments where performed using the stage to rotate the head. In
experiment one, the head was rotated from -20 to 20 degrees in steps of 5 degrees.
At each position a 30 s frame was PET reconstructed and repositioned. Data with
motion was excluded from the reconstruction. In experiment two, the head was
rotated from -10 to 10 degrees in a continuous motion with a maximum speed
of one degree per second. The PET data was reconstructed using one second
frames in experiment two. Experiment one simulates the clinical situation where
the patient is performing a rapid head motion followed by a stationary period.
State of the art practise is to discard PET data during such rapid motions. The
second experiment simulates e.g. a patient falling asleep where the head is slowly
drifting from side to side.

We evaluate the effect of the motion correction on the reconstructed PET
images by calculating Dice’s coefficient (percent volume overlap) [1] between a
reference image recorded without phantom motion and the motion distorted and
the SL system based motion corrected image. The number of voxels, N , included
in the calculation was set to a value corresponding to the number of voxels inside
the tubes 2.5 times the diameter of the PET sources used (outer diameter 3.2
mm and active length 168 mm) [8]. The extended volume is used in order to
compensate for partial volume effects. In each image to be studied the set of the
N most intense voxels are extracted and used for the Dice’s coefficient computa-
tion presented as the percentage overlapping voxels. In addition we compute the



normalized cross correlation between the reference image and each imageframe
either motion corrected or uncorrected [2].

3 Results and Discussion

The rigid transformation between the coordinate system of the SL system and
the PET image frame is obtained from using the described surface to volume
alignment. Figure 2(a) shows the reference surface aligned to maximum gradient
points in the transmission scan.

Figure 2(b) shows the results of the first experiment with stepwise rotation
of the phantom. The top figure shows the percentage overlap between PET
frames of the line sources in the reference position and a scan position as a
function of the performed rotation of the head. The bottom plot of Fig. 2(b)
shows similarly the correlation coefficient between the reference image and a
motion correction/uncorrected image for the different scan positions. Results
based on tracking information from the left and right camera of the SL system
are shown in green and blue colors respectively while the red curve represents
the uncorrected image results. The overlap and the correlation measures are
in agreement. The results of the uncorrected frames decreases with the size of
performed rotation from an overlap of 100% down to 2% at ±20 degrees. The
overlap of the motion corrected reconstruction is improved significantly for all
positions with percentage overlap of 71-93%. The overlap in not 100% which
is mainly due to the internal calibration of the SL system, the ICP alignment,
and the geometrical alignment with the HRRT PET scanner. In addition the
interpolation error, which combined with the straight and narrow line sources of
the phantom (with a diameter similar to the voxel size of 1.2 mm) induces partial
volume effects and thereby decreasing the overlap and correlation measure. The
differences between the left camera and the right camera could be explained by
the construction of the reference surface scan where left camera was chosen as
basis. The result is similar to [8] where the overlap was 65-85% for a 10 degrees
corrected rotation. However, the two studies cannot directly be compared since
the phantom designs are different.

A visual evaluation of the motion correction is shown in Fig. 3 for the maxi-
mum rotation of 20 degrees. The PET images are summed along one dimension
and visualized on top of each other pairwise in the red and green color channels.
The overlapping pixels of the two PET images appear yellow. The top row of the
figure shows the reference image and the uncorrected image as two sets of rods
rotated approximately 2 cm at the end points. These correspond to the relevant
brain regions: the frontal lobe and cerebellum. The bottom row shows the ref-
erence image and the corrected image seen as two yellow rods demonstrating a
near perfect motion correction. This position has an overlap of 89% in contrast
to the rotation of -20 degrees with an overlap of 71%.

The results of the second experiment with a continuous rotation of 20 degrees
demonstrating the realtime pose registration of the SL system is presented in
Fig. 4. The one second PET frames are summed and fused with the transmission



image of the phantom. The top of the figure shows a row of uncorrected images,
where the motion of the line sources is seen as blurred circle parts. The bottom
row shows the motion corrected image, where the previously blurred parts appear
in focus and with high intensity. The cross section of the line sources shows
dots with a diameter of only a few pixels. Long drift motion is a very complex
problem to overcome using image registration methods for motion estimation,
why an external tracking system is of great value. Our latest results show that
continuous motion can be tracked in real time and PET frames successfully
corrected.

Fig. 2. Figure 2(a) shows the alignment between maximum gradient points in the trans-
mission scan shown as red dots and the SL face scan shown as a blue surface. Figure 2(b)
shows quantitative results of the stepwise experiment. Top: the percentage number of
overlapping points in the reference PET image compared to the unaligned/aligned
PET images based on either the right or the left camera. Bottom: the cross correlation
between the reference PET image and the unaligned/aligned PET images.

4 Summary and Conclusions

This paper describes a complete system for motion correction in high resolu-
tion PET brain imaging. It is based on a small and flexible structured light
scanner mounted above the patient tunnel of the PET scanner. The scanner is
equipped with a near infrared light source making it suitable for future patient
examinations. Furthermore, the system is tracking the head pose changes with a
frequency of 5 Hz, which is suitable for the head movement experienced during
real clinical PET scanning. In order to align the two systems a novel algorithm



Fig. 3. The figure shows the summation of the PET images along 3 different axes for
a reference image (shown in green) and a target image (shown in red) with a 20 degree
rotation (overlap = 89%, shown in yellow). The uncorrected image is shown as captured
in the first row, while the second row shows the image after motion correction.

using the HRRT PET transmission scan and the initial surface scan was pre-
sented. The performance of the system was evaluated using a custom designed
phantom with two radioactive line sources mounted on a programmable rotation
stage. The results of the two experiments are very promising. The first exper-
iment simulates rapid but short head movements and the second experiments
slow but longer head movements. Quantitative analysis show that the combined
system is able to robustly reduce motion artifacts and greatly improve PET
scans for scenarios involving both slow and rapid movements. The system is
near ready for actual clinical testing.

Acknowledgements The John and Birthe Meyer foundation is thanked for the
generous donation of the HRRT PET scanner and the cyclotrons for isotope
production.



Fig. 4. Results of the dynamic PET scan. One hundred one second frames uncorrected
(top) and MAF motion corrected (bottom) are summed and fused with a transmission
scan. The frame repositioning is based on the left camera alignment.
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Example based style classiffication
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Abstract. We address the problem of analysis of families of shapes
which can be classified according to two categories: the main one cor-
responding usually to the coarse shape which we call the function and
the more subtle one which we call the style. The style and the function
both contribute to the overall shape which makes the general analysis
and retrieval of such shapes more challenging. Also there is no single way
of defining the style as this depends much on the context of the family
of shapes used for the analysis. That is why the definition needs to be
given through the examples.
The straight forward way of finding the shape descriptors ’responsible’
for a given category would be to use well known statistical methods and
find through them such descriptors with which we are able to classify
shapes according to a given category. When a function is dominating
this approach might not suffice - we might be unable to find a set de-
scriptors which are independent of a given function. We show how to
decouple the effect of the style from that of the function by considering
the shapes of the same function but different styles. We also propose a
metric coanalysis approach: if two styles are similar this similarity should
be reflected across different functions.
We show the usability of our methods first on the example of a number of
chess sets which our method helps sort. Next, we investigate the problem
of finding a replacement for a missing tooth given a database of teeth.

1 Introduction

While digital shapes are starting to have a number of medical applications, for
instance related to hearing aid production and dental work, the use of digital
shapes does not necessarily lead to complete automation. Typically, certain pro-
cedures are still left to human operators. However, it is an important goal to be
able to help the human operator as much as possible. The particular scenario
which we address in this paper is the selection of tooth shapes which can serve
as the starting point for digital models of crowns.

There is a lot of work in the shape analysis and especially shape retrieval
community with a task of finding the most similar shape to a query one. However,
many shapes might be classified not only according to a single category, e.g. as
being a table or a chair, which we will call the function, but also according to the
style: A table and a chair of the same style share common geometric properties
which are different from the overall shape. The style and the function both



interact and contribute to the overall shape of the object. It is not always easy
to separate them and point out geometric elements responsible for a function or
a style.

The general distinction between the specific shape properties, which tells
which ones are responsible for the style and which for the function, is not possible
as this depends on a context. That is why we define the style and function
through examples.

1.1 Existing Work related to style function recognition

Style and function separation in the context of man made three dimensional
shapes was recently mentioned by Xu et al. [14], where the style of an object
is defined by the proportions (anisotropic scaling) of its parts. It seems to be
very intuitive and reasonable approach but this does not exhaust the subject.
The style might be hidden in details, repetitions of some patterns or some other
types of deformation as well. Very often it is hard to define it mathematically
although the human brains usually do not have problems in recognizing it.

In many shape processing articles, even if the problem of style is not addressed
in an explicit way there are situations where the space of given shapes is broken
into two different independent classification systems. In the deformation transfer
[10] different kinds of animals can take similar poses in which case it is quite
easy to localize them, as the type of animal is described by an intrinsic metric of
the shape surface, and the pose is its embedding in three dimensional space. The
idea of geometric texture [1] fits within this framework as it aims to separate
overall shape from its geometric details. Application of example based priors for
surface reconstruction [9, 3] can also be seen as imposing style of the object.

In the image processing field Hertzmann et al. [6] presented a method that
given three images, an image with style A and function , an image with style
B and function , an image with style A and function , created an image with
style B and function . The same concept was also explored by this group in the
field of curve styles [7]. Other related problems can be present when dealing with
images of fonts, separating ligting conditions from the scene and distinguishing
between the spoken language and the accent - all of those three cases were
examined through bilinear models by Tenenbaum et al. [12].

Tenenbaum’s framework requires establishing one to one correspondences of
the parts both for the style and with the function - for example fonts are com-
pared through pixels of a bitmap: in general for different types of shapes obtain-
ing such correspondences is usually hard to achieve. Similar corespondances need
to be established across the styles for Hertzman’s work. Our approach does not
require any correspondence finding, which usually is a costly task and sometimes
it is not possible as for example in the problem of registering a table to a chair.
Instead we do shape comparisons through the shape descriptors. There is a lot
of current work on content based shape retrieval and different descriptors might
capture different properties of the shape and produce different notion of their
similarity. So a good approach is to extract many different shape descriptors and
combine them in a proper way.



1.2 Metric learning

If the feature space is available, many well established statistical methods can be
used such as Linear Discriminant Analysis [8] which modifies the feature space
so that, for a given training set containing objects from different classes, it maxi-
mizes intra class variance and minimizes within class variance. Similar approach
was also used by [13] which gives the possibility of defining the similarity and
dissimilarity relationships between selected pairs of objects.

As mentioned by Giorgi et al. [5] for the case of shapes there are many useful
shape descriptors like skeletons, trees, weighted point sets, which do not provide
multidimensional feature space. Still with such descriptors there is usually a way
of establishing a notion of similarities between different shapes which results in
some kind of pseudodistance.

Giorgi et al. [5] customize a way of combining a set of distances between
shapes so that user defined similarity is captured. In this work the metric is
modified in order to reflect the user defined constraints of nearby or far away
shapes. The final metric is taken as a maximum distance from distances given
by all of the metrics, however the particular metrics are scaled according to a
similarity feedback provided by the user.

The approach of combining different metrics relies on the fact that at least
there exists a set of shape descriptors which can capture the similarity imposed
by virtue of shared stylistic or functional properties. For function, which usually
is easier do distinguish such an approach would be very suitable. However when a
style needs to be extracted it might not be enough and not even single descriptor
might exist which is purely responsible just for the style.

One of our main observations concerning this problem is that knowing what
is the function of an object enhances the possibilities for style recognition. For
many descriptors information on style is coupled with information on function.
In general, when the distance between two shapes is small, it might be both due
to similarity in the style and similarity in the function. The retrieval of style
related information can be achieved when providing a set of shapes sharing the
function and having different styles.

The requirement of recognizing the object of the same function or the same
style as being close is not enough in such case. We also want our dissimilarity
measures between shapes to be consistent across different functions. This re-
quirement stems from the fact that we want to be able to find the most similar
styles and most similar functions. However, for our style-function task case we
do not have a direct input which indicates which styles are similar and which are
not. Instead we have some notions of similarities which are induced by different
shape descriptors and there is a need to chose the ones which are relevant. This
relevance is not defined directly by indicating the shapes which should be treated
as similar but indirectly as a consistency requirement: dissimilarity or similarity
between the styles should be reflected in a similar way for different functions.

Similar indirect consistency approach methodology can be found in [15] which
removes incorrect mappings of sets of different views. The assessment of the
quality view mappings is done through analyzing them in broader context of



the consistent mapping loops. If the loop is inconsistent it means that one of
the mappings that belongs to it is wrong and the consistent loop means that
mappings are likely to be correct. Having evaluated the correctness of many
loops the bad mappings are spotted through a loopy belief propagation.

1.3 Contribution

This paper focuses on an issue, which we think has many application areas,
but was not very much explored yet: the analysis and classification of shapes
according to more than one category, when categories may be coupled together
which in our case is the style and the function.

We propose here a general methodology which can be applied in order to
deal with the style-function determination problem. Because the style and the
function strongly depend on the context, defining it by providing example shapes
seems to be the most general approach.

We show the method for decoupling the effect of the style from that of the
function. By having as a training dataset the shapes of the same function and
different styles, we can factor out the function and determine the most likely
style of an unknown shape as the closest shape from the set. In an analogous
way by using the shapes of the same style but different functions the unknown
function may be retrieved.

We realize that the key to success is to find a good metric between the
shapes: metric which can capture both stylistic and functional features. Using
the example of chess pieces we show what are the desired properties of such a
metric (section 2) and how to decouple the style from the function when only
one metric is available.

We also show how to find an appropriate metric by combining the metrics
obtained through different shape descriptors (section 3). Novel in our case is
that we do not only use standard similarity notions but also explore the metric
consistency approach. The problem is illustrated with the example for a tooth
dataset.

After the example of chess pieces, we focus on teeth as an example medical
application. Note that our framework is fairly generic. It could be applied to any
type of biological surface which exhibits variation due to both style and function.

2 Decoupling metric

In this section we will show how an information about style and function hidden
in the same metric can be decoupled. This is illustrated by the example of style -
function classification based on the chess pieces. Since the chess pieces are rota-
tionally symmetric, their three dimensional representation can be reduced to the
space of plane curves by taking the outline curve obtained through rotating the
chess piece by the rotational symmetry axis. The Translation Invariant Dynamic
Time Warping [2] is used in order to establish a similarity metric d(., .) between
the objects.
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Table 1. The outline curves of the chess pieces. Our dataset has 45 chess pieces, which
are the scans taken from 9 existing chess sets. The function is the type of the chess
piece (pawn, rook, bishop, king, queen) and the style is the set the chess piece belongs
to.

Fig. 1. Similarities between the curves. Each block has the same function or style, the
diagonals of blocks are darker which reflects the smaller distance when the function or
the style is the same.

2.1 Likelihoods computation

In our setup the proximity of two shapes can be affected by two factors: the
similarity of the style and the similarity of the function. Also dissimilarity with
respect to one factor, which usually is a style might be more subtle than the
other one. However if we have in the training set pieces which share the same
style (or function) but have different function (style), then it is possible that
we may factor the style (function) out. Instead of taking absolute distances one
may use the relative distance information: the difference of the distances. For
example if the distance to a king is smaller than a distance to a bishop of the
same style we may say that the unknown shape is more likely to be the king
than to be something else and that will affect the sign of the distance difference.

The partial likelihood of unknown shape x to be a function K, when we have
two example shapes of the same style Si of which one (denoted as KSi) is of a
function K and other one NSi is of a function other than K, is equal to:

lSi,N
f (x,K) = d(NSi, x)− d(KSi, x).



In our training dataset TSi, for a given style Si, we may have more then just
one shape not being of a function K so we take the mean plus the minimum of
all of the partial likelihoods:

lSi

f (x,K) = mean
K 6=NSi∈TSi

lSi,N
f (x,K) + min

K 6=NSi∈TSi

lSi,N
f (x,K).

Note that minimum is equal to the distance to the closest of the known shapes
from style Si other than KSi, minus the distance to KSi. If the function K
is the closest of the shapes from that style, then the minimum will be positive
otherwise it will be negative. The mean value stabilizes the results by taking
into account distance measures of all of the shapes of this style.

In order to gather the information from all of the training styles we take the
mean value plus the maximum of all the styles, for which in a training set there
is a function K and some shapes not being of function K.

lf (x,K) = max
Si∈S,KSi∈TSi,
K 6=NSi∈TSi

lSi

f (x,K) + mean
Si∈S,KSi∈TSi,
K 6=NSi∈TSi

lSi

f (x,K).

Here by taking the maximum we are favoring the style for which the K function
is most likely. The mean is again added to get the distance information from all
known styles.

There might be cases when we do not have enough information in the training
set for establishing likelihoods. This happens when there is no set which has a
training representative for the function K and for some shape which is not of a
function K. In such a case we set the likelihood to zero.

The likelihood computation of ”x being the style i” is done in an analogous
manner. Then for a given x the cost of assigning to it style j and function i is
equal to: l(x, Fi, Sj) = lf (x, Fi) + ls(x, Sj).

2.2 Chess classification example with the assignment problem

We use the likelihoods as negative costs and solve the minimum linear assignment
problem for the unknown labels and loose chess pieces.

Table 2 contains the results of the assignment problem if the training dataset
is one set and one function, and we are searching for other chess pieces. The
results depend a lot on the type of the set and function imposed as an example
shape. Some of the sets contain a lot style and function information but some
other do not. The sets 024 and 008 are performing the worst also the results for
the rooks is always worse than for other functions.

2.3 Multiple step assignment

An assignment problem with the costs defined above does not make use of the
information about all of the distances between the shapes. If we are able to
locate the chess pieces of which we can expect that the initial matching went
correctly we can add those into a training dataset with the labels obtained by the
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Table 2. Mismatches of the single assignment problem with one style and one function
given. The table contains the general number of pieces with mismatched total label,
mismatched function and the mismatched style.

initial assignment. In order to estimate the labeling reliability, we calculate the
diagonal cost of the assignment which we define as the average sum of similarities
between all the pieces having the same style or function labels. For a hypothetical
unknown chess piece we might add it for a moment to the training set and
calculate what is the diagonal cost when assignment is solved with the use of
this piece. We discovered that instead of calculating diagonal costs directly it is
better do the inverse assignment, which is performed by swapping the unknown
data with the known and then calculating the diagonal cost. Then the smaller
the inverse diagonal cost is the more reliable is the hypothetical assignment of
the unknown chess piece to its label.

In order to minimize bad choices we always take the piece having minimum
inverse diagonal cost and is reliable according to the additional reliability criteria.
We add it to the initial dataset and repeat the assignment and the most reliable
pieces addition until there is no reliable piece to be added. Then we use the
assignment from the last step as the final assignment.

In the results (table 3) we observe an average improvement of the assignment
tasks by approximately 3 chess pieces. Usually if initial guess is quite good but
not perfect then correctness of the matching may be improved quite well. If there
are too many mismatches the improvement does not occur: as then we also take
as reliable the matchings which are not correct. Usually it does not make the
solution worse but keeps it at a similar level as it was with the initial problem.

3 Finding the good metric

The case of chess pieces was special problem as we were able to reduce the
shape information to the space of the curves and had a way of establishing
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Table 3. Mismatches of the multiple assignment problem with one style and one
function given. The table contains the general number of pieces with the mismatched
total label, mismatched function and mismatched style.

similarity between those curves by using Translation Invariant Dynamic Time
Warping. In general for three dimensional shapes we do not know a good metric
in advance, instead we have many propositions of metrics di(, ) which can be
obtained through different kinds of shape descriptors Di.

The task is to choose such a metric di or some combinations of metrics
with which we can distinguish between different styles. As mentioned in the
introduction it is not enough to be able for the objects of the same style to be
close but also the dissimilarity measures should be consistent across different
functions and we don’t know which one will work best for specific problem.

This requirement can be illustrated with the problem of tooth shapes. Sup-
pose a patient has one tooth destroyed. In order to be able to reproduce its
shape, we want to find from a database a tooth which is mostly similar to the
existing tooth he has. We have a molar missing but because a premolar is still
in the patient’s mouth, we wish to search in our database for a mouth which
has the most similar premolar to the patient’s. From that mouth we take a mo-
lar as a template for our new tooth. This approach assumes that similarity for
premolars induces a similarity between molars.

This case shows that the metric consistency requirement is necessary as it
aids in many concrete tasks - like searching for the closest to missing data. Here
we do not know directly what ’close’ means, as we have many metric but don’t
know which one is a correct. Usually a correct metric combination in such a case
can be found by giving example pairs of shapes which are similar and which
are dissimilar[5]. In our case we do not have such information. Instead we can
impose the metric consistency requirement: the distances between shapes having
different styles and function A should be close to the distances of the shapes of
the same styles and function B.



3.1 Metric consistency

Assume we have a set of training shapes Fi=1..niSj=1..nj , where i indicates the
function and j style. We also have a kn potential distances dk(, )

Let us take all distances dk(Fi1Sja=1..nj
, Fi1Sjb=1..nj ,jb 6=ja) between different

shapes of the function i1. In order to be comparable those distances need to be
normalized which we do by dividing them by the median from obtained distances.
This results in a

(
nj

2

)
dimensional vector of k-distances between shapes with

function i1 which we will denote v(dk, fi1).
For each pair i1 6= i2 of two different functions we can establish the con-

sistency score csi1,i2dk
with respect to a distance k and function i1 and i2 as a

norm of difference of distance vectors:

csi1,i2dk
=

√√√√ ∑
l=1..(ni

2 )

(v(dk, fi1)l − v(dk, fi2)l)2

In order to calculate total consistency factor (TCFk) for a distance measure
k sum of the differences for all function pairs is taken. Note that smaller TCFk

is the more consistent is dk with respect to style.
We construct the final metrics by summing the metric obtained through

different shape descriptors with weights that promote consistency.

Df (, ) =
∑
k

e(−2
TCFk

mean(TCF )
) dk(, )

σdk

where σdk
median distance from distances dk(, ) between all training shapes.

From the final metrics we can also compute consistency scores csi1,i2Df
. This

consistency measures can be used in order to asses what kind of tooth types are
better correlated. For example two neighbor upper molars can be more correlated
than molar and incisor. So if a molar is missing and we have the neighbor molar
and incisor, we should give higher weight for query of closest mouth with respect
to a molar than with respect to incisor. We can also compute mean distances
between styles by summing v(Df , fj) for all function types j.

3.2 The tooth problem

Fig. 2. Front view of molar, premolar and incisor from 3 different mouths

In the teeth analysis task we take a type of a mouth as style and a tooth type
as function. An example dataset we use for this problems contains teeth shapes



(figure 2) from 6 different mouths. In order to make number of styles larger, we
assume that the left side of a mouth will be treated separately from the right
part. Thus we have 12 styles which we will label as A,B,C,D,E,F,a,b,c,d,e,f,
where big letter means one left part of a mouth and small the other one. We
have taken 10 tooth types 2 upper molars, lower molar, 2 upper premolars,
lower premolar, upper canine, upper incisor, 2 down incisors. They are labeled
and placed in the following order: 7M,6M,6m,5P,4P,4p,3C,1I,1i,2i, where upper
case means respectively upper tooth.

In order to get independence of meshing we uniformly sampled the surface
of teeth and computed descriptors out of those samples. We used local shape
descriptors which rely on neighborhood at some distance from a given position.
As neighborhood size we have taken 0.01 0.04 0.16 and 0.64 of the radius of a
bounding sphere of a tooth. For slippage we used 0.01 0.04 and 0.16. In Total we
had: 2x4 descriptors for main curvatures obtained by fitting primitives [11], 3x4
eigenvalues of covariance matrix of points sampled from the neighborhood area
and 12x3 slippage coefficients [4] which are 6 eigenvalues of slippage covariance
matrix and 6 is a translational contribution to its eigenvectors. We took 2 samples
for 1000 points, for which soft histograms were computed. Histograms from two
independent sampling were compared. The mean across all training shapes, of
their difference was taken in order to estimate the measure error coming from
different samplings. Then the mean of the 2 sample histogram is taken. However
in order to compare two histograms for shapes Si and Sj the distance between
two bins is reduced by the previously computed measure error. Then the sum of
those values is taken across all bins as our distance dk(Si, Sj).

Fig. 3. Left: final metric Df obtained with teeth database (indices grouped with respect
to teeth type). Center: csi,j for different teeth types, the average distance between the
styles, and the multidimensional scaling plot for the avarage distances. Right: metrics
between different styles when a function is fixed, obtained form final metric with the
training styles AFade.



Then the total consistency factors are computed as mentioned in the pre-
vious section and the final metric is computed. Figure 3 contains the resulting
metric, where all of the available teeth were used. It is worth mentioning that
the consistency score for a resulting metric is smaller than the scores from any
particular metrics. Note that the styles that come from the same mouth (left
or right part) are being found as close. Also note that neighbor teeth tend to
have more consistent scores. This information might be used when searching
for a missing tooth. Let us consider the case when AFade styles were taken as
training styles and a metric T was created. Then a patient comes with mouth of
style C and with missing 4P . We have scans of his 4p, 5P and 1i and we have
cs4P,4p

T = 1.6391, cs4P,5P
T = 1.5819 and cs4P,1i

T = 1.7543, so we use tooth 5P
as it has the best consistency. We use v(T, f5P ) instead of unknown v(T, f4P )
in order to evaluate proximity between teeth (5th and 6th plot on the Right of
figure 3). We evaluate distances between C and AFade among teeth of type 5P
and the mouths sorted with respect to distance will be FdaAE if we checked the
ground truth we have dFaEA. Despite the swaps which was a result of a very
close similarity values of dF and EA we can see that in general dissimilar teeth
remain dissimilar.

We also tested on how the consistency properties of metric change when
different subset of styles was used as training dataset. We generated metric from
this information and evaluated the results on all of the data.

Usually removing only small number of mouths did not increase or even
slightly decrease the consistency scores. Only when using 3 or 4 mouths, the
results seemed be different. This might come from the fact that there was always
some symmetric tooth left in the set which was able to set the consistency scores
in a correct way. The increase was mostly noticeable when styles which are close
to each other are used as training set (table 4).

training TCS training TCS training TCS training TCS training TCS

DdFf 111.007 EFb 102.088 cEF 98.17 all 97.94 none 117.22
Eef 117.107 ABd 99.138 ADEFe 97.35 AFade 98.494 ABCDFaf 95.929

Table 4. Total consistency factors when using different mouth subsets as training data.

4 Conclusion

In this article we presented methods of working with shapes that can be classi-
fied into having two categories: style and function. One of them decouples style
and function when they are incorporated into the same metric. The second finds
a metric as a combination from existing ones when a consistency between differ-
ent function types is needed. Those methods were illustrated by the chess and
tooth datasets. We are aware that for a further analysis and development of our
methods more data will be needed but we think the results obtained so far are
promising.
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Template Deformation with User Constraints for
Live 3D Interactive Surface Extraction

Benoit Mory, Oudom Somphone, Raphael Prevost, and Roberto Ardon

Medisys Research Lab, Philips Healthcare France

Abstract. We describe an algorithm for 3D interactive surface extrac-
tion by non-rigid implicit template deformation, with two main original
features. First, our formulation incorporates user input as inside/outside
labeled points to drive the deformation and improve both robustness and
accuracy. This yields inequality constraints, solved using an Augmented
Lagrangian approach. Secondly, a fast implementation of non-rigid de-
formation enables interactions with a live visual feedback of the defor-
mation. We validate this technique in Contrasted Enhanced Ultrasound
images of kidneys in preoperative radio-frequency ablation planning.

Keywords: Interactive, Segmentation, Surface Extraction, Warping, Deformation

1 Introduction

In medical applications, surface extraction of anatomical structures in difficult condi-
tions such as tissue inhomogeneities, noise, loss-of-contrast, can be significantly facil-
itated by the incorporation of prior knowledge. This approach has been extensively
studied in terms of shape prior by constraining the solution to remain close to a pre-
defined shape. For instance, statistical methods have been proposed to model shapes,
such as the active shape models [1]. In the level-set framework, shape priors have also
been used, penalizing the dissimilarity between the implicit object representation and
the one embedding the prior shape, via an additive shape constraint [2–5]. These two
approaches have been combined by embedding training shapes in distance functions
and defining a statistical model for the shape term [6–9].

Template-to-image registration is a possible alternative, recently applied to medical
applications such as liver segmentation in CT [10], in which segmentation is performed
by geometrically deforming a binary template towards the image [10–12]. The prior is
the template itself and the shape constraint consists in a regularization of the defor-
mation.

In pathological cases presenting extreme variabilities of image features and organ
shapes, shape priors may be helpful but insufficient; expert input is then essential to
guide the segmentation. Designing intuitive and reliable interactive tools remain a key
challenge, particularly in 3D. Few attempts to combine shape priors and interactivity
have been made [13]. Along the same line, our proposed formulation incorporates user
input constraints in the form of inside/outside labels. Our fast implementation results in
an application that provides live visual feedback of the current non-rigid deformation.



2 Surface Extraction by Implicit Template Deformation

In this work, we formulate surface extraction as the partitioning of an image I to
provide the best trade-off between regions homogeneity and boundary regularity. For-
mally, the solution surface (S) minimizes an objective criterion, defined as the sum
of a regularization term R(S) and image-dependent homogeneity measures r1 and r2
integrated over the inside and outside of S:

min
S

{
R(S) +

∫
inside S

r1 (x) dx +

∫
outside S

r2 (x) dx

}
(1)

For instance, with known intensity distributions pi for each region, it is common to set
ri(x) = − log pi(I(x)) [14].

An equivalent formulation can be written using an implicit representation of S,
using a function Φ : Ω → R, positive inside S and satisfying Φ−1(0) = S. Denoting
H the Heaviside function (H(a) = 1 if a > 0, 0 otherwise), H(Φ) is the characteristic
function of the interior of S, and (1) is equivalent to:

min
Φ

{
R(Φ) +

∫
Ω

H(Φ(x))r (x) dx

}
with r(x) = r1 (x)− r2 (x) (2)

The regularization R(Φ) can be complemented with an additional shape prior term
that forces the solution to remain close to a predefined implicit representation (the au-
thors of [2] constrain Φ to be a distance function in order to penalize its L2-distance to
a globally transformed template). Nevertheless, this technique does not guarantee that
the zero level-set of the solution preserves the topology of the shape prior. Moreover,
R(Φ) is classically chosen to penalize the perimeter of the region boundary, which is
counter-productive since it inevitably smooths out possible important details of the
prior shape.

(a) implicit template Φ0 (b) deformed Φ = Φ0 ◦ ψ
Fig. 1. Implicit template deformation

To cope with these problems, alternative approaches have been proposed [10–12]
to rather deform a template surface S0 defined in a referential Ω0 with a geometric
transformation ψ : Ω0 → Ω. This template can be implicitly represented by a func-
tion Φ0 such that S0 = Φ−1

0 (0) (illustrated in Fig. 1.a). The unknown becomes the
transformation ψ and the penalization R(Φ) in (2) is substituted with a shape term
R(ψ), consisting in a regularization constraint acting on ψ. The extracted surface is



then obtained as S = Φ−1(0) with Φ = Φ0 ◦ ψ (see, Fig. 1.b). A general formulation of
surface extraction by implicit template deformation then reads:

min
ψ

{
E (ψ) = R(ψ) +

∫
Ω

H(Φ0 ◦ ψ(x))r (x) dx

}
(3)

Compliance with the shape prior is determined by both the deformation model ψ and
its associated constraint R(ψ). In the non-rigid case, Saddi et al. [10] represented the
deformation with a diffeomorphic fluid model. In [11], Somphone et al. proposed defor-
mations based on finite elements with partition of unity. In [12], Huang and Metaxas
adopted Free Form Deformations in their Metamorphs.

3 User Interactions, Deformation Model and Shape Term

(a) Φ = Φ0 ◦ ψ violating constraints (b) Φ = Φ0 ◦ ψ satisfying constraints

Fig. 2. User constraints as inside/outside labeled points

User Interactions. Additional control and robustness can be obtained by al-
lowing the user to indicate whether some specific points shall lie inside or outside the
surface to extract. Denoting {xk ∈ Ω}k∈{0,...,N−1} these labeled points, the user input
can be translated into N constraints on the sign of the transformed template Φ = Φ0◦ψ,
at {xk}:

∀k ∈ {0, . . . , N − 1} γkΦ0 ◦ ψ(xk) ≥ 0 (4)

where γk = 1 (resp. −1) for inside (resp. outside) points. Fig. 2 illustrates the constraint
induced by an inside point (in blue) and an outside point (in red) on the deformation
of the star-shaped object of Fig. 1.
Putting together criterion (3) and the constraints (4) yields a general formulation of
implicit template deformation with user interactions, as the minimization problem

min
ψ

{
E(ψ) = R(ψ) +

∫
Ω

H(Φ0 ◦ ψ(x))r (x) dx

}
s.t. γkΦ0 ◦ ψ(xk) ≥ 0, ∀k ∈ {0, . . . , N − 1}

(5)

Note that forcing the resulting surface S = Φ−1(0) to pass through a specific point x
can be obtained by adding at this same point both inside/outside constraints.



Transformation The choice of the space of possible solutions ψ to problem (5)
is, in our case, intrinsically linked to the notion of shape. A shape can be considered
as a set of objects sharing the same visual aspect. It should be invariant to geometric
transforms such as translation, rotation, scaling or shearing. We will refer to such a
global transformation as the pose. To set up a clear distinction between the pose and the
subsequent shape deformation, similarly to [15], we design our template transformation
model ψ as a functional composition of a global transformation (G) and a non-rigid
local transformation (L):

ψ = L ◦ G (6)

Fig. 3 illustrates this composition. The template surface, a sphere (in green in Fig.
3.a), is deformed to reach a target shape, undergoing a global transformation (scaling
and translation, in yellow in Fig. 3.b), followed by a non-rigid deformation (in red in
Fig. 3.b).

(a) implicit template S0 = Φ−1
0 (0)

(green) and target shape (blue)

(b) template pose Sp = (Φ0 ◦ G)−1(0)
(yellow) and deformed template
S = (Φ0 ◦ L ◦ G)−1(0) (red)

Fig. 3. Transformation decomposition in pose and deformation

Pose. G : Ω → Ω0 is chosen as a parametric transform that coarsely aligns the
template with the target surface in the image. For anatomical structures in 3D med-
ical images, similarities (which preserve the aspect ratio) are particularly adapted. G
is thus represented by a matrix in homogeneous coordinates defined by 7 parameters
p = {pi}i=1···7 and noted Gp.

Deformation. L : Ω0 → Ω0 is expressed using a displacement field u in the tem-
plate referential L = u + Id. Similarly to problems in image registration and optical
flow algorithms [16], u should be smoothly-varying in space. While adding penalizations
on differential terms on u to R(ψ) is a valid approach, efficient implementations are
difficult to derive. Taking advantage of efficient linear filtering, smoothness of the dis-
placement u is set as a built-in property defining it as a filtered version of an integrable
unknown displacement field v

u(x) = [Kσ ∗ v] (x) =

∫
Ω0

Kσ(x− y)v(y)dy (7)

where Kσ is a Gaussian kernel of scale σ.

Shape Term. Decomposing ψ = L ◦ G allows to define the shape prior term
independently from the pose: R(ψ) = R(L). R thus quantifies how much the extracted



surface S deviates from the prior shape S0. Using the L2 norm we choose to constraint
L towards the identity Id:

R(L) =
λ

2
‖L − Id‖22 =

λ

2

∫
Ω0

‖u(x)‖2dx (8)

λ is a positive scalar parameter that controls the strength of the shape prior.

The constrained optimization problem to solve finally reads:

min
p,v

{
E(ψp,v) = E(p,v) =

λ

2

∫
Ω0

‖Kσ ∗ v(x)‖2dx +

∫
Ω

H(Φ0 ◦ ψp,v(x))r (x) dx

}
s.t γkΦ0 ◦ ψp,v(xk) ≥ 0, ∀k ∈ 0..N − 1

with ψp,v = Gp + (Kσ ∗ v) ◦ Gp
(9)

4 Implementation for Live 3D Surface Extraction

Constraints Management Since E(ψp,v) is a non-convex functional to be minimized
under a set of non-linear constraints, no specifically tailored algorithms are available.
For this matter, we follow a general augmented Lagrangian methodology and define
an equivalent unconstrained problem [17] that can be locally minimized by gradient
descent. Although we adopted ψ = ψp,v as specified in (9), the following applies to a
large majority of transformation models.

The constrained problem (9) can equivalently be written as an unconstrained min-
imization problem of the form

min
ψp,v

{
Ẽ(ψp,v) = max

α≥0

{
E(ψp,v)−

N−1∑
k=0

αkck(ψp,v)

}}
with ck(ψp,v) = γkΦ0◦ψp,v(xk)

(10)
where αk is the Lagrange multiplier associated to the kth constraint. (10) has the same
set of solutions as the original problem (9): if ψp,v satisfies all the constraints ck (ψp,v

is feasible), then Ẽ(ψp,v) = E(ψp,v), otherwise Ẽ(ψp,v) is infinite. Since Ẽ jumps from
finite to infinite values at the boundary of the feasible set, a more practical minimization
requires to introduce a smooth approximation Ê. Within an iterative minimization
process, in order to constrain the maximizers α = {αk}k=0,··· ,N−1 to finite values, one
has to explicitly introduce at each iteration a quadratic penalty parameter µ and a set
of Lagrange multipliers αj (at the jth iteration) to define

Êµ(ψp,v,α
j) = max

α≥0

{
E(ψp,v)−

N−1∑
k=0

αkck(ψp,v)− 1

2µ

N−1∑
k=0

(
αk − αjk

)2}
(11)

The maximizing Lagrange multipliers associated to each constraint ck(ψp,v) can then
be found as functions of previously estimated values:

αj+1
k =

{
0 if αjk − µck(ψp,v) ≤ 0

αjk − µck(ψp,v) otherwise.
(12)



Substituting (12) in (11) yields the expression of the smooth approximation Ê:

Êµ(ψp,v, α
j) = E(ψp,v) +

N−1∑
k=0

Ψµ
(
ck(ψp,v), αjk

)
(13)

with Ψµ(a, b) =

−ab+
µ

2
a2 if µa ≤ b

− 1

2µ
b2 otherwise.

(14)

The alternate scheme described in Algorithm 1, in which the penalty parameter µ is
gradually increased, will provide a local minimizer of (9) that eventually satisfies the
user constraints.

Algorithm 1: Augmented Lagrangian Scheme For Inequality Constraints

given starting penalty parameter µ0, and α0 = 0,
repeat

choose µt > µt−1,
repeat

(1) ψp,v being fixed, update the Lagrange multipliers αj+1 using (12)

(2) αj being fixed, update ψp,v by minimizing Êµt(ψp,v,α
j) using (13)

until convergence;

until a local minimum of E(ψp,v) satisfying ∀k, ck(ψp,v) ≥ 0 is found ;

Gradient Descent An important feature of our 3D template deformation application
is its interactivity. Therefore, iterations of the gradient descent chosen to minimize the
smooth approximation Êµ(ψp,v) = Ê(p,v) in (13) should be fast enough to provide a
real-time display of the surface evolution.
The gradient descent evolution equations are obtained by applying standard calculus
of variations; recall that

Ê(p,v) = E(p,v) +

N−1∑
k=0

Ψµ
(
ck(pi,v), αjk

)
⇒


∂pi
∂t

= −∂Ê
∂pi

∂v

∂t
= −∂Ê

∂v

(15)

By setting

Ai(x) =

〈
∇Φ0 ◦ L(x), (I + Ju ◦ G)

∂G
∂pi
◦ G−1(x)

〉
and bk = γk

∂Ψµ
∂a

(
ck, α

j
k

) (16)

where I is the Identity matrix, Ju is the Jacobian matrix of u, the final expression of
the evolution equations for pi and v reads





∂pi
∂t

= −
∫
Ω0

δ(Φ0 ◦ L)(r ◦ G−1Ai) −
N−1∑
k=0

bkAi ◦ G(xk)

∂v

∂t
= −Kσ ∗

[
λu +

(
δ(Φ0 ◦ L)r ◦ G−1 +

N−1∑
k=0

bkδG(xk)

)
∇Φ0 ◦ L

]
shape image force constraints

(17)
A quick analysis of (17) reveals several key aspects for an efficient implementation.
Interpolating Φ0 ◦ L and ∇Φ0 ◦ L over the whole domain Ω0 would be extremely time-
consuming. Nevertheless, since it is multiplied either by δ(Φ0 ◦L) or δG(xk), the warped
gradient field ∇Φ0 ◦ L is only needed on the set {Φ0 ◦ L = 0} and at a limited number
of points {xk} (Fig. 4.a) which highly reduces computational burden.
Moreover, precise knowledge of the warped template Φ0 ◦ L is only necessary near its
zero level set. Setting Φ0 to a distance function to the template surface S0 allows a
coarse-to-fine approach using octrees. At each level a decision is made to further refine
the cell depending on the distance measure (Fig. 4.b) drastically dropping complexity.
Finally, stemming from the displacement model (7), extrapolating image and point-
wise forces to the whole space boils down to a convolution with Kσ (Fig. 4.c).
In practice, our current 3D implementation supports up to 100 time steps per second
when discretizing Ω0 with a lattice containing 483 points. This execution speed allows
a visual feedback of the deforming surface with a live response to constraints.

(a) surface/pointwise forces (b) coarse-to-fine φ0 ◦ L (c) convolved deformation

Fig. 4. Fast template deformation with coarse-to-fine distance warp and convolutions

5 Workflow and Validation

The generality of Eq (2) permits a wide field of applications. In medical imaging, going
from one application to an other is done by redesigning homogeneity measures (r1 and
r2) and the surface model Φ0.

Workflow description An important part of many preoperative planning in liver
cancer treatment is the measurement of liver volume in MRI imaging. Large variability
in liver shape as well as the presence of important lesions contribute to the difficulty



of the segmentation problem. Our workflow is illustrated through an example int this
modality. The simultaneous processing of user interactions and solving of problem (9)
enables an intuitive workflow. As illustrated in Figure 5, the user first places the model
Φ0, which initializes pose G (Fig 5.a). From this point and further on the optimization
algorithm is launched as a background task. With real-time feedback the user observes
the surface evolution based on image descriptors (Fig 5.b). At any time constraints can
be added by simple clicks (for instance left/right clicks for inside/outside points) and
directly integrated into the optimization algorithm, thus guiding the surface extraction
(Fig 5.c) with live feedback on the effect of each interaction.
In this application, the surface model Φ0 is generated from an average mesh built from
manual segmentations, while the image-based terms r1 and r2 are set to log probability
distributions (see Eq (2)). Note that even though image quality is fair, user interactions
are necessary for the correct surface extraction given the observed lesion.

(a) initial template (b) unconstrained (c) with 3 constraints

Fig. 5. MRI of the liver for preoperative resection planning. A 3D template of the
liver (a) is deformed to extract most of the liver tissue (b). In this case, 3 inside user
constraints are required to include a severe and unpredictable protuberant lesion (c).

Validation on Contrast-Enhanced Ultrasounds (CEUS) of kidneys
We now validate our method more deeply on an imaging technique that has proven es-
sential for both its relatively low toxicity and cost, in particular during radio-frequency
(RF) ablation planning of kidney tumors. Comparing kidney and tumor volumes (be-
fore the operation) with kidney and resection volumes (after the operation) is necessary
to evaluate the success of the intervention. However, segmenting the kidney in CEUS
images is a particularly difficult task: the presence of contrast agents generates noisy



Fig. 6. 3D CEUS image of a kidney, here shown three orthogonal cross-sections (cour-
tesy of Prof. J.M. Correas, Hospital Necker - Paris, France)

data, the limited field of view of probes often prevents the acquisition of the whole
kidney and the presence of lesions induces variations in the usual shape (see Figure 6).
In collaboration with the radiology department of Hospital Necker (Paris, France) - the
main medical center for renal RF ablation in Europe - we have quantified the benefits
of our method. For thirteen patients, a specialist was asked to produce a ground truth
segmentation to measure the quality of our algorithm as a function of the number of in-
teractions. The model surface Φ0 was set to an ellipsoid and ri to − log(pi(I)), i = 1, 2.
G was initialized by the user and deformation L to identity (u = 0). The graphs in
Figures 7.a and 7.b show that without interactions, the minimization of E (see Eq (3))
already considerably reduces the segmentation error. As the user interacts the closer
the segmentation gets to the ground truth, often less than three clicks are needed for
a satisfactory result (in an average of 15 seconds). The ground truth is never exactly
matched due to high intra-operator variability. Figures 7.c and 7.d show two examples
where image features, shape prior and user interactions are all essential to the correct-
ness of the final segmentation.

6 Conclusion

Although proven a solid approach for medical image segmentation, template defor-
mation is still unable to cope with the wide spectrum of shapes that pathologies can
generate. Providing users with reliable interactions is essential for the general accep-
tance of these segmentation tools. In this context, we introduced 3D interactions in
a template deformation framework as points inside or outside the target anatomical
structure. Since the control is even more intuitive with a real-time visualization of the
evolution, a special care has been devoted to algorithmic efficiency.
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Abstract. The goal of virtual orthodontic treatment planning is to re-
position the teeth in a digital dental model so that the desired alignment
of the teeth on each dental arch and occlusion (i.e., matching) of the
upper and lower arches is achieved. The input to the planning process is
a collection of individual tooth objects obtained by segmenting a noisy
3D surface mesh that is generated by laser-scanning a plaster model of
the dental arch built from patient-specific dental impressions. A key step
in the planning is the identification of features on the surface of the
teeth such as cusps, grooves, incisal edges, marginal ridges, and occlusal
surface boundary, that are important both for carrying out the alignment
and evaluating its quality. This paper presents a collection of techniques
to identify such features automatically, with minimal user intervention.
Experimental results show the effectiveness of the approach.

Keywords: Alignment, clustering, curvature, watershed method

1 Introduction

Orthodontic treatment planning seeks to re-position the teeth in the dental
arches of a patient in order to achieve an outcome that is both aesthetically
pleasing and functionally optimal. Technological advances now make it possible
for the treatment plan to be simulated virtually (in 3D) and allow the clinician
to choose between multiple alternatives in order to achieve the best possible
outcome. Virtual planning begins with the acquisition of a 3D surface mesh
of each arch. This mesh is generated by building a plaster model of each arch
from patient-specific dental impressions and then laser-scanning the model. The
mesh is then segmented into individual tooth objects (i.e., submeshes), using,
for instance, the algorithms in [3,4]. These tooth objects are the input to the
alignment process, which involves proper repositioning of teeth relative to one
another in each arch and proper matching of the contact regions between teeth
in different arches.

? This research was supported, in part, by the Orthodontics Education and Research
Fund at the University of Minnesota.



Dental features and their importance: Proper tooth alignment and func-
tionality (e.g., chewing) depend on a number of intrinsic features on the tooth
surface, including cusps, grooves, incisal edges, ridges, occlusal contact region,
etc. (These terms are defined in Section 2.) These features are important for
many reasons: They provide a set of landmarks that can be used to define
alignment requirements quantitatively (e.g., height difference between adjacent
marginal ridges) [7]. Also, the features themselves do not change over time (as
they are intrinsic to the tooth surface), so they can be used to monitor the
progress of the alignment. Moreover, since certain (derived) features need to re-
main invariant throughout treatment (e.g., the distance between canine tips), the
intrinsic features dictate the best possible alignment that can be achieved and
provide a means for evaluating a computed alignment. Finally, features such
as number of cusps are useful in classifying teeth automatically (e.g., molars,
premolars, etc.)

Goals and contributions: The identification of a relevant feature set is crucial
for orthodontic treatment planning. However, identifying features manually, by
having a clinician “eyeball” each tooth is labor-intensive, time-consuming, and
prone to error. Our goal is to identify intrinsic tooth surface features (cusps,
ridges, grooves, etc.) automatically, with intervention by the clinician to verify
or correct identified features only in difficult or unusual cases. In this paper, we
discuss the computational issues associated with automatic feature identification
and present a collection of algorithms to do this effectively. Our algorithms are
based on curvature analysis, clustering on 2D cross-sections of tooth surfaces, and
an adaptation of the watershed method for segmentation. We have incorporated
our algorithms in a software tool and we present experimental results that show
that our methods are effective at automatic feature identification on noisy and
incomplete real-world datasets.

Challenges: The input to the feature identification task is a collection meshes
representing individual tooth objects. The feature identification task is compli-
cated by the fact that the meshes are almost always noisy and incomplete. This
is due to the limitations (resolution) of the laser scanning process itself and due
to the segmentation process subsequently “cutting through” areas of the mesh
that are shared between adjacent teeth that very close to each other. A practical
requirement of the feature identification algorithms that we seek is that they
should be robust to noise and missing information.

Organization of the paper: Section 2 defines relevant anatomical terms and
the features of interest. Section 3 describes an algorithm for cusp identification
based on the familiar watershed method. Section 4 introduces a general approach
based on curvature analysis and clustering on 2D cross-sections of tooth surfaces
for identifying other features such as incisal edges, grooves, marginal ridges, and
occlusal surface boundary. Section 5 discusses how these features are identified
and presents experimental results. Section 6 offers concluding remarks.



2 Dental anatomy and dental features

Dental anatomy: All definitions below are illustrated in Figure 1.
Teeth are classified as incisors, canines, premolars and molars. Each dental

arch, i.e., row of teeth, can be divided into a left and a right side. Each side has
two incisors (central and lateral), one canine, two premolars (first and second)
and three molars (first, second and third). The incisors and canines are collec-
tively called anteriors and are used in cutting action. The premolars and molars
are called posteriors and are involved in chewing action.

The inner (resp. outer) part of the tooth on the tongue (resp. face) side is
called the lingual (resp. facial) side. The face side on posteriors (resp. anteriors)
is called the buccal (resp. labial) side. A tooth’s surface towards the front (resp.
back) of the arch, i.e., towards (resp. away from) the central incisors, is called
the mesial (resp. distal) side.

A suitably chosen line through the mesial and distal side of each tooth defines
the mesiodistal line of the tooth. Similarly, the lingual and buccal (or labial) sides
define the buccolingual line. These lines are important in feature identification
and in understanding tooth functionality.

Fig. 1. Dental anatomy. (All figures in the paper are best viewed in color.)

Dental features: All definitions below are illustrated in Figure 2. More infor-
mation can be found in a standard dental text such as [10].
Incisal edges: These are the sharp ridges on the anteriors (incisors and canines)
running along the mesiodistal line.
Cusps: On premolars and molars these are the mountain peak-like structures
on the surface, at the corners of the tooth. Each cusp has cusp ridges radiating
from its tip, similar to ridges that connect mountain peaks to valleys on a terrain;
these can be used to define other features such as the occlusal surface boundary
(explained below).

Canines have a single cusp which plays an important role in determining the
overall quality of the alignment. The premolars (resp. molars) have 2 or 3 (resp.
4 or 5) cusps depending on the arch (upper or lower) and the individual. These
cusps are named according to their position on the tooth surface. For example,
a molar would have a mesiolingual cusp situated on the mesial and lingual side



of the tooth. Similarly, for mesiobuccal, distolingual, distobuccal, lingual and
buccal cusps.
Occlusal surface and marginal ridges: The occlusal surface of a posterior tooth is
the area of the tooth surface where chewing occurs. This is also the contact area
between corresponding posterior teeth from opposing arches. Thus, the occlusal
surface complements the functionality of incisal edges.

The marginal ridges are located at the mesial and distal ends of the occlusal
surface. These are the regions where the mesial or distal walls of a tooth make
contact with the occlusal surface. Thus, each tooth has a mesial and a distal
marginal ridge. For incisors, the marginal ridges are on the vertical sides of the
teeth since the occlusal surface of incisors is the lingual (resp. labial) surface on
the upper (resp. lower) arch.

The occlusal surface of a posterior tooth is bounded on the buccal and lingual
sides by the cusp ridges. On the mesial and distal sides, the occlusal surface
is bounded by the two marginal ridges. This provides a boundary around the
occlusal surface area called occlusal surface boundary. Thus, the occlusal surface
boundary is a curve on the tooth surface that connects the marginal ridges, cusp
ridges, and the cusp peaks.

Fig. 2. Cusps, incisal edges, grooves, marginal ridges, and occlusal surface boundary
in an upper arch, as found by our feature identification algorithms.

Grooves: These are the depressions and fissures on the occlusal surface of a pos-
terior tooth that resemble riverbeds and valleys on a terrain. There are various
types of grooves and corresponding classification and naming conventions. For
our study, we are interested in the long grooves running along the mesiodistal
line of the tooth, called central developmental grooves, or just central grooves.

3 Cusp identification

Our approach is based on the watershed approach to mesh segmentation [6]. Al-
though this method is not generally suitable for segmenting very noisy meshes
(such as dental meshes), it is well-suited for identifying cusps on the tooth sur-
face. Cusps are defined as mesh vertices that are local minima with respect to



an appropriately defined height function. (For teeth on the upper arch, cusps
are local minima while for those on the lower arch they are local maxima; we
treat both cases uniformly, as local minima, by negating vertex coordinates in
the latter case.)

The key to watershed-based cusp extraction is designing a good height func-
tion H. Most generic mesh segmentation schemes define H solely on the basis of
surface curvature, so as to be able to segment meshes from a variety of sources.
Here we take advantage of the fact that we are dealing with tooth surfaces and we
define H on the basis of both surface curvature and the elevation of the vertices
(i.e., their z-coordinates, since the scanned meshes are provided with a base that
is parallel to the xy-plane). More precisely, for a vertex v on the surface of a tooth
in the upper arch, we define its height as H(v) = (1−α) ·(−Kv)+α ·vz, where vz
is v’s z-coordinate, Kv is the surface curvature at v, and α is a parameter that
controls the relative influence of Kv and vz on H(v). In our implementation, we
found that choosing α from [0.4, 0.6] worked well for all the models tested.

Figure 3 shows the result of applying the cusp identification algorithm with
the above height function on three different models. Figure 3(a) shows a lower
arch in which teeth are not well-aligned. Figures 3(b) and 3(c) show two upper
arches where the molars are rotated away from the vertical z-axis by different
amounts. Note that the number of cusps for teeth on the lower arch can be four
or five, and we may sometimes have to deal with partially erupted molars.

(a) (b) (c)

Fig. 3. Cusps (shown red) identified using watershed method.

After the cusps have been identified automatically, our software tool allows
the user to fine-tune the results manually (for very difficult cases) by clicking
on the tooth surface to add/delete (hence move) cusps. For instance, a click to
add a cusp triggers a search for the local minimum in a small neighborhood of
the surface around the location of the click and places a cusp at this minimum.
Thus the user does not have to “eyeball” the mesh to find the exact location of
the desired cusp.

4 A general approach to feature identification

In this section we discuss how to identify the remaining features of interest (be-
yond cusps), i.e., incisal edges, central grooves, marginal ridges, and occlusal
surface boundary. It turns out that these features can all be identified using a
general approach that is based on computing certain 2D cross-sections of the



tooth surface, analyzing the curvatures of the (piecewise-linear) curves that de-
fine these cross-sections to determine points of sufficiently high (positive or neg-
ative) curvature, and identifying clusters of such points that form the features
of interest.

Our approach starts by creating a sequence of parallel planar cross-sections
of the tooth surface, one set oriented along the mesiodistal line and one along the
buccolingual line. For each cross-section in each set, we perform 2D curvature
analysis at the vertices of the piecewise-linear curve that defines the cross-section
and identify points of high curvature and cluster these to identify regions of
interest on each curve. Then appropriate regions are selected from each curve and
stitched together with those from curves of neighboring parallel cross-sections
to obtain a connected and coherent feature (e.g., a ridge or groove). Thus, this
approach provides a means to extract the desired 3D features in a “guided”
fashion from a set of 2D regions of interest on individual cross-sections. This has
several advantages over an approach that attempts to extract features directly,
via curvature analysis in 3D, as we will discuss in Section 4.4.

We will now explain the main steps of the approach in detail.

4.1 Computing a medial curve

Consider the left side of the arch in Figure 1. We can define a curve that passes
suitably through the mesial and distal sides of each tooth on the left side starting
from the last molar and ending at the central incisor. A similar curve can be
defined for the right side of the arch. These two curves meet at the mesial sides
of the two central incisors. We define the medial curve of the arch as the curve
obtained by joining the curves from the left and right sides of the arch. The
medial curve will guide the feature identification process outlined above. The
medial curve represents an approximate layout of all the teeth on the arch and
also provides a mesiodistal line for each tooth that will be needed to compute
the mesiodistal cross-sections, as we will see in Section 4.2.

(a) (b) (c) (d)

Fig. 4. Computation of a medial curve (shown green): (a) Initial fit of the arch with a
cubic curve. (b) Computed medial curve for arch in (a). Additional examples of medial
curves on an upper arch (c) and a lower arch (d).

The medial curve is not unique since many different curves can satisfy the
given definition. For our purposes, it suffices to have an approximate medial
curve that reliably identifies the mesial, distal, buccal (labial) and lingual sides
of a tooth. Accordingly, we compute the medial curve as follows.



1. Project the triangular faces on each tooth surface to a set of triangles, Fxy,
on the xy-plane.

2. Find a cubic curve Cfit that best fits the 2D projections of the vertices in
Fxy (Figure 4(a)).

3. Sample the length of Cfit at suitably small intervals to get an ordered se-
quence, P = p1, p2, . . . , pn, of points on Cfit.

4. At each point pi ∈ P , define a line li orthogonal to Cfit (Figure 4(a)). Find the
median point, mi, of the intersection points of li with Fxy. Output the me-
dial curve as the piecewise-linear curve that connects the ordered sequence,
Cmed = m1,m2, . . . ,mn, of medians (Figure 4(b)).

Figure 4 shows the results of this algorithm.

4.2 Computing planar cross-sections

Using the medial curve described above, we compute an approximation, Lmd, of
the mesiodistal line, of a given tooth by finding the best-fitting line segment for
the section of the medial curve segment that goes through the tooth. We can also
compute an approximation, Lbl, of the buccolingual line of the tooth by taking
the line orthogonal to the mesiodistal line and passing through the centroid of the
xy-projection of the tooth. We will refer to the approximation of the mesiodistal
(resp. buccolingual) line as simply the mesiodistal (resp. buccolingual) line.

We define the cross-section of (the mesh of) a tooth object with respect to
a plane as the piecewise-linear curve obtained by intersecting the plane with
the triangular faces of the mesh. A plane that is parallel to both Lmd and the
z-axis and intersects the tooth object generates a mesiodistal cross-section. Let
Pmd be a set of such uniformly-spaced planes and let the set of corresponding
cross-sections generated beM. Similarly, a plane that is parallel to both Lbl and
the z-axis and intersects the tooth object generates a buccolingual cross-section.
Let Pbl be a set of such uniformly-spaced planes and let the set of corresponding
cross-sections generated be B. Figure 5(c) is an example of a cross-section.

(a) Buccolingual (b) Mesiodistal (c) Buccolingual cross-
section of a molar

Fig. 5. Examples of planar cross-sections on the tooth surface (shown in cyan).



4.3 Clustering of high-curvature regions

The planar cross-sections generated are piecewise-linear and composed of a
sequence of points (vertices) in 3D. The curvature of a point pi on such a
curve C (relative to the underlying smooth curve) can be approximated as
κ(pi) = ∆θ

|pi−1pi|+|pipi+1| , where pi−1 (resp. pi+1) is the previous (resp. next)

point with respect to pi on the curve C, |pipj | is the length of the edge from
pi to pj , and ∆θ is the (signed) angle between the lines passing through line
segments pi−1pi and pipi+1 [2]. The signed angle ∆θ allows us to define posi-
tive and negative curvatures at points. The points corresponding to the positive
(resp. negative) curvatures form the convex (resp. concave) regions on the curve
with respect to the plane containing the curve (Figure 5(c)).

Given the buccolingual and mesiodistal cross-sections, we find the vertices
on the curves for which the magnitude of curvature is greater than a specified
threshold, Tcurv. The sign of the curvature threshold may be positive or negative
depending on the targeted feature (e.g., ridges (resp. grooves) have high positive
(resp. negative) curvatures). The set, S, of high-curvature vertices resulting from
the thresholding serves as the input to the clustering algorithm.

Our goal behind clustering is to aggregate the vertices in S into connected
components of high-curvature vertices that correspond to features of interest.
The extracted clusters reveal these features and also cause noise regions to be
grouped into small isolated components. The latter can be identified and deleted
easily using a threshold, Tnoise, on the number of noise vertices.

We compute the connected components as follows. Initially all vertices in S
are taken to be singleton components. Starting with this, we repeatedly merge a
pair of components if the closest distance between them is less than a specified
threshold, Tccd. The closest distance between two components is defined as the
minimum of the pairwise distances between their corresponding vertices.

The clustering method requires three user-specified threshold parameters:
Tcurv, Tnoise, and Tccd. We have observed experimentally that, for each feature
type of interest, values of these parameters can be found that work across a
broad range of patient datasets. Thus, the parameter values can be predeter-
mined and our algorithm does not, in general, require user input during routine
operation. Section 5 below, which describes how the methods of this section can
be used to identify various features, provides the specific parameter values that
our implementation uses.

4.4 Discussion

The features of interest to us could be defined naturally in terms of the curvatures
at the mesh vertices (relative to the underlying 3D surface) [1,5,9]. For example,
cusps, incisal edges, and ridges consist of clusters of vertices of high positive
curvature (convex regions), whereas, grooves consist of clusters of vertices of
high negative curvature (concave). Hence it is natural to wonder if 3D curvature
analysis can be used for feature recognition.



We implemented this approach and found that, unfortunately, it did not
perform well on most datasets. There are several reasons for this: (a) Tooth
surfaces tend to exhibit sharp changes in curvature over small neighborhoods.
This makes it difficult to compute 3D curvatures reliably and use them to identify
partitioning ridges and valleys. (b) For each feature type, curvature threshold
settings vary quite considerably from one model to the next (in contrast to the
situation in the 2D approach); this requires users to set the thresholds on a case-
by-case basis and imposes an undue burden. (c) The presence of spurious ridge-
and groove-like structures on the occlusal surface and very close to the target
features makes the identification and cleanup of actual features difficult. We tried
using skeletonization methods for 3D meshes that are based on morphological
operators [8], but these did not perform well. Moreover, as Figure 6 shows, the
sizes of these noise regions are comparable to those of actual features, which
makes identification of true features extremely difficult.

(a) (b) (c) (d)

Fig. 6. Examples of poor feature recognition using 3D surface curvatures on a lower
and an upper arch.

It is for these reasons that we chose to develop the 2D method, based on
cross-sections, outlined earlier. It is easy to see that using a large number of
cross-sections effectively reproduces the entire tooth surface to high accuracy.
Since the cross-sections are generated by a set of parallel planes, this process
can be thought of as a “guided” reconstruction of the 3D surface. An advantage
of this is that we now have the flexibility to select only those parts of the cross-
sections that yield interesting information. For example, on a buccolingual cross-
section of a molar, the outermost convex regions corresponds to the mesial and
distal cusp ridges and the innermost concave regions correspond to the grooves
(Figure 5(c)). The notions of “outermost” and “innermost” are easy to define
relative to the natural directionality provided by a 2D curve, but it is not clear
how to do this on a surface. Furthermore, the parallel orientation of the cross-
sections makes it easy to stitch together the portions of features found on each
cross-section into a 3D feature.

5 Feature identification

This section describes how the techniques of Section 4 can be used to automati-
cally identify features other than cusps, such as incisal edges, grooves, marginal



ridges, and occlusal surface boundary. (Cusp identification, via a different ap-
proach, was discussed in Section 3.)

5.1 Incisal edges

These can be extracted as a cluster of convex regions of high-curvature vertices
on the buccolingual cross-sections of the anterior teeth. The results of our incisal
edge detection algorithm are shown in Figure 7 for two pairs of upper and lower
arches. Note that the algorithm performs correctly even when the tooth is in a
rotated position from the global archform (Figures 7(b) and 7(d)).

As mentioned in Section 4.3, there are three parameters that control the
clustering process. Their specific values for incisal edge detection are as follows:
Tcurv = 0.6 (the curvatures are normalized to the range ±[0, 1] here and later),
Tnoise = 1/10th of the number of buccolingual cross-sections and Tccd = 0.5 mm.
(We reiterate that these parameters work well on all models tested here and later,
and do not require adjustment by the user.)

(a) (b) (c) (d)

Fig. 7. Incisal edges (shown red) on anteriors identified using buccolingual cross-
sections. Upper arches shown in (a) and (b); lower arches in (c) and (d).

5.2 Grooves

Grooves are found on the posterior teeth and are extracted as the concave cor-
ners in the middle-section of the buccolingual cross-sections. (Figure 5(c).) As
mentioned in Section 2, there are many types of grooves on the posteriors, es-
pecially the molars. We are interested in the central grooves that run along the
mesiodistal line of the tooth. Figure 8 shows the results of our groove identifica-
tion algorithm on two pairs of upper and lower arches. As expected, the grooves
on the upper arches have more variation than the ones on the lower arches and
consist of multiple “branches”. For the purpose of treatment planning, we may
choose to approximate these grooves by a straight line segment or a curve.

The specific parameter values used for groove extraction are as follows:
Tcurv = −0.4, Tnoise = 1/10th of the number of buccolingual cross-sections
and Tccd = 0.5 mm.

5.3 Marginal ridges

These are extracted using the mesiodistal cross-sections of the tooth surface.
Figure 9 shows the results of our algorithm on two pairs of upper and lower



(a) (b) (c) (d)

Fig. 8. Central grooves (shown brown) on posteriors identified using buccolingual cross-
sections. Note the difference in the groove patterns between the lower arches ((a), (b))
and upper arches ((c), (d)).

arches. The marginal ridges on the lower arch premolars are difficult to identify
because they are not easily separable from the cusp ridges and also may not
be properly aligned with the mesiodistal line (see Figure 9(a) and (b)). Also,
the distal marginal ridge on the last available molars often cannot be accurately
identified because of the inherent ambiguities in the structure of these teeth.

The specific parameter values used for marginal ridge detection on an upper
arch is Tcurv = 0.3, Tnoise = 1/10th of the number of mesiodistal cross-sections
and Tccd = 0.5 mm. The mesial and distal walls on the lower arch posteriors are
higher than those on the upper arch and, thus, we set Tcurv = 0.6. The threshold
for Tnoise and Tccd are the same as for the upper arch.

(a) (b) (c) (d)

Fig. 9. Marginal ridges (shown red) on posterior teeth from mesiodistal cross-sections.

5.4 Occlusal surface boundary

The occlusal surface boundary of a posterior tooth is defined by the marginal
ridges on the mesial and distal sides, and the cusp ridges on the buccal and lingual
sides. (Section 2.) Section 5.3 describes how to identify the marginal ridges. Cusp
ridges on the buccal and lingual sides are also identified via buccolingual cross-
sections, via an approach similar to that for the incisal edges, but using both
the buccal and the lingual sides of the cross-sections. Figure 10 shows the result
of our cusp ridge identification algorithm.

The specific parameter values used for cusp ridge extraction are Tcurv = 0.5,
Tnoise = 1/10th of the number of buccolingual cross-sections, and Tccd = 0.5 mm.



(a) (b) (c) (d)

Fig. 10. Occlusal surface boundary identification on posterior teeth using buccolingual
cross-sections. The occlusal surface is bounded by the marginal ridges found earlier
(shown red) and the cusp ridges on the buccal and lingual sides (shown cyan).

6 Conclusion

We have presented techniques to automatically identify tooth surface features
in noisy and incomplete dental mesh models. These features are important
in virtual orthodontic treatment planning. Our methods use buccolingual and
mesiodistal cross-sections of the tooth surface to facilitate a “guided” extrac-
tion of incisal edges, central grooves, marginal ridges, cusp ridges, and occlusal
surface boundary. We also described a watershed-based cusp identification al-
gorithm. The algorithms have been implemented and experiments on real-world
datasets show that the methods are effective in automatic feature identification.
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Abstract. Loss of muscle mass in severe chronic obstructive pulmonary
disease (COPD) increases the risk of mortality more than ten-fold com-
pared to those with mild disease. Magnetic resonance imaging (MRI)
has been used as a valid, reliable and non-invasive tool to investigate
the changes in muscle mass in people with COPD. Using MR images
to perform 3D shape analysis of thigh muscles, we extended and applied
several state-of-the-art 3D shape descriptors to examine the classification
accuracy of a trained support vector machine classifier to distinguish 4
thigh muscles in 20 people with COPD versus 20 healthy controls. The
results of the study show high classification accuracy (with an average of
94%). Such a classification system may identify patients at risk of COPD
more readily so that early interventions to reverse muscle atrophy can
be provided.

1 Introduction

Chronic obstructive pulmonary disease (COPD) is defined by progressive air-
flow limitation that is not fully reversible, which causes loss of thigh muscle
mass (muscle atrophy) in people with COPD. The statistics reported by the
World Health Organization show that COPD shares 4th and 5th places with
HIV/AIDS as a single cause of death (after cardiovascular disease, cerebrovas-
cular disease and acute respiratory infection) [4]. Magnetic resonance imaging
(MRI) has been widely used as an appropriate tool for monitoring and evaluating
the differences in muscle disease distribution and severity [12]. Complimentary
techniques to MRI that can better detect atrophy-related changes in individ-
ual thigh muscles might facilitate targeting of interventions such as strength
training and gene therapy in people with COPD [12]. Thus, more effective ther-
apeutic approaches and preventive strategies can expedite the improvement of
muscle function, exercise tolerance, and physical activity in people with COPD
[12]. Such a diagnostic technique could also have more widespread application
to other chronic diseases that demonstrate muscle atrophy. Recently, in [10],
we investigated 3D shape and size measurements to examine the classification



accuracy of a trained support vector machine (SVM) classifier in distinguish-
ing individual thigh muscles in a group of COPD patients compared to healthy
people, whom were range-matched for age, gender, and body mass index. The
aim of this study is to further explore, extend and employ state-of-the-art 3D
shape descriptors (e.g. wavelet transform-based methods [14]) to achieve higher
classification accuracy.

Depending on the spatial extent of the region of interest of anatomical struc-
tures, shape descriptors can be classified into two main categories: local or global
features. Shape classification using local features requires establishing point cor-
respondence between the given shapes. For neurological (non-musculoskeletal)
applications, several approaches have been proposed to compare the extracted
corresponding local shape descriptors for classification [21]. However, in the ab-
sence of identifiable anatomical landmarks to establish correspondence between
the shapes, which is the case for thigh muscles, global shape descriptors could
be more useful. Several studies have been performed to investigate the relation-
ship between the shapes of anatomical structures and their pathological groups
using global shape descriptors. For example, Durrleman et al. [6] characterized
3D shapes of brain structures via vector fields and constructed global shape de-
scriptors by taking the integral of the vector fields. Gutman et al. [9] proposed
to extract a rotation invariant shape descriptor of an inverse conformal map
for the hippocampus surface using a spherical harmonics representation. Wang
et al. [19] and Chen et al. [3] applied Fourier descriptors to the MR images to
diagnose autism from MR images and to the description of shape changes in the
human mandible, respectively.

To the best of our knowledge, there is a conspicuous scarcity of studies that
have examined the relationship between (non-cardiac) muscle pathology and
morphology outside our own group’s work. Kaick et al. [17] used the statistics
of the Fourier coefficients extracted from 2D contours of the muscle to clas-
sify supraspinatus muscle and differentiate a normal supraspinatus muscle from
several pathologies. However, these features were not used for thigh muscle clas-
sification. Ward et al. [20] computed a number of 3D shape descriptors (e.g.
volume, surface area, 3D moments described in Table 1) for supraspinatus mus-
cle classification. HajGhanbari et al. [10] used the same shape descriptors applied
by Ward et al. [20] for thigh muscle classification and made them more localized
by dividing each muscle into four equal quarters (regions) along its longest axis
and calculated the measures for each region. In our aforementioned works, we
have not yet utilized state-of-the-art 3D shape descriptors for thigh muscle clas-
sification. In Section 5, we compare the classification accuracy of our proposed
method to these earlier techniques [10,20].

In this work, to study thigh muscle anatomy, we utilize a method that encodes
localized morphological properties without the prerequisite of explicitly calculat-
ing a point-to-point correspondence between shapes. In particular, we first apply
the wavelet transform (WT)-based shape descriptors proposed by Papadakis et
al. [14] (Section 3); second, we propose a methodological extension of Papadakis
et al.’s work [14] in a way that the descriptor follows the natural geometry of the



Measurement Description

1 3D moment J1
Capture characteristics of the spatial distribution of
the voxels that make up the muscle shape.

2 3D moment J2

3 3D moment J3

4 Mean of distances to centroid
Measure surface non-sphericity.

5 Std. dev. of distances to cen-
troid

6 Eigenvalue ratio λ1/λ2
Characterize the tubular, planar, and spherical
geometry of the shape.

7 Eigenvalue ratio λ1/λ3

8 Eigenvalue ratio λ2/λ3

9 Surface area Calculated as the sum of the areas of the triangular mesh
of the muscle.

10 Volume Calculated as the number of voxels inside the mesh of
the muscle multiplied by the size of each voxel in mm3.

11 Surface area/volume The ratio between the surface area and volume.

Table 1: Measurements taken by Ward et al. [20] for supraspinatus muscle classifica-
tion.

muscle more accurately (Section 3.2). We validate the classification accuracy of
the extracted features on MR images taken from the individual thigh muscles of
40 subjects (20 healthy versus 20 people with COPD) (Section 2). The results of
our study show that SVM-classifier can differentiate individual thigh muscles in
COPD group from those of the healthy group with an average accuracy of 94%.
A comparison between the extracted feature vectors reveals that the WT-based
shape descriptors outperform Ward et al.’s [20] and HajGhanbari et al.’s [10]
shape descriptors for all of the four knee flexor and hip adductor muscles. In
addition, the classification accuracy of our proposed extension of the WT-based
descriptors is greater than that of the original method in [14] (Section 5).

2 Material

Forty subjects, twenty people with COPD and twenty healthy adults, matched
for age, gender, and body mass index participated in this study. T1-weighted MR
images (field of view 40 cm2, matrix 256 ×256, 5 mm thick) were taken from
each subject’s thigh from the anterior superior iliac spine to the tibial plateau,
yielding 80 to 100 axial slices for each subject. Once the images were collected
using the DICOM image file format, they were loaded into ITK-SNAP software
[10]. Slice-by-slice segmentation of 4 individual thigh muscles was performed by
an expert clinician (Figure 1). Finally, triangulated meshes were extracted from
the ITK-SNAP 3D segmentation and were used for the shape representation
and classification steps. Note that, in this study, in order to prepare scale and
translation invariant shape descriptors, the muscles are normalized to femur
length for each subject and are centered around the origin. Also, the imaging
protocol ensured a consistent orientation of the knee extensor and flexor muscles



(a) (b) (c) (d)

Rectus femoris

Vastus intermedius

Vastus medialis

Vastus lateralis

Semitendinosus

Semimembranosus

Bicepts femoris-short head

Bicepts femoris-long head

Fig. 1: Example segmentation of the knee extensor and flexor muscles in ITK-SNAP:
(a) Horizontal, (b) sagittal, (c) coronal, and (d) 3D mesh view. The different knee
extensors and flexors are represented by different colors.

across all subjects. More details about the data acquisition and surface mesh
preparation can be found in [10].

3 2D Wavelet Transform Shape Descriptors

Papadakis et al. [14] computed 3D shape descriptors using the mean and variance
of the wavelet transform (WT) coefficients of panoramic views of a 3D object. In
the following sections, we illustrate how to extract the panoramic views of the
3D mesh of the muscle (Section 3.1) and then describe our proposed extensions
to the cylindrical projection (Section 3.2). Finally, we discuss the extracted WT-
based shape descriptors (Section 3.3).

3.1 Extraction of Panoramic Views by Cylindrical Projection

A panoramic view of a 3D object is obtained by projecting the 3D object onto
the lateral surface of a projection cylinder ; a cylinder that is parallel to one of
the three principal axes (X, Y, or Z). The panoramic views are used to capture
the position and orientation of the object’s surface in 3D space. Figure 2(b)
depicts the discretized lateral surface of the projection cylinder parallel to the
Z-axis, whereas Figure 2(e) shows a cross section of the 3D object (blue curve)
and the cylinder (green circle). In the cylindrical projection step of Papadakis et
al.’s method [14], each point of the cylinder (e.g. point p in Figure 2(e)) would
be assigned the radius r of the cylindrical coordinate of the furthest point inside
the sector containing that point (e.g. point q in the gray sector in Figure 2(e)).
Then, a 2D gray-scale image is created by unfolding the cylinder, such that the
image pixels and intensities correspond to the cylinder’s vertices and the radii
assigned to them, respectively (Figure 2(f)). Performing similar projections onto
the other cylinders parallel to the X and Y axes, results in two additional gray-
scale images.

Construction of the WT-based shape descriptors from the extracted 2D im-
ages resulting from X, Y and Z cylindrical projections is described in Section 3.3.
Let WT-X, WT-Y and WT-Z denote the extracted WT-based shape descriptors
of the projection cylinders oriented along the X, Y, and Z-axis, respectively. Pa-
padakis et al. [14] constructed the shape descriptors by concatenating WT-X,
WT-Y and WT-Z into WT-XYZ, i.e. WT-XYZ=[ WT-X, WT-Y, WT-Z]. Since
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Fig. 2: Panoramic view of a 3D shape. (a) 3D mesh of a thigh muscle. The change
in color from blue to red reflect the increasing Z coordinates of the mesh vertices.
(b) Discretized (or sampled) cylinder, on which the muscle in (a) is projected. (c)
3D representation of both the muscle and the cylinder prior to projection. (d) 3D
representation of a cross section (green plane) of the mesh and the projection cylinder.
Note how the angle φ is defined on the plane. (e) The 2D cross section of (d). Each point
on the cylinder surface (e.g. point p in (e)) is assigned the radius (r) of the cylindrical
coordinate of the furthest point of the muscle (blue curve) inside the sector containing
that point (e.g. point q in the gray sector). (f) 2D image obtained from unfolding the
cylinder in (b). The intensity values at each pixel of the 2D image in (f) correspond to
the radii r assigned to the cylinder’s vertices.

each thigh muscle in our study has a tube-like prolate shape that is elongated
and aligned along the Z-axis (i.e. the Z-axis is the principle axis of each muscle
as shown in Figure 2(c)), the projections along the cylinder parallel to the Z-
axis are the most informative. Our results in Section 5 confirm that using only
WT-Z as the shape descriptors achieves a classification accuracy similar to that
of WT-XYZ but requires only about one third of the computation.

3.2 Extraction of Panoramic Views by Mesh Projections

Generally, the linear axes of the muscles are aligned with the Z-axis. However, to
be more precise, each muscle has a non-linear (curved) axis that extends along
the muscle’s central axis (or medial axes). For this reason, cylindrical projections
that follow the natural curved axis of the muscle geometry are more accurate
and are expected to be even more descriptive than those resulting from a linear
axis. In this subsection, we describe the details of developing this curved axis
extension.
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Fig. 3: Extraction of panoramic views by mesh projection. (a) Cross section of the
muscle (blue curve) and the cylinder (green circle). (b) There is no intersection of the
muscle (blue curve) with any of the green sectors. (c) Vertices of the contour of the
mesh in the cross section. (d) Distances (purple lines) from the centroid of the curve
to the mesh vertices in the cross section. (e) Radius of the cylindrical coordinate of the
points (green lines), i.e. the distance from the origin (x, y) = (0, 0) to the mesh vertices
in the cross section. (f) 3D mesh of the muscle. (g-i) 3D representation of the distances
assigned to the vertices based on: (g) the medial curve of the muscle; (h) the radius of
the cylindrical; and (i) the radius of the spherical coordinates.

Our methodological extension is illustrated with the example in Figure 3.
Given a cross section of the muscle (blue curve) and the Z-axis-aligned cylinder
(green circle) shown in Figure 3(a), in the cylindrical projection step of Papadakis
et al.’s method [14], the values assigned to the vertices belonging to the green
sectors in Figure 3(b), would be zero. The reason is that none of the points of
the muscle’s cross-section contour (blue curve) lie inside any of those sectors.

As the primary goal is to characterize local geometrical properties, assigning
zero values to the sectors that do not intersect with the muscle would cause



a problem because this results in having sectors devoid of mesh points in the
projection images; and due to that, the unfolded image would contain numerous
missing pixel values. Clearly, this approach would lose information that captures
the muscle mesh geometry. To address this problem, we perform the projections
on a curved cylinder whose axis follows the geometry (the central or medial
axis) of the muscle, rather than performing the projections on the Z-axis-aligned
cylinder. In other words, we effectively perform the projections onto the muscle
mesh itself.

Given the 3D mesh of the muscle (Figure 3(f)), we compute the 2D projection
image by first assigning values to the mesh vertices and then unfolding the mesh
into the 2D image with scalar-valued pixels. The values assigned to the vertices
are chosen to be the radii of the polar coordinates of the muscle cross section,
with the caveat that the center of the coordinate system has to be translated
from its position along the Z-axis (Figure 3(d) ) into its new position at the
center of the muscle cross section curve (Figure 3(e)). Collecting these new cross
section centers from cross sections at different Z values form the curved axis of
the muscle (black curve in Figure 3(g)); an approximation of the muscles medial
axis [15,16]. Finally, we collect the WT-based shape descriptors of the resulting
image into the vector WT-MED (short for wavelet-medial).

We also evaluate two additional variant approaches:

I . In contrast to WT-MED, the first variant does not translate the center
of the polar coordinate system but rather maintains its position along the
Z-axis (similar to the original WT-Z). However, different from WT-Z, which
assigns a value to each vertex of the projection cylinder parallel to the Z-
axis, this method assigns a distance to each vertex of the muscle’s mesh
(Figure 3(h)). The assigned values are effectively the radii of a cylindrical
coordinate system representation. Therefore, we refer to the extracted WT-
based shape descriptors from the resulting image by WT-CYL.

II . The second variant assigns the distance from the center of the muscle in 3D
(not the center of the 2D cross section of the muscle) to the mesh (Figure
3(i)). This essentially encodes the radius of the spherical coordinates of the
mesh vertices and, hence, we refer to this approach as WT-SPH.

3.3 Statistics of the WT Coefficients

All of the projection approaches presented earlier result in 2D scalar images,
which we denote by f(u, v). The wavelet transform is then performed on these
2D images and wavelet coefficients are collected to construct the shape descrip-
tors. Similar to the Fourier transform (or Fourier analysis or decomposition),
which captures the magnitudes of different sinusoidal harmonics or frequencies
existing in the whole 1D function (or signal) or 2D image, the wavelet transform
achieves the same goal with the following extensions [2]. Instead of a global view
of the sinusoidal frequencies that make up the whole signal, the wavelet trans-
form focuses on analyzing the similarities between different localized regions of
the signal and scaled and translated versions of certain function, known as the
mother wavelet (instead of the sinusoidal functions in the Fourier analysis). In



particular, the discrete wavelet transform dwt coefficients of the 2D image f(u, v)
are extracted by:

dwt(s, a, b) =
1√
s

M
∑

u=1

N
∑

v=1

f(u, v)ψ(
u− a

s
,
v − b

s
) (1)

where ψ is the mother wavelet, and s and (a, b) are scale and translation pa-
rameters, respectively. In the WT framework, the WT coefficients are extracted
from the different subband images of f resulting from filtering and sub-sampling
of f at different scales. At each scale s, there are three detail images, denoted
by fLH

s , fHL
s and fHH

s , each of which respectively contains the horizontal, ver-
tical and diagonal high frequency information of the image. There is also an
approximation image, denoted by fLL

s , which contains the low frequency infor-
mation (fLL

s is recursively decomposed as shown in Figure 4). For N differ-
ent decomposition levels, the total number of subband images fi is 3 × N + 1:
fi ∈ {fLH

s , fHL
s , fHH

s , fLL
N } for s ∈ {1, 2, ..., N}.
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Fig. 4: Wavelet decomposition of a 2D image. A schematic diagram showing how an
original image (a) is decomposed into 4 subbands (b) (i.e. one-level, N = 1), and then
how fLL

l is further decomposed (c) resulting in 7 subbands (i.e. two-level, N = 2).

The WT-based feature vector FV of f is computed as the concatenation of
the means and variances, µi and σi, of the WT coefficients of every subband
image fi, and is given by:

FV = {FV1, FV2, ..., FV3×N+1}, FVi = {µi, σi}. (2)

where µi and σi of the computed coefficients dwti (1) of the i
th subband image

fi of size mi × ni are given by:

µi =

mi
∑

u=1

ni
∑

v=1

|dwti(s, u, v)|

mi × ni

, σi =

√

√

√

√

√

mi
∑

u=1

ni
∑

v=1

(dwti(s, u, v)− µi)2

mi × ni

. (3)

The WT-based features in [14] (WT-XYZ) are extracted using (2) for the
computed X, Y and Z paranomic views of the object (Section 3.1).



4 Muscle Shape Classification

Given a mesh representing a segmented muscle from a novel 3D medical image,
our goal is to distinguish abnormal muscles from healthy muscles. In particular,
we would like to perform 4 independent classification tasks for the 4 muscles:
rectus femoris (RF), vastus lateralis (VL), bicepts femoris-short (BS), and sar-
torius (SS), which belong to the muscle groups: knee extensors, knee flexors, and
hip adductors (Table 2). In order to evaluate the accuracy of the classifier, we
perform a leave-one-out (LOO) cross-validation [18]. We use a non-linear SVM
for thigh muscle classification, which requires the setting of two parameters: C,
which assigns a penalty to errors, and γ, which defines the width of a radial basis
function [18]. We compute the false positive (FP) and true positive (TP) rates
of the classifier for different values of C and γ in a logarithmic grid search (from
2−8 to 28) to create a receiver operating characteristic (ROC) curve. Therefore,
each pair of the parameters (Ci, γj) would generate a point (FPij , TPij) in the
graph. The ROC curve is constructed by selecting the set of optimal operating
points. Point (FPij , TPij) is optimal if there is no other point (FPmn, TPmn)
such that FPmn ≤ FPij and TPmn ≥ TPij . We use the area under the gener-
ated ROC curves (AUC) obtained from classification involving different shape
descriptors to compare their discriminatory power.

5 Results

Figure 5 and Table 2 show the ROC curves and the areas under them computed
for the global shape descriptors used in [20] and [10], which we denote by GLOB1
and GLOB2, respectively (Section 1), and WT-based shape descriptors (WT-
XYZ, WT-Z, WT-CYL, WT-SPH and WT-MED described in Section 3) to
classify 4 individual thigh muscles into normal vs. COPD cases.

Comparing the classification accuracies reported in Table 2, we make the
following observations:

i. Averaged over all the 4 muscles (column 1 in Table 2), the highest SVM
classification accuracy is obtained using WT-MED, where individual muscles
in the COPD group are differentiated from those in the healthy group with
an average classification accuracy of 93.69%.

ii. WT-based shape descriptors (WT-XYZ, WT-Z,WT-CYL,WT-SPH andWT-
MED) outperform GLOB1 [20] and GLOB2 [10].

iii. The classification accuracy of the 1D WT-based descriptors (WT-Z, WT-
CYL, WT-SPH and WT-MED) is greater than that of the 3D descriptor
(WT-XYZ) [14]. It can be seen that, for any muscle, we can find at least one
1D shape descriptor with accuracy better than 3D.

iv. WT-based descriptors using the proposed mesh projection outperform the
WT-Z using the cylindrical projection.

v. The last column shows our recommended shape descriptor for each muscle.

Furthermore, Tables 3-4 show the recall R = TP/(TP + FN) and precision
P = TP/(TP+FP ) resulting from the optimum setting of the parameters (C, γ)



in the SVM-classifier. The results indicate that, on average over all the 4 muscles,
the maximum precision and recall are achieved by our proposed WT-MED.
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Fig. 5: ROC curves of the classifiers resulting from using the different shape descriptors
for the 4 muscles. Areas under the ROC curves are reported in Table 2.

Muscle
Area under the ROC curves Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7250 0.6200 0.6837 0.8750 0.7462 0.9500 0.8475 WT-SPH

VL 0.6188 0.5938 0.7500 0.5413 0.7900 0.7250 0.9750 WT-MED

BS 0.9025 0.9500 0.8250 0.9000 0.5813 0.9750 0.9750 WT-SPH,
WT-MED

SS 0.5850 0.6650 0.5650 0.6225 0.8750 0.8750 0.9500 WT-MED

Mean 0.7078 0.7072 0.7059 0.7347 0.7481 0.8812 0.9369

Table 2: Area under the ROC curves in Figure 5. Highest accuracy acquired for each
muscle is colored in red. The last column shows, for each muscle, the shape descriptor(s)
that resulted in the highest AUC.

Muscle
Precision of the classifier Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7143 0.5930 0.6594 0.8947 0.6942 0.9091 0.7804 WT-SPH

VL 0.5955 0.5544 0.7500 0.5291 0.7148 0.7647 0.9524 WT-MED

BS 0.8619 1.0000 0.7826 0.9444 0.5846 0.9524 0.9524 WT-MED

SS 0.5919 0.6515 0.5455 0.5873 0.8261 0.8571 0.9091 WT-MED

Mean 0.6909 0.6997 0.6844 0.7389 0.7049 0.8708 0.8986

Table 3: Precision values resulting from using the optimum setting of the parameters
(C, γ) in SVM-classifier.

6 Discussion and Conclusion

A computer-aided method for diagnosing muscle atrophy in people with COPD
could facilitate targeting of interventions such as strength training or gene ther-
apy. In order to differentiate 4 individual thigh muscles in the healthy versus
COPD groups, we first applied a state-of-the-art 3D shape descriptor; the WT-
based shape descriptor proposed by Papadakis et al. [14] resulting in cylindrical
projections. A comparison between the classification accuracies obtained by the



Muscle
Recall of the classifier Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7000 0.6000 0.6250 0.9000 0.6250 0.9000 0.7500 WT-SPH

VL 0.5250 0.4500 0.7500 0.4500 0.6500 0.8000 0.9500 WT-MED

BS 0.8500 1.0000 0.7500 0.9500 0.6167 0.9500 0.9500 WT-MED

SS 0.6500 0.6500 0.6000 0.5000 0.8000 0.8500 0.9000 WT-MED

Mean 0.6813 0.6750 0.6813 0.7000 0.6729 0.8750 0.8875

Table 4: Recall values resulting from using the optimum setting of parameters (C, γ)
in SVM-classifier.

aforementioned descriptors and the global shape descriptors by Ward et al. [20]
and HajGhanbari et al. [10] shows that, averaged over all the 4 muscles, the
WT-based shape descriptors outperformed the global shape descriptors.

We extended the WT-based descriptors by introducing medial-based mesh
projections rather than the cylindrical projections, in order to follow the natural
geometry of the muscle more accurately, and to rely on a 1D projection rather
than 3D projections. The experimental results showed that we achieved improved
classification results for all the 4 muscles using the extended descriptors. These
results support the shape- and axis-specific use of shape descriptors for diseased
muscles. Because different chronic diseases can have a differential impact on cer-
tain muscles or specific muscle regions, muscle-specific shape descriptors should
be applied to better discriminate muscle anomalies.

Although the presented descriptors were applied to differentiate thigh mus-
cles, they might have a widespread application for other conditions and chronic
diseases that result in muscle atrophy such as chronic heart diseases, AIDS,
cancer, and osteoarthritis [1].

One direction for future work is to extend the medial-based, mesh-projection
descriptors to complex anatomical shapes that exhibit medial branches in their
skeletons (in contrast to the single medial curve that we used here for the tube-
like thigh muscles). Possible future work on muscle shape analysis include es-
tablishing point correspondence between meshes and building statistical shape
models [5], examining alternative shape representation via harmonic analysis
[8,13], and studying shape spaces on non-linear manifolds [11,7].
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Abstract. Head movements degrade the image quality of high resolu-
tion Positron Emission Tomography (PET) brain studies through blur-
ring and artifacts. Many image reconstruction methods allow for motion
correction if the head position is tracked continuously during the study.
Our method for motion tracking is a structured light scanner placed just
above the patient tunnel on the High Resolution Research Tomograph
(HRRT, Siemens). It continuously registers point clouds of a part of the
patient’s face. The relative motion is estimated as the rigid transforma-
tion between frames.
A geometric calibration between the HRRT scanner and the tracking
system is needed in order to reposition the PET listmode data or image
frames in the HRRT scanner coordinate system. This paper presents a
method where obtained transmission scan data is segmented in order to
create a point cloud of the patient’s head. The point clouds from both
systems can then be aligned to each other using the Iterative Closest
Point (ICP) algorithm.

Keywords: HRRT, PET, structured light, calibration, motion tracking,
motion correction

1 Introduction

Technological improvement of the different medical imaging modalities leads
to diagnostic images with increasing spatial resolution. As a consequence the
techniques also become more vulnerable to the effects of patient motion during
image acquisition.

In Positron Emmision Tomography (PET) patient movements can cause both
artifacts and blurred images [1]. The increased spatial resolution gained by tech-
nological advancement is thus countered to a certain degree by the increased
sensitivity to motion, unless patient fixation and motion correction is utilised.

Even with fixation methods such as vacuum cushions and head restraints
motion still occurs albeit to a lesser degree [2]. The magnitude of motion tends
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to increase with the duration of the study, and acquisition times for PET images
can be up to several hours. Typically the patient’s head drifts slowly to one
side, or at some point the patient repositions themself to lie more comfortably.
The resolution of the Siemens High Resolution Research Tomograph (HRRT) is
below 2 mm, and since the described movements can be larger motion correction
becomes a necessity [3].

One approach for motion tracking is the Polaris Vicra system from Northern
Digital Incorporated. It registers a tool with reflective markers attached to the
patient’s head. The positions of the markers are relayed to a tool tracker through
infrared light. The main issue with such system is to ensure that the tool stays
attached and do not move relative to the patient’s head. Further to maintain
line of sight between tool and tool tracker, which is troublesome in the narrow
patient tunnel of the scanner.

Our approach is a structured light system. Two cameras on both sides of a
DLP pico projector from Texas Instruments are mounted on the HRRT scanner
as shown in Figure 1(a). A series of cosine patterns are projected onto the object,
and these patterns are imaged by the cameras. We use phase shift interferometry
to obtain a 3D point cloud of the object - in this case a part of the patient’s
face as shown in Figure 1(b) [4]. The relative motion between image frames is
estimated as the rigid transformation with six degrees of freedom that best aligns
the two point clouds. The iterative closest point (ICP) algorithm can be used to
find the transformation [11] [12]. In comparison to the tool tracking approach,
this approach avoids the use of an optical tool, and can potentially be integrated
into future scanners.

(a) The structured light scanner (b) Point cloud output

Fig. 1. The structured light scanner mounted on the HRRT scanner and an example
of the 3D point cloud it produces.

The issue adressed in this paper is the geometric calibration between the
HRRT scanner and the structured light system. Movements observed by the
motion tracking system have to be translated into movements in the coordinate
system of the HRRT scanner. Then it is possible to reposition all the detected
Line Of Responses (LOR) into the position of the head at the given time.
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The method for calibration should not add any extra radiation dose to the
patient. Furthermore it is undesirable to increase the total duration of the scan-
ning session and to alter the normal workflow. Ideally the method should only
employ the data that is already obtained - either the emission (EM) data or the
transmission (TX) data.

Previous calibration methods use either a number of EM scans or TX scans of
a calibration object and have both successfully been used for finding a calibration
transformation [7] [8]. In both cases the motion tracking system was the Polaris
Vicra system or a system very similar to it. In the EM approach a positron
emitting point source added to the tracking tool allowed for measurements of
the tracking tool position in both systems. Multiple independent measurements
were required in order to determine all six degrees of freedom. In the TX scan
approach retroreflective markers with a sufficient density allowed for detection
of the tracking tool in both systems. Both of these methods find relatively few
points with a known point-to-point correspondance from which a transformation
can be estimated. The measurements must be performed in preparation of the
patient scan, and the calibration is preserved as long as the tooltracker is not
moved.

For the purpose of calibration with a structured light motion tracking system
there are no markers to be detected with either EM scans or TX scans. From
the TX data it is however possible to extract the iso-surface of the patient’s
head, thus producing a point cloud similar to what is obtained from the motion
tracking system. The point correspondance is not known, however a large amount
of points are available. The best rigid alignment between the two point clouds
can be found with the ICP algorithm, and the transformation serves as the
calibration. The measurements are a part of the normal scanning procedure,
which is very advantageous in terms of time and simplicity. This also allows for
adjustments of the motion tracking system or even completely detaching it from
the HRRT scanner between scans.

A common approach for extracting iso-surfaces from volume data is the
Marching Cubes Algorithm [5]. However, in our case, the iso-levels of the TX
scans are not very well defined and would result in a noisy surface. We have there-
fore investigated an alternative approach to extract the interface between soft-
tissue and air from the TX scans. This paper presents a segmentation method
using path tracing on the reconstructed TX image.

2 Methods

2.1 Circular resampling

A typical slice from the TX image of a patient is seen in Figure 2(a). The border
of the head has to be traced and the procedure repeated for each slice. The used
path tracing algorithm finds the optimal path going from one edge of the image
to the other. However the boundary of the head in the TX image is located as
a circular structure somewhere in the middle, and thus a reshaping is required
before path tracing can be applied.
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A point within the circular structure is chosen. The point (rs, cs) serves as
a center from which N spokes of length L radially shoots out from, so that the
end points are given as:

re = rs + cos
(

2πn
N

)
L , ce = cs + sin

(
2πn
N

)
L

where n = [0, 1, .., N − 1]. Each spoke samples L values of the underlying pixels
using bi-linear interpolation. The sampled values are placed in a new image, as
shown in Figure 2(b).

The center point is chosen as the centroid of the image. Using a fixed point
could however be a viable strategy. Patients are always placed in the approximate
radial center of the scanner tunnel, since this is where the spatial resolution is
highest [6]. The placement is done manually so a slight inter-scan variation is
expected. Using a fixed point saves a little computational time, however it is
more likely to give a faulty resampling, if the spoke length is chosen too short.

The radial resolution - the amount of spokes - is also a consideration. The
choice is dependent on the resolution of the TX image. Too few spokes correspond
to an undersampling and lead to loss of information about the true curvature and
important small features primarily the nose and ears. Oversampling increases
computational time without much extra information being gained.

(a) TX scan
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(b) TX scan resampled

Fig. 2. Circular resampling of a transversal TX slice using 360 spokes. Only every 10th
spoke is displayed on Figure 2(a).

2.2 Path tracing

The chosen path tracing algorithm is a simplified version of Dijkstra’s algorithm
[9]. It is based on dynamic programming and designed to find optimal paths
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between the top and bottom of a grayscale image I(r, c) as illustrated in Figure
3.

Each pixel holds a cost value C(r, c), and for the purpose of edge detection
the first derivative or gradient of the image is used. The optimal path P is then
defined as the list of pixels with the lowest (or highest) accumulated cost going
from the top of the image to the bottom:

Ctot =
∑

(r,c)∈P

C(r, c)

It is possible to calculate the total cost for all paths, however the number of
computations would quickly increase beyond reasonable with increasing image
size. The algorithm is therefore limited, so that the path is only allowed to move
down and up to two pixels to either side.

The algorithm operates with two images of the same dimension as the original
image. A value in the accumulator image A(r, c) is the lowest possible (optimal)
accumulated cost required to get to that pixel from the top. Path information
is stored in the backtracing matrix T. The value stored in T(r, c) is the column
index of the previous path entry, P (r − 1,T(r, c)). The path is therefore read
backwards, and the last path entry is the index that holds the lowest value in
the last row of A. This is illustrated in Figure 3.

An important aspect of the algorithm is the ability to wrap around small
features. This is highly dependent on the restrictions imposed on the path. Al-
lowing it to sidestep more pixels allows for more sharp features to be traced,
although it could also lead to a much less smooth border. In this particular case
an alternate possibility is to increase the radial resolution of the resampling, at
the expense of more computations.

The traced edge points from each slice are transformed to points in the
original image and combined to the resulting point cloud which is shown in
Figure 4.

2.3 Transformations and ICP

The calibration between the motion tracking system and the HRRT scanner can
be taken as the rigid transformation of the source point set P = (p1, p2, ..., pN )
that gives the best alignment to the target set Q = (q1, q2, ..., qM ). The mathe-
matical measure of goodness of fit is the sum of squared errors after the transfor-
mation - which is the squared distance from points in P to their corresponding
point in Q:

E =
N∑

i=1

||Rpi + T − qi||2 (1)

where R is an ortogonal rotation matrix and T a translation vector.
Minimization of Equation 1 requires knowledge of the point correspondance

between the two point sets. When such information is not given, the problem can
be solved with an iterative approach - the ICP. The algorithm iterates through
the following steps:
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Fig. 3. Illustration of pathtracing on the resized version of Figure 2(b).

– Matching: Points in P are matched with their nearest neighbor in Q, and
this is assumed to be the point correspondance.

– Minimization: Equation 1 is minimized using Singular Value Decomposi-
tion (SVD).

– Transformation: The transformation is applied to the points in P, and the
steps are repeated.

The algorithm can be modified further and improved by adding more steps,
such as a selection of only a subset of the points or inclusion of a neighbor pair
weighting [10].

When using the ICP there is a consideration of the designation of target
and source point cloud. The point cloud from the TX image represents the
entire head whereas the points from the motion tracking system only represent
a subset of this. Many of the points from the TX image does therefore not have
a meaningfull nearest neighbor correspondance, and consequently the TX point
cloud is chosen as the target. Otherwise the ICP algorithm requires some kind
of rejection scheme.

3 Results and Discussion

3.1 Segmentation

Transmission data from four patient studies was available and two of them were
motion tracked with the structured light system. The settings and parameters
for segmentation of the TX data are based on the two untracked TX studies.
The result is illustrated in Figure 4, and while it is recognisable as a face, it does
have the issues to be addressed: Which slices to segment and edge tracing.

Which slices to segment: The data contains 207 transversal slices, however
the initial slices contain nothing except noise and attenuation from the headrest.



7

Fig. 4. The output from the TX segmentation. The point cloud was surface recon-
structed [13] for the purpose of illustration. Notice that it is possible to see the start
of the ear canal, however the ear is missing. Small indentations and bumps are present
and the very top and the back-side of the head has been excluded.

The strategy with circular resampling and path tracing assumes that the image
contains a circular structure, and otherwise the result is highly unpredictable.
A simple threshold strategy was chosen as sanity check. The upper part of the
skull is excluded, as seen in Figure 4. The loss is acceptable, since the excluded
part is neither seen by the motion tracking system. More slices could be included
with a more sophisticated sanity check.

The edge tracing: The cost values used to determine the optimal path are
based on the derivative of the γ-ray attenuation. For the most part of the head
there is a superficial thin layer of skin followed by the bone layer. Since bone is
highly attenuating compared to soft tissues, there is a gradient going from air
to skin, but an even steeper gradient going from skin to bone. The method thus
favors segmenting the bone edges, which for the most part of the face is very
similar to the skin surface. However it is paramount that the method segments
important features - especially the nose. The upper part of the nose is quite
dense and thus segmented, whereas the lower soft part is not. The resulting
faulty segmentation is illustrated in Figure 5(a), and therefore it was neccesary
to include a weighting of the cost values to improve the segmentation.

A strategy was chosen where all cost values outside the bone edge region were
enhanced. This generally improved the skin and nose segmentation as shown in
Figure 5(a). However the lower most part of the nose and the ears were still
unsegmented. Further the enhancement introduced some artifacts. The gradient
from the headrest attenuation was also amplified, resulting in partly segmenta-
tion of this as shown in Figure 5(b). The issue was most profound in slices where
the head was in direct contact with the headrest. Since the back of the head has
no real interest it could be cut-off. Notice also in Figure 5(b) that even though
the enhancement improved the tracing of the skin-border, the path occasionally
went back to the bone-border resulting in bumps and indentations in the point
cloud.
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(a) TX image slice 169 (b) TX image slice 119

Fig. 5. Illustration of the effect of the added weighting scheme for segmentation. The
green and the red lines show the result before and after application of the cost value
weighting respectively.

3.2 Calibration

With one point cloud measured from the HRRT scanner and one from the motion
tracking system the calibration could be performed. The initial situation is seen
in Figure 6(a). A fixed transformation was applied in order to bring the two
point clouds into a decent starting position. This was chosen as a rotation of 180◦

around the y-axis, a rotation of −36◦ around the x-axis and a (x,y,z)-translation
of 160 mm, 385 mm and 340 mm. The resulting situation before the application
of the ICP is shown in Figure 6(b). The ICP converged to a minimum with less
than 20 iterations, and the final total transformation is shown in Figure 6(c).

(a) Initial situation (b) Fixed transformation (c) Final transformation

Fig. 6. Illustration of the transformations. The point cloud from the TX scan is shown
in white and has been surface reconstructed [13] for illustration purpose. The point
cloud from the motion tracking system is shown in green.

Visually it appears to be a decent alignment, however a more quantiative
measure is required for validation of the result. One approach could be to use
landmarks, however the error would then be correlated with the ability to place
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landmarks correctly. A more precise and valuable validation would be a com-
parison between PET images with and without motion correction, however the
motion correction of PET images is beyond the scope of this paper.

3.3 Sources of error

The segmentation method assumes that the two point clouds are measured si-
multaneously. However the cameras’ image capture is instantaneous compared
to the time that the TX scan requires. The assumption is that the patient is mo-
tionless in this period. This is not likely completely true and could be a potential
source of error.

Arguably a minor error for cooperative subjects, and the assumption must
be generally accepted - since the TX data is deemed good enough to be used in
the emission image reconstruction.

A great perspective for motion tracking is however to use it with patients
that are less cooperative - children and patients suffering from disorders that
affect motor-function. In that case the error in the TX data increases, and the
chosen segmentation method for calibration would perform worse.

4 Conclusion

A method for geometric calibration between the HRRT scanner and the struc-
tured light motion tracking system has been presented. The method exploits
the data from the transmission scan, and thus it does not alter the scanning
procedure or prolong the study. This is in key with the advantages of using the
structured light system.

The presented approach segments the edges of the transmission scan slices
using a path tracing algorithm, from which a point cloud of the patient’s head
is obtained. It was shown that the approach suffers from some difficulties due
to the attenuation properties of the different tissues. An enhancement strategy
for improved segmentation was proposed, and it was shown to give a better
segmentation of the nose at the expense of more problematic segmentations in
regions that have no interest. The method is not able to produce perfect point
clouds of the entire head, however it can produce decent point clouds of the
face, and thus the method seems suitable for the purpose of calibration with the
structured light system.

The motion tracking system produces a similar point cloud, and it was shown
that the two point clouds can be aligned to each other using the ICP algorithm
with a visually good result.
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Abstract. In this paper we present the methods implemented in the
CLARCS (C++ Library for Automated Registration and Comparison of
Surfaces) library. This library allows some basic and high level processing
on free-form surfaces, represented as point sets or meshes. Three methods
are the “building bricks” of CLARCS; they allow (i) the rigid/affine/non-
linear registration of two point sets, (ii) the computation of the mid-
sagittal plane of one point set, (iii) the computation of a mean point
set from several point sets, and the variability around this mean. These
methods are all based on a common methodological framework, in which
the point sets/meshes are represented either as a Gaussian mixture model
or as a draw of such a model. We propose some applications of the
methods implemented in CLARCS on different sets of medical data.

1 Introduction

In medical image processing, the most widely used methods are voxel-based,
which means that their required input data must be (most often) 3D arrays
of grey values. Some important issues with this kind of data include the large
memory needed to store them, the large run time of standard algorithms to
process them, the choice of data type to code the grey value of a voxel or the
sometimes problematic orientation of the volumes. Thanks to the increase of 3D
rendering and computational capacities of computers in the last few years, new
surface based processing methods have emerged as an alternative to standard
voxel-based techniques. In this context, the VisAGeS team at INRIA/INSERM
(https://www.irisa.fr/visages) has proposed a set of computational tools
that have been implemented in a software library called CLARCS (C++ Library
for Automated Registration and Comparison of Surfaces).



In this paper, we outline the methods implemented in CLARCS (Section 2)
and we provide some potential medical applications of these (Section 3): assess-
ment of dysmorphology in craniosynostosis and plagiocephaly and construction
of a statistical shape model of thalami for deep brain stimulation (DBS).

2 Overview of CLARCS

In the first subsection below, we briefly describe some of the best known libraries
or software working on point sets, meshes or surfaces. In the second subsection,
we describe the functions implemented in CLARCS.

2.1 Related software for surface processing

There exists a bunch of commercial software allowing for some basic (e.g. im-
port/export, visualisation) and higher level (e.g. registration) processing on sur-
faces, such as Amira (http://www.amira.com), or Rapidform (http://www.rap-
idform.com), but it is often difficult to know what methods are implemented
therein, and always costly to acquire the software.

Some freeware are specifically dedicated to high level geometric computa-
tion (e.g. CGAL, http://www.cgal.org) or high level visualisation (e.g. Par-
aView, http://www.paraview.org, and VTK, http://www.vtk.org) of sur-
faces, but we restrict our brief overview here to software which allow surface
registration/comparison in a broad sense. The Point Cloud Library (or PCL,
http://pointclouds.org) and MeshLab (http://meshlab.sourceforge.net)
are two such software/libraries, but they only implement rigid registration.
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) allows non-linear registra-
tion of surfaces, but is limited to brain (cortical) data (using a specific atlas for
this purpose).

Some freely available state-of-the-art software with a larger range of appli-
cations include:

– TPS-RPM [4]: http://noodle.med.yale.edu/~chui/tps-rpm.html
– TPS-L2 [15]: http://code.google.com/p/gmmreg
– CPD [20]: https://sites.google.com/site/myronenko/research/cpd
– SPHARM [22]: http://www.enallagma.com/SPHARM.php
– weighted-SPHARM [5]: http://www.stat.wisc.edu/~mchung/softwares/-

software.html

We have experimentally found the first three methods to be most often un-
able to cope with large (more than 100,000 points) point sets, while the two
others impose strong topological constraints on the surfaces to register (they
must be closed). The methods implemented in CLARCS allow the processing of
large point sets (often needed to encode highly convoluted/complex anatomical
structures) without topological constraints, in an efficient and fast way. From a
methodological point of view, a strong advantage of these methods over most of



the abovementioned ones is the unified computational framework they are based
on, as outlined below. Finally, to our knowledge, there is no freely available soft-
ware allowing the computation of the symmetry plane of approximately bilateral
surfaces, and the assessment of asymmetries therof.

2.2 CLARCS

CLARCS is a C++ library for surface processing and analysis which has been
developed at IRISA (http://www.irisa.fr) since 2007. CLARCS is mainly
composed of three basic algorithms allowing (i) the rigid/affine/non-linear reg-
istration of two point sets, (ii) the computation of the mid-sagittal plane of one
point set, (iii) the computation of a mean point set from several point sets,
and the variability around this mean. These algorithms are building bricks that
can be combined to allow higher-order surface processing such as computation
of pointwise asymmetry fields and statistical analysis thereof within or between
populations. The three algorithms rest on a common methodological framework,
that we briefly outline here. We refer the reader to the corresponding papers for
a deeper insight into these algorithms. Let us first define the following pseudo-
distance between point sets X1 and X2:

δ2(X1, X2) = min
A,T

[ ∑
xi∈X1

∑
xj∈X2

Ai,j ||xi − T (xj)||2

+2σ2
∑
i,j

Ai,j log(Ai,j) + αL(T )

]

with ∀i
∑
j

Ai,j = 1 and ∀i, j Ai,j ≥ 0

Computing δ2(X1, X2) is a minimisation problem involving the unknown
transformation T linking the two point sets, and the unknown card(X1) ×
card(X2) matrix A. The constraints on this matrix allows it to encode the point-
to-point correspondences between the point sets in a fuzzy way. The cost function
can be seen as the sum of (i) a data-attachment term, (ii) a barrier (smoothing)
function, which convexifies the cost function, and (iii) a regularity constraint on
the unknown transformation. The relative strength of the three terms is weighted
by the positive scalars 2σ2 and α.

It is enlightening to notice that this minimisation problem is actually the
maximum a posteriori (MAP) problem consisting of finding the transformation T
best superposing the two point sets, when one makes the hypotheses that (i) each
point xi of X1 is independently drawn from a Gaussian mixture model (GMM)
(whose means are the points T (xj) of T (X2), whose covariance matrices are equal
to σ2I, I being the identity 3×3 matrix, and whose mixture weights are equal)
and (ii) T is a random variable with a distribution of the form ∝ exp(−αL(T )).
With this probabilistic view, X1 can be interpreted as a noised version of T (X2),
σ being the standard deviation of this noise.



This MAP problem can typically be solved using the Expectation-Maximisa-
tion (EM) algorithm, which leads to the following iterative two-step algorithm:

– E-step: ∀i, j Ãi,j =
exp[−||xi−T̃ (xj)||2/(2σ2)]∑
k
exp[−||xi−T̃ (xk)||2/(2σ2)]

– M-step: T̃ = arg minT
∑
i,j Ãi,j ||xi − T (xj)||2 + αL(T )

This EM algorithm can be shown to converge monotonically to an (at least)
local maximum of the MAP criterion or, equivalently, to an (at least) local
minimum of the aforementioned cost function. Actually, the two steps of the
EM algorithm are exactly the same as those obtained when minimising this cost
function with respect to A and T in turn.

The formulation of the E-step helps to understand why the matrix A encodes
the point-to-point correspondences: when the transformation T is known, Ãi,j
is the posterior probability that the point xi has been drawn from the mixture
component with centre T (xj). The E-step simply consists in computing these
card(X1)×card(X2) probabilities. On the contrary, solving the M-step is highly
dependent on the type of transformations considered.

Below, we show how this generic algorithm can be instantiated to lead to the
three basic methods implemented in CLARCS.

Rigid/affine/non-linear registration. When T is set to be rigid and α = 0
(i.e. no prior on the rigid transformation), the MAP problem boils down to a
maximum likelihood (ML) problem. Several closed-form solutions exist for the
M-step, using typically the unit quaternions or the singular value decomposi-
tion. This results in what was termed the EM-ICP algorithm by Granger &
Pennec [14]. An earlier variant of this algorithm was devised by Rangarajan et
al. and termed the RPM algorithm [21].

We built on the EM-ICP algorithm to propose some adaptations for non-
linear registration. In previous works, we showed how to use the normals in
addition to the point coordinates [19], and how to enforce some constraints on
the point-to-point correspondences [9]. We also showed how to solve the M-step
when considering a model of locally affine transformations [19, 9] or when using
the Reproducing Kernel Hilbert Space (RKHS) theory and the Fourier analysis
to build the model [10]. Finally, we showed how to obtain symmetric consistency
when using this last transformation model [10].

Symmetry plane computation. When T is set to be a reflection, α = 0 (i.e.
no prior on the reflection) and when X1 = X2, the EM algorithm allows to
compute the plane best superposing the left and right parts of X1 = X2 [7].
Needless to say, this assumes that X1 = X2 is (at least) approximately bilateral.
Our specific contribution was to propose a closed-form for the M-step, relying on
the parametrization of the unknown reflection plane using its unit normal and
distance to the origin of the coordinate system [7]. Non-linear registration of the
point set with its flipped image with respect to the approximate symmetry plane
allows the pointwise mapping of asymmetries [8].



Atlas construction. The problem here is to find a point set M best represent-
ing a set of n point sets X1, . . . , Xn. We defined it as:

M = arg min
X

∑
i=1,...,n

δ(X,Xi)

If T is set to be a similarity (rigid transformation plus uniform scaling), it is
possible to devise an iterative algorithm converging to an (at least) optimum of
this criterion, in which the point-to-point correspondences, the mean point set
(which turns out to be the mean shape in this case where T is defined as a sim-
ilarity) and the unknown transformations linking the n point sets and the mean
point set are estimated in turn. However, in such an approach, point-to-point
correspondences are likely to be meaningless; this is why we proposed to estab-
lish these correspondences using non-linear transformations while computing the
mean shape using similarities. The resulting iterative algorithm can no longer
be shown to converge, but behaves well in practice [6]. Once the algorithm has
converged, it is straightforward to perform PCA on the residuals.

Implementation details. These three algorithms were implemented within a
multiscale framework. As previously noted by Granger & Pennec, the σ pa-
rameter allows to deal with the correspondences in a fuzzy way, leading to a
smoother criterion to minimise. When σ is infinitely small, their EM-ICP algo-
rithm is simply the ICP algorithm of Besl & McKay, hence the name [2]. This
leads to the idea of devising a scheme in which several EM algorithms are succes-
sively run with decreasing σ values, with a large starting value when the point
sets to register are far from each other. We also used kd-trees, for increased
speed, and a cut-off distance between the points xi and T (xj), above which
they are eliminated from the estimation of the transformation, for increased
speed and robustness to outliers.

3 Applications

3.1 Quantification of skull asymmetries in craniosynostoses

Synostosis is the union of two or more separate bones to form a single bone
(Merriam-Webster). Cranial synostosis, or craniosynostosis is a rare congenital
disease which consists in the premature fusion of one or several cranial sutures.
The last medical condition is typically met in conjunction with a hundred of
syndromes, among which are Apert or Crouzon. On the contrary, the etiology
of isolated (nonsyndromic) craniosynostosis is largely unknown. Early detection
and treatment of craniosynostosis is crucial, as hindered skull growth can lead
to increased intracranial pressure and thus alteration of normal brain develop-
ment [23].

It is expected that improved characterisation of the dysmorphology of the
skull associated with craniosynostosis could help understanding its cause(s), im-
proving its diagnosis (e.g. lambdoid synostosis may be easily confounded with



deformational plagiocephaly) and even improving its treatment. In this context,
of particular interest are the unilateral coronal synostoses, as it is not clear
whether the left and right coronal synostoses are due to the same factors.

We propose to characterise the dysmorphology of one skull with unilateral left
coronal synostosis by assessing its pointwise asymmetry. This assessment is based
on the computation of an approximate symmetry plane, from which the left-
right differences (asymmetries) can be evaluated (cf. Fig. 1). The outer surface
of the skull was computed using manual grey-level thresholding, mathematical
morphology and the marching cube algorithm from a CT scan. The point set is
a triangular mesh of a complete skull made up of about 140,000 cells and 82,000
points.

Fig. 1. Evaluation of pointwise asymmetries on a skull with craniosynostosis.
We display the norm of the asymmetry field. Strong asymmetries are visible on the
temporal bone, the posterior part of the parietal bone and the supraorbital part of the
frontal bone.

3.2 Quantification of skull asymmetries in deformational
plagiocephaly

Since the inception of the ”back to sleep” recommendations in the early 90s to
reduce sudden infant death syndrome, the incidence of positional (i.e. nonsyn-
ostotic) plagiocephaly has drastically increased [18, 16]. Plagiocephaly consists
of the flattening of one side of the head, with aesthetics consequences, and po-
tential altered brain development [17]. Objective assessment of plagiocephaly
should help diagnosis and follow-up of this condition [3].

We propose to characterise the deformational plagiocephaly of one skull us-
ing the same computational tools as in the previous section (cf. Fig. 2). The
outer surface of the skull was computed using manual grey-level thresholding,
mathematical morphology and the marching cube algorithm from a CT scan.
The point set is a triangular mesh of a complete skull made up of about 200,000
cells and 137,000 points.

3.3 Building statistical shape models of deep grey nuclei

Deep brain stimulation (DBS) was initially targetted to the ventral intermedi-
ate thalamus to reduce tremor in patients with Parkinson’s disease [1]. Since



Fig. 2. Evaluation of pointwise asymmetries on a skull with deformational
plagiocephaly. We display the norm of the asymmetry field. Strong asymmetries are
visible on the posterior part of the parietal bone and on the superior part of the occipital
bone.

then, alternative targets have emerged, such as the subthalamic nucleus (STN),
globus pallidus interna, which appear to be comparatively efficient in this con-
text [12]. The indications for DBS have also been extended to drug-resistant
epilepsy, dystonia, Tourette syndrome or even obsessive compulsive disorders,
using the caudate and accumbens nuclei (for instance) as targetted structures.
An improved knowledge of the anatomy of these subcortical structures is key to
optimise pre-operative planning and to assess treatment efficacy.

In this context, statistical shape models (SSMs) are extremely useful as they
allow to help the segmentation of the structures of interest in MR images, in
which typical pulse sequences make it hard to distinguish these nuclei based on
the grey values alone [11].

As an illustration, we propose to build a statistical shape model of the thalami
(Fig. 4) which were manually segmented together with six other deep brain struc-
tures (cf. Fig. 3) by a trained neuroanatomist using itk-SNAP (http://www.itk-
snap.org) in 10 patients with Parkinson’s disease. For each patient, the seven
pairs of segmented structures were stored in a 3D image with discrete labels.
The surfaces of the structures were computed using the marching cube algo-
rithm. The points sets representing the left and right thalami are triangular
meshes with sizes of about 10,000 cells and 5,000 points.

Fig. 3. Front view
of seven deep brain
structures. Cyan: tha-
lamus, orange: putamen,
magenta: amygdala, blue:
hippocampus, red: red
nucleus, yellow: STN,
purple: substantia nigra.
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4 Discussion & Conclusion

In this paper, we presented the CLARCS library and its three building bricks,
namely: (i) the rigid/affine/non-linear registration of two point sets, (ii) the com-
putation of the mid-sagittal plane of one point set, and (iii) the computation of a
mean point set from several point sets. We also gave some possible applications
of CLARCS. Some other applications can be found in the full papers describing
the methods implemented in CLARCS, for instance:

– the construction of a statistical shape model of the osseous labyrinth [6] and
the caudate nuclei [10]

– the estimation of the mean pointwise brain asymmetry in male right-handed
subjects and the comparison with situs inversus subjects [6] and with chim-
panzees [13]

– the estimation of the mean pointwise facial asymmetry in males and females,
and the comparison thereof [8]

With its new, robust and fast methods for surface processing, CLARCS opens
interesting perspectives with medical applications. For instance, the non-linear
registration of two point sets of about 200,000 points each runs in less than 5
minutes on a recent standard personal computer (3GHz).

The implementation of the framework of CLARCS is compatible with the
well-known visualization toolkit VTK (http://www.vtk.org), thus it is possible
to insert CLARCS specific methods into more general VTK pipelines.



We plan to distribute CLARCS as an open-source library, but this step will
require some code refactoring, thus CLARCS will be first available as an external
plugin of the future version of MedInria (http://med.inria.fr) that will be
released in early September 2011.
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Abstract. The study of the structural brain asymmetries can prove use-
ful for the understanding of the functional brain lateralizations, and to
examine the progression and assist the early diagnosis of various neu-
ropsychiatric disorders. This work introduces a novel automatic method
for the local (vertex-level) statistical shape analysis of gross cerebral
hemispheric surface asymmetries from three dimensional (3D) T1-weighted
Magnetic Resonance Images (MRI). In the proposed method, after the
brain extraction, the cerebral hemispheric volume images were segmented
and spatially normalized to a common stereotaxic space. Smooth mesh
representations of the cerebral hemispheres were extracted from the spa-
tially normalized cerebral hemispheric masks. Customized measures of
vertex-level (local) inter-hemispheric shape asymmetry were finally eval-
uated at 2562 corresponding surface vertices and tested for statistical
significance. The developed method was tested on scans obtained from a
small sample of first-episode neuroleptic-näıve female (7) and male (11)
schizophrenic subjects.

1 INTRODUCTION

The cerebral hemispheres of a healthy human brain are asymmetrical in width,
volume, weight, density, and shape [1]. The evidence of disturbed structural and
functional asymmetry in schizophrenia [2,3] as compared to the asymmetry pat-
tern observed in normal population has led to the interpretation of schizophre-
nia as an abnormal hemispheric lateralization [4,5]. The study of neuroanatomic
asymmetries could therefore prove useful for the understanding of the func-
tional hemispheric specializations [1], and for the tracking and early detection
of schizophrenia and other psychiatric disorders which are believed to have a
neurodevelopmental etiology [6].



Even though the whole brain asymmetry has been widely investigated in clas-
sical MRI-based literature by conventional volumetric methods (e.g. [7]), in vivo
studies performing an accurate, automatic and robust assessment of the struc-
tural shape asymmetries of the entire brain are far fewer. Among the existing
automatic methods for shape analysis, the Surface Based Morphometry (SBM)
analyzes the shape of structural boundaries between different tissue types. In the
SBM based studies of the anatomical asymmetries across the whole brain, a de-
tailed cortical surface representation is created, typically through meshing. Based
on the geometrical properties of such a representation, one or multiple indices
of brain morphology (e.g. the shape asymmetry [8] and the cortical thickness
asymmetry [9] of the gyral and sulcal patterns) are computed in the matching
homologous locations between the hemispheres and analyzed.

In this study, we propose a novel automatic algorithm named as Statistical
Shape Analysis of Local Asymmetry (SSALA) for in vivo local (vertex-level)
statistical shape analysis of the cerebral hemispheric (CH) surface asymmetry
from 3D T1-weighted MRI. The CH surfaces follow smoothly the mean features
of the hemispheric outlines and do not model the pattern of sulcal and gyral folds
in order to capture the gross CH shape. Compared to the SBM based studies
of the cortical surface asymmetry, SSALA focuses on coarser level asymmetries
exhibited in smooth surfaces approximating the outer shapes of CHs.
In this work, we applied SSALA to study and visualize the CH shape asymmetry
in a relatively small sample of the neuroleptic-näıve schizophrenia patients. The
use of antipsychotic medications has been shown to affect the brain anatomy
[10] and it could therefore act as a confounding element in the study of the brain
shape. However, the non-medicated subjects diagnosed with schizophrenia are
difficult to recruit [11] and there are only few published studies performing a fully
automatic analysis of the CH surface shape asymmetry in the neuroleptic-näıve
schizophrenic subjects.

2 Materials and Methods

In SSALA, the left and right CHs were segmented from the 3D MR head volume
images and spatially normalized into a common template space. The segmented
and spatially normalized right CH volume images were then reflected across
the mid-sagittal plane of the ICBM152 space to match the corresponding left
CH volume images. Mesh representations of the left and reflected right CH sur-
faces were extracted from the corresponding normalized volume images. The lo-
cal inter-hemispheric shape asymmetry was assessed at each surface vertex and
tested for statistical significance within groups by non-parametric hypothesis
testing. Finally, the permutation testing on extreme statistics was performed to
determine thresholds that controlled for the multiple comparisons. The corrected
p-values were visualized along with uncorrected effect sizes on a 3D average CH
surface. The SSALA method is fully automatic.



2.1 Subjects and Image Acquisition

In this study, clinical 3D T1-weighted MRI head scans of 18 first-episode neuroleptic-
näıve schizophrenic subjects, 7 females (SF group) and 11 males (SM group),
and of 19 healthy controls, 7 females (HF group) and 12 males (HM group) were
used [20]. All subjects were right-handed according to the Edinborough inven-
tory [12]. The MRI scans (voxel size 1.5×1.5×1.0 mm3, image dimensions from
256×256×150 to 256×256×170 voxels) were acquired in the Turku University
Central Hospital (Turku, Finland) using a 1.5 T Siemens Magnetom (Erlangen,
Germany) with a three-dimensional magnetization-prepared rapid acquisition
gradient echo sequence (TR 10 ms, TE 4 ms, 1 acquisition, matrix 256×92, slice
sagittal thickness 1.5 mm and 0 interslice gap).

2.2 Image Preprocessing and Brain Extraction

The skull, scalp and other extraneous tissues (except the cerebrospinal fluid)
were initially removed from the original MR images using the Brain Surface
Extractor routine of the BrainSuite package [13] (http://www.loni.ucla.edu/
Software/BrainSuite). The skull stripped volumes were corrected for the in-
tensity non-uniformity artifact using the Bias Field Corrector routine [13], which
is also implemented in the BrainSuite package. The skull-stripped and intensity
non-uniformity corrected brain volumes were then processed with an automatic
partial volume estimation technique to estimate the relative amounts of the white
matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) in each brain
voxel [14]. This technique also produced the partial volume voxel classification
for the CSF/background, CSF/GM, and GM/WM mixtures. We used the infor-
mation on the partial volume mixture to remove from the skull-stripped volume
all the voxels belonging to the pure CSF, CSF/background and the partial vol-
ume voxels containing more than 30% of CSF tissues.
The employed partial volume estimation technique, which is based on the trimmed
minimum covariance determinant parameter estimation and the Markov random
fields based tissue classification, produces more accurate results than the partial
volume estimation technique implemented in the BrainSuite package [13]. The
correction for the intensity non-uniformity artifact and the accurate partial vol-
ume estimation was here important for the accuracy of the brain extraction and
hence of the following cerebral hemisphere segmentation.

2.3 Cerebral Hemisphere Segmentation and Spatial Normalization

Once that the non-brain tissues were eliminated, each MR head image was de-
composed in the native space into the cerebrum, cerebellum, and the brain stem
compartments based on the tissue fraction information by the algorithm de-
scribed in [15]. An extended partial differential equations based shape bottle-
necks algorithm [15] was then used to cut the inter-hemispheric connections of
the extracted cerebrum. As a result, the cerebrum compartment was segmented
into the left and right CHs with no need for image registration.

http://www.loni.ucla.edu/Software/BrainSuite
http://www.loni.ucla.edu/Software/BrainSuite


As shown in [15], our automatic cerebral hemisphere segmentation algorithm
produces more accurate hemisphere segmentation if compared to the traditional
shape bottlenecks [16], linear and non-linear registration based brain hemisphere
segmentation methods. The accurate CH segmentation was a crucial prerequisite
for the veracity of the later CH shape analysis.

The segmented CH volume images were spatially normalized into the stereo-
taxic ICBM152 space (voxel size 2×2×2 mm3, dimension 91×109×91 voxels) us-
ing the SPM5 package [17] (http://www.fil.ion.ucl.ac.uk/spm/software/
spm5/).
The human brain is characterized by complex convolutions whose morphology
varies greatly among subjects and between hemispheres [18]. The affine registra-
tion can reduce the effects of such normal inter-subject anatomical variability.
For quantifying the CH shape asymmetry, the role of the stereotaxic registra-
tion in SSALA was two-fold: (1) It reoriented the segmented CH volume images
into a common space to allow for the inter-subject comparisons; (2) It compen-
sated for gross (up to affine transformations) anatomical inter-subjects biological
variations.

The spatially normalized right CH volume images were then reflected with
respect to the mid-sagittal plane of the stereotaxic space to match the left CH
volume images. The reflection of the CH volume images was needed for the
achievement of the point correspondence.

2.4 Surface Extraction

The surface of each segmented and spatially normalized CH was extracted using
a global optimization based deformable surface model automatically initializated
with spherical surface mesh [19]. The employed deformable surface model algo-
rithm has been previously demonstrated to be robust against local minima of
the cost function, which is a problem often associated with the deformable mod-
els [19]. Each hemispheric surface was represented with a triangulated mesh
consisting of 5120 triangles (2562 vertices). The geometry of the initial surface
meshes was chosen such to extract the salient morphological features and not
modeling the sulcal and gyral patterning of the hemispheres. The smoothness of
the extracted surface meshes reduced part of the normal inter-subject and inter-
hemispheric variability in brain morphology which remained from the spatial nor-
malization. The point correspondence, assuring that the pairs of corresponding
vertices represent a same biological location, is fundamental in SSALA for mean-
ingful comparisons between CH surfaces. The point correspondence between the
triangular mesh representations of the CH shapes was naturally achieved in
SSALA due to: (1) Mirroring of each right CH volume image with respect to
the mid-sagittal plane of the ICBM152 space; (2) In the surface deformation
algorithm, each surface vertex is constrained to move approximately toward the
centre of mass of the initial surface mesh. When the surfaces to be extracted
have approximately the same shape and size (as guaranteed by the stereotaxic
registration) and the initial surface mesh is the same for all the surfaces to be

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/


extracted, the deformation algorithm produces an approximate point correspon-
dence for all hemispheric surfaces of each subject. The point correspondence was
also empirically confirmed.

2.5 Statistical shape analysis

For the purpose of shape analysis, a CH reference shape was obtained as the
mean shape of the all data set consisting of 37 MRI head scans. After that, a
vertex-level morphometric measure of shape distance between the left CH surface
in the subject j at vertex i (tLi,j ∈ IR3) and the reference CH surface at every

vertex i (ci ∈ IR3) was defined as follows

dLi,j = (tLi,j − ci)·ni , (1)

where i = 1, ..., 2562 denotes the index of vertices in the triangulated mesh
representations of the CH, tLi,j denotes the 3D coordinates of the i-th vertex of
the left CH surface in the subject j, and where ni denotes the unit normal of
the reference surface at ci. The vertex-level morphological distances were defined
similarly for the reflected right CHs

drRi,j = (trRi,j − ci) · ni. (2)

The measures dLi,j and drRi,j were evaluated at every vertex and among all sub-

jects of each group to study the L>R (dLi,j > drRi,j ) and the R>L (drRi,j > dLi,j)
asymmetry.

The Gaussianity of the set di = {dLi,j , drRi,j : j = 1, . . . , NG}, where NG is the
number of subjects within a group, was investigated separately at every vertex
i using the chi-squared test and rejected at the significance level 0.05. Since the
set di was observed to be non normally distributed in each group, the Wilcoxon
signed Rank test was used to evaluate the null hypotheses of dLi,j , j = 1, . . . , NG

and drRi,j , j = 1, . . . , NG having symmetric distributions with equal medians.
Finally, the effect sizes of the vertex level asymmetry were evaluated in each
group as

Si = ri/(2NG) (3)

where ri denotes the signed rank statistic obtained using the Wilcoxon signed
Rank test at vertex i . The effect sizes Si were interpreted as small, medium or
large effect sizes if 0.4 ≤ Si < 0.6, 0.6 ≤ Si < 0.8 or Si ≥ 0.8 respectively [21].

2.6 Multiple comparisons correction

As 2562 tests were performed, one at each surface vertex, the results obtained
from the Wilcoxon test had to be corrected for the multiple comparisons. Here
the studied groups were small due to difficulties in recruiting neuroleptic-näıve
subjects diagnosed with schizophrenia, and the test statistics were expected to
be strongly spatially correlated. The multiple comparisons correction was thus



performed via permutation tests on maximal rank statistics which rely on mini-
mal assumptions on the underlying distributions and automatically adapt to the
spatial correlations in the data [23]. Under the null hypotheses of no vertex-level
asymmetries, the dLi,j and drRi,j measures (Eq. (1) and (2)) were fully permuted
at each matched vertex i by relabeling the left and reflected right tags [24]. A
two-tailed non-parametric statistic of the maximal (over all vertices) mean of
rank difference between dLi,j and drRi,j was evaluated for each possible relabel-
ing. The false positive corrected thresholds for L>R and R>L asymmetries were
computed by selecting the 95th percentile of the maximum statistics.

3 RESULTS

For the SM group, patterns of statistically significant L>R CH shape asymme-
tries (p < 0.05, corrected) were observed in the parietal lobe, in the proximity
of the superior parietal gyrus, superior parietal lobule, and inferior parietal lob-
ule; in the occipital lobe, in the proximity of the middle occipital gyrus; and in
the medial temporal lobe, in the proximity of the parahippocampal gyrus and
paraventricular nucleus (see Fig. 1). None of the uncorrected p-values in the SF
group and none of the vertex-level R>L asymmetries in the SM group survived
the correction of the multiple comparisons errors. To assist the interpretation of
the maps of statistical significance, maps of effect sizes were also obtained and
presented in Fig. 2. Fig. 2 demonstrates that the patterns of the effect sizes of
the L>R and R>L asymmetry are remarkably different between SF and SM
groups.

4 CONCLUSIONS

The SSALA method is fully automatic and it is therefore suitable for large
database analyses. Due to the more gross nature of the extracted CH surfaces,
SSALA is conceptually and methodologically easier than many other SBM based
methods. Furthermore, the SSALA method can be used for relatively small sam-
ple sizes, where the high inter-subject variability between subjects in position,
extent and morphology of the sulci and gyral foldings could impede a meaningful
SBM based comparison of cortical convolution patterns.
The shape analysis performed by SSALA revealed various patterns of statis-
tically significant asymmetries which survived the correction for the multiple
comparisons problem. Interestingly, patterns of asymmetry were found in the
male schizophrenic subjects, especially in the occipital, frontal, and temporal
lobes. However, the results of our work should be interpreted as a preliminary
study that needs to be tested further with larger sample sizes.
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Fig. 1. The significance maps (p < 0.05, corrected for the multiple comparisons) of
the L>R (red colored areas) and R>L (blue colored areas) CH shape asymmetry in
the SM group (left) depicted in lateral view. For comparison, the significance maps of
the shape asymmetry in the HM group (right) is also shown. None of the uncorrected
p-values in the SF group survived the correction of the multiple comparisons errors.

rank values

Fig. 2. The effect size maps of the L>R (red color scale) and R>L (blue color scale)
CH asymmetry in SF (left) and SM (right) groups depicted in lateral views.
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Abstract. In this paper, we present a new technique for resampling closed 

genus-0 surfaces. By combining the properties of conformal maps with the 
physical principles governing the dynamics of charged particle systems, we 
develop a method to adaptively sample the parameter domain in a manner that 
produces nearly uniform sampling of the original surface. Initializing the 
system with a small number of particles we obtain a base mesh that provides the 
necessary scaffold to recover the surfaces of increasing complexity and high 
quality. We implement the proposed algorithm in MATLAB and evaluate its 
performance on 239 carpal bones as well a number of publically available 

models.  

Keywords: remeshing, spherical parameterization, conformal map, particle 
system 

1   Introduction 

Triangle meshes are one of the simplest and perhaps the most widely used 

representation of surfaces. They are central to various methods in computer graphics, 

computer assisted design, finite element (FE) simulations and related areas. Meshes 

are generally subject to two common considerations of quality and complexity. For 

instance, in applications where meshes are used to discretize boundary value 

problems, to ensure good convergence and accuracy of the solution, aspect ratios of 

all triangles faces should fall within a relatively narrow range [1]. Additionally, in 

applications where efficiency is important, meshes representative of the underlying 
geometry, reduced complexity and potentially good quality may be desirable. One of 

the research interests of our group involves creation of FE and statistical shape 

models of the human wrist joint. Consequently the issues of mesh quality and 

complexity are equally important to us. In this paper we present a novel, modular 

algorithm that can be used to address either one of the above issues separately or 

simultaneously. The proposed method is made possible by combining the equations 

governing the dynamics of a system of charged particles with the theory of 

isomorphic maps from differential geometry. We demonstrate the performance of our 

algorithm on a selected set of anatomical models that can be downloaded from 

publically available databases [22-24].  



2   Related Work 

Surface remeshing refers to the procedure of resampling the input mesh to create a 

mesh that has overall better quality1 than the original piecewise linear surface while 

retaining the same topology and as many geometrically salient features as possible. A 

literature survey of remeshing techniques that aim to optimize mesh quality reveals an 

enormous amount of research done to address this problem and we refer interested 

readers to [2] for a more detailed discussion on this subject. In the remainder of this 
section we provide a brief overview of remeshing techniques most similar to ours, 

namely the methods that rely on parameterization or physics based principles to 

obtain high quality surface meshes2.  

 

Parameterization of a surface mesh is the problem of establishing a bijective mapping 

between the original piecewise linear surface and a continuous parameter domain 

which is a primitive topological analog of the surface. The methods described in this 

paper are tailored specifically for closed genus-0 surfaces, which are characteristic of 

various everyday objects as well as many organs in the human body (brain, kidneys, 

liver, lungs, etc.) including the bones in the wrist. For such surfaces, the unit sphere is 

the most natural parameter domain [3,8]. Planar parameterizations of closed genus-0 

surfaces, however, are also common and may be advantageous in certain situations 
(e.g. texture mapping) but are less natural from a global point of view, as they tend to 

produce higher distortions. Remeshing algorithms that rely on parameterizations fall 

into two categories. One approach consists of tessellating the parameter domain and 

then mapping the result back to the original surface [4-9]. This operation is very 

intuitive but requires maps that minimize global area and angle distortions or on other 

hand some type of mechanism that can correct these distortions. An alternative use of 

parameterization is to provide surface constraints while locally adaptive optimization 

procedures modify the mesh and steer it toward some ideal configuration [10-12]. In 

our implementation we rely on the former approach to resample the surface.  

 

A completely different class of methods used to produce high quality meshes is based 
on the observation that minimization of the potential energy of physical systems, 

composed of charged particles or a network of nodes interconnected by springs, tends 

to produce compact descriptions of the underlying object geometry. In these ground 

energy states particle/node conformations have ideal (hexagonal) or close to ideal 

packing [16], producing regular Voronoi cells that in turn generate regular triangular 

tessellation. For example, uniform sampling of a sphere using a system of charged 

particles is a well known approach with many practical applications in computer 

graphics, physical chemistry and numerical analysis [13,14]. Not surprisingly, 

meshing/remeshing methods described in [15,16] rely precisely on the interaction of 

charged particle systems to produce high quality triangulations of arbitrary surfaces 

suitable for FE analysis. By far the most general method in this family is presented in 

                                                        
1 Mesh quality can refer to any one or a combination of criteria that include the sampling, 

grading, regularity, size and shape of elements [2]. 
2 Surface mesh serves as input to generate volumetric mesh. Thus by optimizing the quality of 

the former it is possible to control (to a reasonable extent) the quality of the latter. 



[17] and obtains optimal triangular by solving a set of 2nd order (Euler-Lagrange) 

ODEs: 

  

    

   
  

   

  
          (1) 

where    is the position of the i-th particle,    is the mass of the particle,   is 

damping parameter and          is the net force exerted on the particle due to 
interaction with its neighbours and can be defined using arbitrary physical laws (e.g. 

Hook‟s law, Coulomb‟s law, etc.). These equations can be solved using any finite 

difference scheme and according to [17] “result in evenly distributed points that very 

closely follow the surface features.” Moreover,          can be modified to include 
curvature information to obtain adaptive sampling of the surface. The main 

disadvantage of this method and those presented in [15,16] is the need to consistently 

enforce surface constraints which is a computationally expensive operation. 

 

The algorithm we describe herein is a hybrid of the above approaches. It is most 

similar to the remeshing procedure presented in [9] that relies on planar 

parameterization and sampling density maps. In contrast to [9], however, our 

technique is based on fundamentally different principles to sample the parameter 

domain and uses spherical parameterizations (instead of planar), which do not require 
partitioning of the surface. Overall, our method is conceptually quite simple.  

 

In [18] Gu et al. make an important point that for genus-0 surfaces spherical 

embedding based on minimization of harmonic energy is conformal. The 

characteristic property of conformal maps is that they preserve angles [18,19]. For 

closed genus-0 surfaces that are geometrically dissimilar to a sphere, conformal maps 

produce significant area distortions. Defining area distortion simply as the ratio of 

areas of the spherical triangle and its planar counterpart, we sample the sphere3 (i.e. 

parameter domain) adaptively in a manner that promotes dense aggregation of points 

in regions of low distortion and sparse distribution in zones of high distortion. This 

type of adaptive sampling of the sphere is equivalent to approximately uniform 

sampling of the original surface. We control the complexity of the mesh by 
initializing the system with a small number of particles to produce a base mesh in the 

parameter domain. Surfaces of increasing complexity are recovered by subdividing 

the base mesh with any standard subdivision scheme (e.g. triangular quadrisection) 

and then mapping the result back to the original surface. Subdivision of equilateral 

triangles produces roughly self-similar triangles at finer scales while conformal maps 

ensure that the triangles retain their aspect ratios.  In the next sections we provide 

description of our method as well as some practical benefits that stem from its 

multiresolution construction. 

                                                        
3 Due to perfect symmetry of the sphere the surface constraints can be easily enforced. 



3   Methods 

Our method consists of four consecutive stages (see Figure 1) that include: (1) 

calculation of a conformal map of the input mesh, (2) calculation of the distortion 

field induced by the mapping from the previous step, (3) adaptive sampling of the 

parameter domain guided by the distortion field from step 2, (4) subdivision and 

minor regularization. The specific details of these stages are discussed in the 

following subsections. 
 

 

 

Fig.1. Four main stages of the resampling procedure: (1) conformal parameterization, (2) 
calculation of the distortion field at the vertices of the input mesh, (3) adaptive sampling of the 
parameter domain using a system of charged particles, (4) subdivision and optional 
regularization.  



3.1  Conformal Parameterization 

Let         be a triangular surface mesh representing the underlying continuous 

surface  , where                    and E are sets of vertices and edges, 

respectively. A parameterization of M is defined as an isomorphism        , 

where                    . We are most interested in conformal maps that by 
definition minimize the distortion in angles, a property crucial to our method. In [18] 

Gu et al. make an important point that for genus-0 surfaces, harmonic maps are also 

conformal. A map is harmonic if it is a stationary function of the Dirichlet energy 

functional [19,20]. For piecewise linear surfaces, the harmonic energy is a quadratic 
function: 

       
 

 
                 

 

         

 (2) 

where     is the edge weight, derived from the opposing angles (  and  ) of the two 

faces sharing the edge         as shown below: 

                      (3) 

We optimize        using the method presented in [18]. According to this approach 

  is initialized to the Tutte map4 of   and then deformed along the negative gradient 

of        in the tangent space of the sphere followed by periodic enforcement of the 

zero-mass center and surface constrains (see [18] for more details). In instances where 

the mesh has a significant number of negative harmonic weights (this occurs if 

     ) then the map may not be one-to-one. In our experiments we have 

processed over 240 surfaces and have not observed this effect even for meshes that 

had as many as 20% negative edge weights.  

3.2  Distortion Field 

In our algorithm we use conformal maps to establish the connection between the 

original surface and the parameter domain. Conformal maps do not preserve areas in 

general and induce large area deformation for surfaces that are very dissimilar to a 

sphere. To maintain uniform sampling of the original surface, mapping induced 

distortions have to be taken into consideration. For every face in the mesh, we define 

area distortion (AD) as the ratio of the normalized areas of the spherical triangle and 

its planar image. Similarly, for every edge in the mesh, we define length distortion 

(LD) as the ratio of edge length in the parameter domain and its length on the original 

surface. Next, for every vertex we define ADV (LDV) as the minimum AD (LD) of the 
faces (edges) incident on that vertex. The net distortion field (DF) used to guide the 

distribution of points on the sphere is simply the product of LDV and ADV. Finally, 

we use spherical barycentric coordinates to establish the value of the DF at an 

arbitrary point on the unit sphere.   

                                                        
4 Tutte map is computed by minimizing (2) with      . 



3.3  Adaptive Sampling of a Unit Sphere 

A system of charged particles provides an efficient means of sampling a surface. We 

use a slightly generalized version of the electrostatic potential energy, Reisz s-energy 

(4), to describe dynamics of a particle system with unequal positive charges: 

     
    

   
 

 

   

 

 

 (4) 

where   is the total number of particles   is the particle charge (defined as the 

product of area and length distortion),   is the geodesic distance between the particles 

and         is a free parameter that modulates the strength of particle interactions.  
 

For smooth surfaces such as the bones of the wrist, we observed that the quality of the 

resulting triangulation is almost independent of  . For surfaces such as the one shown 

in Figure 4, conformal mapping tends to produce large distortions in isolated regions. 

In those instances setting     ensures denser packing of particles in those regions. 

In all our experiments we use      . 

 

To adaptively distribute the charged particles over the surface of the sphere, we assign 

particle charges based on particle positions. Let          , where         . For 

an arbitrary position on the sphere       can be approximated using linear 
interpolation: 

         
     

     
  (5) 

where   
  are the charges defined on the mesh vertices and                 

  is the 

position vector of the i-th particle on the surface of the sphere. Define    
      

       as the vertex coordinates of the spherical triangle containing   , then  ,   and 

  are the spherical barycentric coordinates of   : 

                                    (6) 

where         
   

    
  . With this in mind, the derivative of    with respect to 

   can be approximated as: 
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       is the adjoint matrix of   and      is the angle separation threshold measured 

in radians (e.g.    ). It should be noted that the vector             
   

   
  

 
 

does not change in the course of the optimization as it is intrinsic to the conformal 

parameterization of the input mesh and the distortion field defined at its vertices. In 

order to speed up the optimization process we precompute and save these vectors.  



We initialize the system with    particles5 randomly distributed across the surface of 

the unit sphere and iteratively update their positions in a sequential manner using the 

tangential component of the gradient (9).  To keep track of particle positions relative 

to the mesh faces, we use a ray-triangle intersection algorithm described in [21]. In 

our experiments using step size of 10-3, optimization converged in 500 to 2000 

iterations.  

 

3.4  Subdivision and Regularization 

Once the particles have been fixed on the unit sphere, their positions determine the 

vertices of the base mesh6 in the parameter domain. Surfaces of increasing complexity 

can be recovered by iteratively subdividing this mesh with any standard subdivision 

scheme and mapping the result back to original surface7. Triangular quadrisection is 

the subdivision method used in this study. Figure 2 illustrates one iteration of this 

procedure. The method works because triangular quadrisection of equilateral triangles 
produces (approximately) self-similar triangles at finer scales while conformal 

mapping ensures that the triangles retain their aspect ratios. Every subdivision 

iteration roughly quadruples the number of vertices thus resulting in exponential 

increase in mesh complexity.  

 

 

Fig.2. One iteration of triangular quadrisection. New vertices are inserted at edge midpoints. 

 

Regularization is only necessary if the base triangulation is subdivided more than 

once, because the vertex position of the subdivided mesh do not accurately take into 

account the distortions induced by conformal mapping. To account for this 

discrepancy, prior to inverse mapping, the mesh is relaxed with a few iterations of 
gradient-based optimization of the Tutte energy (same procedure as conformal 

mapping but with all harmonic weights set to one). As can be seen in Figure 3 this 

                                                        
5 To get a mesh with approximately    vertices after   subdivisions           .    
6 We obtain triangulations using MATLAB‟s „convhulln‟ routine.  
7 Inverse mapping to the primary domain does not produce any foldovers if the conformal 

parameterizations are one-to-one (see subsection 3.1). 
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operation tends to homogenize the distribution of mesh vertices and increases the 

quality of the resulting mesh. The step size (e.g. 10-3) and the number of iterations of 

Tutte mapping (e.g. 40) are two free parameters of the regularization procedure. It is 

important to note that because the mesh is subdivided and regularized in the 

parameter domain, its vertices are confined to the original piecewise linear surface. 

 

 

Fig.3. The effect of regularization: left - mesh with regularization, right - mesh without 
regularization. The thick black lines correspond to the edges of the base mesh. Close-up of the 
object seen here is the root of the molar shown in Fig.4. 

4   Experiments 

To demonstrate the effectiveness of our algorithm in generating high quality 

triangulations, we used it to resample 239 meshes of the carpal bones of the right 

hand [22] as well as a small number of other anatomical objects that were 

downloaded from open-access databases [23,24]. Figures 4 and 5 show side by side 

comparisons of six different anatomical objects before and after resampling. Table 1 

provides a corresponding summary of the changes in mesh complexity, quality and 

approximation errors as measured by the difference in surface area and volume. We 

assess mesh quality in terms of the minimum and mean triangle aspect ratios ( ) [1]. 

By this definition equilateral triangles are the most desirable and have    . 

 
 

   
                

                    
 (10) 

 

The carpal bones shown in Figures 5a-d were obtained from a publically available 

database [22]. The thin streaks that appear to criss-cross the original surfaces are in 

fact patches of nearly degenerate triangles that were produced during reconstruction 
of surfaces with “with a mosaic of individual NURBS patches” [22]. The results 

summarized in Table 1 show a dramatic improvement in mesh quality at the cost of 

minor errors (less than 0.25%) in volume and surface area.  

 

All of the mesh processing operations described in this paper were performed in 

MATLAB running on a desktop with 6 GB RAM and 2.80 GHz x6 AMD processor. 



Typical processing time for an average mesh consisting of 13500 vertices and for the 

base mesh of 500 vertices was 19.5 min, with conformal parameterizations accounting 

for approximately 60% of the total run time. Although at first this performance may 

appear inefficient, it should be noted that implementations of iterative algorithms such 

as the one presented here, are inherently much slower in MATLAB than in 3rd 

generation programming languages such as C++.   

 

 

Fig.4. Resampling of the molar. Original mesh is shown on the left and new mesh on the right. 
Base mesh of the resampled object contained 103 vertices. The final mesh was obtained by 
subdividing the base mesh two times. (b-e) are the close-ups of the rectangular contours in (a). 



 

 

 

Fig.5. Original and resampled surface models with corresponding triangle aspect ratio 
distributions; (a) hamate, (b) scaphoid, (c) lunate, (d) trapezium, (e) proximal femur. Base 
meshes of the resampled objects shown in (a-d) and (e) contained 500 and 900 vertices, 
respectively. In all instances the final mesh was obtained by subdividing the base mesh two 
times. The thin streaks that appear to criss-cross the original surfaces in (a-d) are in fact patches 
of nearly degenerate triangles that were produced during reconstruction of surfaces with “with a 

mosaic of individual NURBS patches” [22]. 



Table 1.  Mesh complexity, quality and reconstruction errors before and after resampling for 
objects shown in Figures 4, 5 and 6. „O‟ stands for original and „R‟ for resampled. AE = surface 
area error = (AR/AO - 1)*100. VE = volume error = (VR/VO - 1)*100. 

  # verts # faces           AE (%) VE (%) 

Molar 
O 21900 43796 0.8685 0.2540 

-0.3674 -0.0720 
R 15970 31936 0.9890 0.8351 

Hamate 
O 12871 25738 0.7466 0.0040 

-0.2026 -0.1133 
R 7970 15936 0.9871 0.7951 

Scaphoid 
O 12736 25468 0.6666 0.0056 

-0.1753 -0.0971 
R 7970 15936 0.9568 0.6912 

Lunate 
O 14181 28358 0.7118 0.0129 

-0.1647 -0.0919 
R 7970 15936 0.9557 0.6856 

Trapezium 
O 13936 27868 0.7173 0.0028 

-0.1961 -0.1034 
R 7970 15936 0.9667 0.7438 

Proximal 

Femur 

O 15002 30000 0.8941 0.2678 
-0.9194 -0.0788 

R 14370 28736 0.9897 0.7776 

5   Conclusion 

We have presented a new method for resampling closed genus-0 surfaces to obtain 

high quality triangulations.  The suitability of the proposed approach was tested on a 

number of anatomical objects and the preliminary results indicate that the method 
does indeed greatly improve the quality and visual appearance (see Fig.5a-d) of the 

input triangulation. Moreover the resulting meshes have the so called subdivision 

connectivity, a property that can be exploited in compression as well as in mesh 

processing applications that use hierarchal mesh representations. Future work will 

involve generalization of the resampling methodology presented herein to surfaces 

with boundaries and higher genera.  

References 

1. Shewchuk J.R.: What is a Good Linear Element? Interpolation, Conditioning, and Quality 
Measures. In: 11th International Meshing Roundtable, pp. 115--126. Sandia National 
Laboratories, Ithaca, New York (2002) 

2. Alliez, G., Ucelli, C., Gotsman, Attene, M.: Recent Advances in Remeshing of Surfaces. 

In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring pp. 53--82. 
Springer, Heidelberg (2008) 

3. Gotsman C., Gu X., Sheffer A.: Fundamentals of Spherical Parameterization for 3D 
Meshes. ACM Trans. Graph. 22, 358--363 (2003) 

4. Hormann, K., Labsik, U., Greiner, G.: Remeshing Triangulated Surfaces With Optimal 
Parameterizations. Comp. Aided Design 33, 779--788 (2001) 

5. Praun, E., Hoppe, H.: Spherical Parametrization and Remeshing. ACM SIGGRAPH 22, 
340--349 (2003) 



6. Marchandise, E., Compère, G., Willemet, M., Bricteux, G., Geuzaine, C., Remacle, J.-F.: 
Quality Meshing Based on STL Triangulations for Biomedical Simulations. Int. J. Numer. 
Method. Biomed. Eng. 26, 876--889 (2010) 

7. Remacle, J.-F., Geuzaine, C., Compère, G., Marchandise, E.: High-Quality Surface 
Remeshing Using Harmonic Maps. Int. J. Numer. Meth. Eng. 83, 403--425 (2010) 

8. Zwicker, M., Gotsman, C.: Meshing Point Clouds Using Spherical Parameterization. In: 
Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics, 
Zurich (2004) 

9. Alliez, P., Meyer, M., Desbrun, M.: Interactive Geometry Remeshing. ACM SIGGRAPH 
21, 347--354 (2002) 

10. Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic Remeshing of Surfaces: A Local 

Parameterization Approach. In: Proceedings of 12th International Meshing Roundtable , pp. 
215--224 (2003) 

11. Escobar, J.M., Montero, G., Montenegro, R., Rodríguez, E.: An Algebraic Method for 
Smoothing Surface Triangulations on a Local Parametric Space. Int. J. Numer. Meth. Eng. 
66, 740--760 (2006) 

12. Jiao, X., Bayyana, N.R., Zha, H.: Optimizing Surface Triangulation Via Near Isometry 
With Reference Meshes. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) 
ICCS 2007, LNCS, vol. 4487, pp. 334--341. Springer, Heidelberg (2007) 

13. Saff, E.B., Kuijlaars, A.B.J.: Distributing Many Points on a Sphere. Math. Intelligencer 19, 

5--11  (1997) 
14. Katanforoush, A., Shahshahani, M.: Distributing Points on the Sphere, I. Experiment. Math. 

12, 199--209 (2003) 
15. Meyer, M., Nelson, B., Kirby, R.M., Whitaker, R.: Particle Systems for Efficient and 

Accurate High-Order Finite Element Visualization. In: Chen, M., Hansen, C., North, C., 
Pang, A., van Wijk, J. (eds.) IEEE Trans. Vis. Comput. Graphics. vol. 13, pp. 1015--1026. 
IEEE Press, Sacramento  (2007)   

16. Shimadat, K., Gossard, D.C.: Bubble Mesh: Automated Triangular Meshing of Non-

manifold Geometry by Sphere Packing. In SMA '95: Proceedings of the 3rd ACM 
Symposium on Solid Modeling and Applications, pp. 409-419 (1995) 

17. Szczerba, D., McGregor, R., Székely, G.: High Quality Surface Mesh Generation for Multi-
physics Bio-medical Simulations. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A 
(eds.) ICCS 2007, LNCS, vol. 4487, pp. 906--913. Springer, Heidelberg (2007) 

18. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus Zero Surface Conformal 
Mapping and Its Application to Brain Surface Mapping. IEEE Trans. Med. Imag. 23, 949--
958 (2004) 

19. Floater, M.S., Hormann, K.: Surface Parameterization: A Tutorial and Survey. In: 
Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for 
Geometric Modelling, pp. 157--186. Springer-Verlag, New York (2005) 

20. Duchamp, T., Certain, A., Derose, A., Stuetzle, W.: Hierarchical Computation of PL 
Harmonic Embeddings. Technical Report, University of Washington (1997) 

21. Möller, T., Trumbore, B.: Fast, Minimum Storage Ray-Triangle Intersection. JGT 2, 21--28 
(1997) 

22. Moore, D.C., Crisco, J.J., Trafton, T.G., Leventhal, E.L.: A Digital Database of Wrist Bone 

Anatomy and Carpal Kinematics. J. Biomech. 40, 2537--2542 (2007) 
23. INRIA Gamma, http://www-roc.inria.fr/gamma/download/ANATOMY/index0.php  
24. Aim@Shape Project - Shape Repository, http://shapes.aimatshape.net 
 
 



Development of Individualized Human Whole-body 

Thermoregulation Models Using Finite Element Analysis 

Tejash Patel
1
, Gary P. Zientara

2
, Xiaojiang Xu

1
, Reed W. Hoyt1, 

 
1 U.S. Army Research Institute of Environmental Medicine (USARIEM),  

Biophysics and Biomedical Modeling Division,  

Natick, MA 01760-5007, USA 

{Tejash.Patel1, Xiaojiang.Xu, Reed.Hoyt } @us.army.mil  
2 Harvard Medical School and Brigham and Women’s Hospital Department of Radiolology, 

Division of Magnetic Resonance,   

Boston, MA 02115, USA 

zientara@bwh.harvard.edu 

Abstract. Thermoregulatory models capable of predicting human physiological 

responses to thermal stress are useful tools for heat illness & injury prevention. 

Extant thermoregulatory models have many geometric simplifications of the 

physical distribution of heat within the body. The simple nature of these 

cylinder-based models precludes realistic modeling and prediction of 

physiological responses of individuals. To address this gap in anatomical 

accuracy and specificity, a new human thermoregulatory model capable of 

being individualized is being developed. This paper describes our approach to 

creating an anatomically-correct and segmented standard model volumetric 

mesh for finite element analysis, derived from two data sources: the National 

Library of Medicine’s Visible Human Project’s whole-body thin section 

images, and the ‘Virtual Family’ whole-body voxel labelmaps from the IT’IS 

Foundation (Zurich, Switzerland). As a first approximation of individual 

physiology, the standard model multi-component volume meshes will be 

deformed to match the geometry of an individual’s laser surface scan. 

Keywords: heat stress, core temperature, medical imaging, finite element 

analysis, mesh, tetrahedral, COMSOL  

1   Introduction 

Physically active military personnel can have high rates of metabolic heat production 

[1].  Physiological mechanisms for dissipating excess metabolic heat are significantly 

compromised by current protective clothing ensembles, resulting in overheating and 

diminished work capacity. A number of models based on simplistic cylinder-based 

body geometry are currently used [2,3,4] to predict human thermoregulatory 

responses and  have proven useful for occupational safety and injury prevention 

purposes. Human thermal status can be estimated given certain relevant input 

parameters such as: individual characteristics (height, weight, body fat, heat 

acclimation, hydration, etc.), clothing characteristics, load weight, work rate, as well 

as mission parameters (weather, metabolic cost of task) [2]. Model individualization 



can extend across these categories, but anatomically the process only includes 

adjustments for height, weight, and body fat percentage. These types of predictive 

models show two major functionality gaps. First, existing models simplify human 

anatomy and individual variability. They employ user input measures such as height 

and weight, or may employ more advanced schemes to predict the individual 

variability, but tend to neglect important differences such as fat distribution and tissue 

composition in specific regions. Second, these models are honed to predict core 

temperature, a value of high significance, but neglect to depict heat production and 

storage in local regions of the body. In addition, core temperature itself has been 

shown to vary widely depending on the mode and anatomic location of measurement.  

A new anatomically correct finite-element thermoregulatory model (FETM) is 

needed to predict the thermo-physiological effects of new protective clothing 

ensembles on soldiers during activity. Existing cylinder-based thermoregulatory 

models made many geometric simplifications of the physical distribution of heat 

within the body [4]. The FETM under development will be capable of simulating 

regional differences and interactions in thermal physiology and clothing. Further, the 

finite element (FE) mesh will be used to develop individualized models via mesh 

warping techniques.  

 

2   Background 

Mesh modeling of human anatomy for medical applications is a field growing at a 

rapid pace with many software tools in development including stand-alone functional 

software, libraries of primitive functional modules, and various Matlab (Mathworks, 

Natick MA) applications [5]. Medical imaging data, primarily available as serial 

digital images of thin sections, magnetic resonance (MR) images and x-ray computed 

tomography (CT) scans, provide the anatomic information needed to create an 

anatomically correct mesh for FE analysis. Segmentation, usually laborious, of the 

image data to form anatomy-specific (i.e., organ, muscle, vessel, bone) volume 

labelmaps is a necessary step prior to multi-component volume mesh generation. Not 

insignificant in this combined manual and semi-automated processing pathway is the 

need for reformatting of data, labelmaps, surface and volume meshes to take 

advantage of existing software. Much software is available, yet integration demands 

many daunting data reformatting tasks. 

The National Library of Medicine’s Visible Human Project is one example of a 

medical imaging database of anatomically detailed three-dimensional representations 

of the normal male and female adult human bodies [6]. Cross sectional images were 

taken at 1mm intervals in the male and at 0.33mm intervals in the female, providing 

sufficient anatomical information for our FETM model development.   

As a time-saving benefit to our project, we have been provided with one computed 

example of the Visible Human male mesh, courtesy of Dr. Mariette Yvinec at INRIA 

Sophia Antipolis [7].  These Visible Human male and female meshes will provide one 

set of ‘standard model’ volume meshes, to be individualized in a later deformation to 

a specific soldier’s whole-body surface mesh, obtained from a whole-body laser 



surface scanner made by Cyberware, Inc. in Monterey, California [8], for our thermal 

modeling.  

As a further aid for us, a research team from the ETH Switzerland has previously 

segmented other standard human male and female adult imaging data and produce 

segmented voxel datasets now available through the IT’IS Foundation [9].  Multi-

component volume mesh generated from these labelmap datasets provide the input 

mesh generation for follow-up individualization (through deformation) and thermal 

modeling, a second research pathway we have exploited. 

An exhaustive search revealed a large number of software tools available to 

accomplish mesh generation, format conversions, mesh refinements/optimization, 

mesh editing and visualization. The available software spans the range of: well-

established and documented versions through crudely simple, undocumented 

software; source code and/or specific binaries; OS types including Linux, Windows 

XP, Windows 7, and Mac and 32 bit and 64 bit versions of each of these.  

A number of these tools were found to be relevant to our specific processing 

pathway. 3D Slicer from Brigham and Woman Hospital in Boston MA [10] is a 

highly developed tool for medical image segmentation (and many other functions) 

which we use for labelmap production along with ITK-SNAP from the Penn Image 

Computing and Science Lab [11]. Medit and YAMS developed by Pascal Frey, as 

well as Gmsh are capable of visualization, refinement, optimization, and reformatting 

of 3D meshes [12-14]. Other tools such as Meshlab [15], Paraview [16], and 

MedINRIA [17] allow mesh visualization and reformatting, which allows visual mesh 

analysis and facilitates data transfer between applications. CGAL is a library of 

geometry algorithms; specifically, we have used the CGAL 3D tetrahedral mesh 

generation from the multi-component labelmaps [18].  ImageJ from the National 

Institutes of Health allows reformatting and visualization of voxel data, an important 

precursor to mesh building [19]. Tetgen allows the computation of tetrahedral volume 

meshes from commonly available surface meshes [20].  

The ultimate goal of mesh generation, refinement and manipulation with these 

tools is to import a viable mesh into the FE analysis package COMSOL [21]. At its 

core, COMSOL is a partial differential equation (PDE) solver which can model the 

thermal analysis of the human body represented by volumetric FE meshes. Within the 

COMSOL model, a controlled system will define thermal properties (including 

metabolic heat production) of the tissues within the body, define their thermal 

conduction characteristics, as well as define boundary conditions of the tissues. The 

controlling feedback system will define heat loss through evaporative sweat loss and 

vasodilatation/constriction as well as metabolic heat production functions. Some 

tissue thermal properties will be temperature dependant. This analysis profile within 

COMSOL describes the interaction of each body region’s (e.g. extremities, torso, etc.) 

tissues with the clothing and environment as metabolic heat is generated and 

dissipated. Probe points are defined to monitor core, extremity, and skin temperature 

as metabolic heat is transferred through clothing into the environment.  



2   Methods 

Three mesh processing approaches are attempted to create compatible standard FE 

meshes that can be individualized to provide input to COMSOL modeling. These are 

presented in order of increasing complexity, which also represents levels of increasing 

user control of mesh characteristics.  

The Visible Human male adult mesh is a multi-component tetrahedral volumetric 

mesh (.mesh format) created from segmented tissue data, but it is not in a format 

readily compatible for FE analysis in COMSOL. To accomplish the mesh format 

conversion, we first performed mesh refinement in Medit. Then, Gmsh is used to 

convert the resultant file from .mesh format to COMSOL compatible .vrml format as 

shown in Figure 1. Although this approach seems direct, it does not produce a viable 

mesh for our analysis due to the loss of individual tissue segmentation information. 

Without the segmented tissue information, thermal analysis across the various tissues 

of the body cannot be performed within COMSOL. 

 

      

 

 

 

Fig. 1. Screenshot of National Library of Medicine’s Visible Human male. The segmented 

mesh was originally computed by INRIA (left). Visible Human male mesh refined in Medit and 

converted to .vrml in Gmsh (right). 

Starting from the IT’IS Foundation voxel data, which are volume labelmap datasets 

of 77 tissue types, the possibility of adding additional structures or combining non-

relevant structures into surrounding tissue remains an option (e.g., combining the 

meniscus with the femur or tibia). ImageJ converts voxel data (.raw format) into its 

internal Analyze format. The resultant .hdr and .img files are converted to .nrrd 

format via 3D slicer. Next, MedINRIA converts the .nrrd files to .inr format which is 

required by the CGAL software as seen in Figure 2. 

 



 

Fig. 2. Screenshot of IT’IS voxel labelmap data within MedINRIA. Voxel size is 1 mm x 1 

mm. The image consists of 1860 x 610 voxels. 

 

Thus far in our project, the IT’IS model data has successfully been converted into 

volumetric meshes. This first required conversion of the lablemaps from .raw to .inr 

format. Then, the .inr male segmented data (343 MB) was used to create a tetrahedral 

mesh file in .mesh format with the CGAL Mesh_3 software. The mesh generation 

processing procedure took 52 seconds on a Dell Precision T3500n Linux workstation 

with four 3.2 GHz Xeon processors and created a 51 megabyte output mesh. Finally, 

Gmsh was used to convert this mesh into COMSOL-compatible .vrml format as seen 

in Figure 3 for the ‘Virtual Family’ male adult.  

 



Fig. 3. Screenshot of IT’IS Virtual Family adult male as a tetrahedral mesh within Gmsh which 

performs the .mesh to .vrml file type conversion. 

Despite the successes of the previous procedures with the Visible Human Male, a 

freely available segmented version of the Visible Human female in any compatible 

format does not exist. For the female dataset, we have masked, cropped, and down 

sampled the original 2048x1530x5190 data (64Gb) and converted to 8 bit grayscale, 

creating a 492x125x1297 image dataset (79Mb). This whole-body dataset was then 

separated into overlapping head, thoracic region, abdomen, pelvis, upper and lower 

leg volumes. These volumes were individually segmented using 3D Slicer (Fig. 4) 

and ITK-SNAP  into specific anatomy represented by labelmaps (.nrrd format). This 

will go into MedINRIA to create an .inr format file and then into CGAL Mesh_3 

program to create a tetrahedral multi-component volume mesh. Currently, we are near 

completion of the female whole-body segmentation.   

 

 

Fig. 4. Screenshot of National Library of Medicine’s Visible Human female within 3D slicer. 

Coronal, sagittal, and transverse planes are shown to aid the user with manual segmentation of 

anatomical structures. 

 

Future work will focus on individualization of all standard .mesh format meshes 

originating from VH data and IT’IS data. We will use spline deformation, i.e., elastic 

warping, of the VH and IT’IS meshes to the surface mesh of the individual soldier 

acquired with the  Cyberware whole-body laser surface scanner to generate a dense 



deformation field that will be used to deform the standard model mesh to that of the 

soldier.  

The individualized mesh will then be used for FE analysis within COMSOL. The 

tissue metabolic heat production, thermal conduction, radiation properties, 

evaporative properties, and clothing properties are combined with the ambient 

meteorological conditions. The analysis profile is defined within COMSOL and 

describes the interaction of each body region’s (e.g. extremities, torso, etc.) tissues 

with the clothing and environment as metabolic heat is generated and dissipated. 

Probe points are defined to monitor core, extremity, and skin temperature values as 

metabolic heat is transferred through clothing into the environment.  

4   Conclusion 

Biomedical modeling is advantageous in that it organizes scientific knowledge and 

reduces the logistical and financial burdens associated with experimentation with 

human test volunteers. Creating increasingly higher fidelity anatomically correct 

models of human thermoregulation may help increase the understanding of the 

intricate thermal balance in humans. The anatomy embodied in a model can be based 

on existing medical imaging databases, while future efforts may be able to add 

individualized anatomic enhancements. Full body MRIs are expensive and time 

consuming, both in terms of data collection and analysis. We are arguing that warping 

a standard model to surface scan data provides a rational alternative. In the future 

could use 3D ultrasound imaging may enable mesh individualization. As the power 

and functionality of computer hardware and software continues to evolve, it will 

become more feasible to automate the creation of individual thermoregulatory 

models. 

Our experiences in project computations to date have involved the creation of the 

standard models and multi-component whole-body meshes of male and female adults 

from medical imaging data. The step-wise needs to accomplish this processing have 

demonstrated the pitfalls and problems caused by the multifarious format 

specifications used by the numerous software programs, libraries and packages in the 

field. However, on particularly positive note, the state-of-the-art of multi-core PCs 

and Linux workstations, and the accompanying high capacity compact on-line and 

off-line storage devices, has brought the capability for manipulation and visualization 

of whole-body medical data to the scientists desktop. Similarly, the performance of 

mesh generation and optimization software, and visualization software on desktop 

computers (now able to include graphics processing units dedicated to high 

performance computing) is well within practical limits for the ultimate modeling tasks 

we encounter in thermoregulatory modeling. FETM will be a high-fidelity, 

individualized, anatomically correct model capable of simulating the regional 

differences and interactions in thermal physiology, clothing, and environmental 

conditions in humans. 
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Abstract. This paper presents a novel atlas-based geometry pipeline for con-
structing three-dimensional cubic Hermite finite element meshes of the whole
human heart from tomographic patient image data. To build the cardiac atlas, two
superior atria, two inferior ventricles as well as the aorta and the pulmonary trunk
are first segmented, and then the epicardial and endocardial boundary surfaces
are extracted and smoothed. Critical points and skeletons (or central-line paths)
are identified, following the cardiac topology. Then, the surface model and the
path tree are used to construct a hexahedral control mesh and the final cubic Her-
mite model via a skeleton-based sweeping method. The thickness of the atria and
the ventricles is obtained using segmented epicardial boundaries or via offsetting
from the endocardial surfaces in regions where the image resolution is insuf-
ficient. Given images from another patient, instead of going through each step
again as described above, we choose an optical flow approach to deform the con-
structed atlas and align it with the new patient’s images. This registration method
is fully-automatic, and it avoids tedious manual interactions required by segmen-
tation and path extraction. The constructed Hermite models have been used for
finite element analysis of clinically recorded cardiac electrical activity.

Key words: Atlas, geometry pipeline, cubic Hermite finite elements, human
heart, atrium, ventricle, image data, registration, optical flow.

1 Introduction
The heart is one of our most vital organs being responsible for delivery of oxygen and
nutrients to the whole body. Its dysfunction can commonly be life threatening. As of
2007, heart disease remains the leading cause of mortality, accounting for 25.4% of
all deaths in the USA [1]. The heart’s role as a mechanical pump triggered by waves
of electrical depolarization, and the dysfunction of the mechanical and electrical sys-
tems in many diseases, make it an important target for computational modeling studies.
Owing to advances in non-invasive imaging technology, it is now a feasible goal to cre-
ate patient-specific models to provide insight into complicated disease processes like
ventricular arrhythmia, atrial fibrillation and congestive heart failure. Generating an ac-
curate heart geometry from images [18, 19] is well-studied when the resultant geometry
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Fig. 1. A whole heart model with four chambers and all major blood vessels. (a) The central-line
path tree; (b) the control mesh; and (c) the cubic Hermite model in an exploded view.

is composed of linear elements but is more challenging for high-order C1-continuous
elements, yet there are many attractive features of a smooth, differentiable geometric
model in numerical analysis especially in biomechanics and electrophysiology.

Most work on generation of high-order cardiac geometries from image data has
been completed on cubic Hermite meshes, as described by Bradley et al [3]. That study
focused on relatively simple geometries such as the chest wall, lungs, and cardiac ven-
tricles, and relied on user-input parameter values that cannot always be anticipated a
priori. Additionally, though some cubic Hermite models of the heart have been con-
structed with more complicated topologies such as the valve annuli [13], construction
of such meshes can be labor-intensive. The construction of an accurate four-chamber
geometric model based on cubic Hermite splines would require a tremendous amount
of user input due to the complicated topology of the atria and the complex connectivity
between the four cardiac chambers (see Fig. 1).

In this paper, we describe a novel atlas-based geometry pipeline for constructing
three-dimensional cubic Hermite finite element meshes of the human heart from non-
invasive medical imaging, taking into account details of the whole heart structure, in-
cluding the four chambers and all major blood vessels. Our algorithm makes use of
minimal user interaction to create the cardiac atlas based on the skeleton of a patient’s
heart. Once this atlas is obtained, we can create meshes for different patients using
deformable registration. To build a cardiac atlas, two superior atria, two inferior ven-
tricles as well as the aorta and the pulmonary trunk were first segmented from cardiac
computed tomography (CT) images, and surface models of the epicardial and endo-
cardial boundaries were extracted and smoothed. Critical points and the skeleton (or
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central-line path) of each chamber and vessel were identified to represent the topology
of the organ. Then, the surface model and the path tree were used to construct a hex-
ahedral control mesh as well as the final cubic Hermite model for the whole heart via
a skeleton-based sweeping method. The thickness of the atria and the ventricles was
obtained using segmented epicardial boundaries or via offsetting from the endocardial
surfaces in regions where the image resolution is insufficient. Given images from an-
other patient, we choose an optical flow approach to construct the new cubic Hermite
model by deforming the constructed atlas control mesh to align it with the new patient’s
images, instead of going through each step again as described earlier. This registration
method is fully-automatic and avoids the tedious manual interactions required by seg-
mentation and path extraction. In addition, it helps construct new cardiac atlases with
different anatomic details.

One of the main advantages of our method is that we directly construct cubic Her-
mite hexahedral meshes. Our Hermite mesh generation algorithm has the following
three important features different from other existing methods: (1) a novel atlas-based
geometry pipeline to construct cubic Hermite models for the whole heart, including the
four chambers and all major blood vessels; (2) a unique 1D center-line path tree to rep-
resent the complex cardiac topology and decompose the heart into simple components,
which are meshed individually and connected to build the atlas; and (3) an optical flow
approach to deform the constructed atlas to match with new patients’ images. In finite
element analysis, cubic Hermite meshes have the advantage that the convergence of the
solution is faster than using linear meshes that have the same level of detail. In addition,
we can guarantee C1-continuity for the solution except at extraordinary points. Another
advantage of cubic Hermite meshes over linear meshes is that for finite element models
of biomechanics [5] and electrophysiology [12], they can achieve equivalently con-
verged solutions not only with substantially fewer elements but also with significantly
fewer degrees of freedom. This translates to faster running time for the finite element
algorithms. Our constructed Hermite finite element models are suitable for continuum
modeling of cardiac electrical and mechanical functions. For example, a bi-atrial Her-
mite finite element model has been used to simulate atrial electrical activity.

The remainder of this paper is organized as follows. Section 2 overviews the atlas-
based geometry pipeline and then the following sections explain details. Section 3 dis-
cusses control mesh and cubic Hermite construction for the cardiac atlas. Section 4
describes an optical flow approach to match the constructed atlas with a new patient’s
images. Finally, Section 5 shows how clinical measurements of atrial electrical activa-
tion can be mapped onto the model geometry, and Section 6 draws conclusions.

2 Atlas-Based Geometry Pipeline
In this project, three patients underwent electrocardiogram-gated 64-slice CT with an
iodine-based contrast agent as part of clinical evaluation for atrial fibrillation. Con-
tiguous slices of 1.25-mm were obtained along the axis of the scanner, with in-plane
resolutions of 0.5 mm by 0.5 mm (two patients) and 0.7 mm by 0.7 mm (one patient).
As shown in Fig. 2, we used images from one patient to construct the atlas. First, four
cardiac chambers and all major arteries were manually segmented using ITK-SNAP
(www.itksnap.org) with intensity gradients as a guide [17]. From the segmented im-
ages, the luminal surface was extracted via isocontouring coupled with geometric flow
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Fig. 2. A schematic diagram of the atlas-based geometry pipeline.

smoothing [20] for two superior atria, the aorta and the pulmonary trunk. It is difficult
to obtain their thickness information from images. For the ventricles, the epicardial and
endocardial boundary surfaces were extracted and smoothed. After the surface models
were obtained, the skeleton (or center-line path) for each component was extracted with
some user interaction, defining the cardiac anatomy topology. Then the hexahedral con-
trol mesh was constructed via a skeleton-based sweeping method [21], and a cubic solid
Hermite model was constructed for finite element analysis of cardiac electrophysiology
and biomechanics.

For images from the other two patients, instead of going through each step as de-
scribed above, here we choose a different and more automated method to construct
Hermite models, making use of the atlas model from the first patient. For each new pa-
tient, an optical flow approach was used to deform the hexahedral control mesh of the
constructed atlas to match it with the new patient’s images. In this way, we can avoid
the tedious manual interaction required by segmentation and path extraction, and the
cubic Hermite model construction becomes fully-automatic. In the following sections,
we discuss details of the atlas construction and deformable registration.

3 Atlas Construction via Sweeping
As shown in Fig. 3(a) [1], the human heart consists of multiple connected-components.
For the first patient, we obtain a surface model from the segmented images, see Fig.
3(b), and then a cubic Hermite atlas is constructed via the following three steps: path
extraction, control mesh, and cubic Hermite construction.

3.1 Path Extraction

Reeb-graphs [10] have been used to analyze surface topologies and construct medial
axes or skeletons [7]. As reviewed in [9], there are a lot of techniques developed for
skeleton extraction, including topological thinning [2], distance field based methods
[22], potential field based methods [4], thinning via medial geodesic function [6] and
others [15]. Here we choose the critical point theory of the distance function [21] to
define a novel skeleton (or central path) tree for the whole cardiac model, following
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(a) (b)

Fig. 3. (a) The human heart anatomy [1]; and (b) the segmented heart with four chambers, the
aorta and the pulmonary trunk.

the blood flow path inside the heart and the cardiac anatomy structure. The primary
principle we comply with is the “equidistant rule”, which means the skeleton point in
a certain cross section should be the centroid of that cross section. Owing to the quasi-
tubular anatomical structure of the four chambers, we can conveniently calculate the
centroid at an arbitrary cross section given that the corresponding isocontouring surface
and normal vector are designated. Sometimes the shape of a cross section is far away
from a regular circle, so that adjustments are made to select correct skeleton points.
With the collection of skeleton points for each cross section, we obtained the 1D path
tree with each color representing the skeleton of one component, see Fig. 1(a).

3.2 Hexahedral Control Mesh Construction

In the sweeping method [21], a templated quadrilateral mesh of a circle was projected
onto each cross section along the skeleton, then the corresponding vertices in adjacent
cross-sections were connected to form a hexahedral control mesh. A hexahedral cubic
Hermite control mesh should satisfy the following three requirements: (1) no intersec-
tion is allowed between any two cross sections; (2) each cross section should be per-
pendicular to the skeleton; and (3) in order to achieve a G1-continuous surface around
extraordinary nodes, the boundary vertex shared by two patches in the control mesh
should be collinear with its two neighbors across the shared boundary, and the bound-
ary vertex shared by three or more patches should be coplanar with all of its neighboring
boundary vertices. This is because, for a so-called open knot vector, a cubic Hermite
curve is tangent to the control polygon at the first and the last control nodes.

One-to-one sweeping requires that the source and target surfaces have the same
topology. The cardiac model has four chambers connecting with surrounding arteries,
therefore, we first decompose the cardiac topology into branches or components based
on the central-line path tree in Fig. 1(a).

Branch construction: For each branch, we use the one-to-one sweeping method
to construct the control mesh. The cross-section template introduced in [21] induces a
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(a) (b) (c) (d)

Fig. 4. Branch template. (a) The cross-section template provided in [21]; (b) the new circle-square
template; (c) the circle-square template with epicardial and endocardial boundaries; and (d) the
circle-square template conformal to the epicardial (green points) and endocardial (blue points)
boundaries. The black point is the center, and the red points locate at the square edges.

large valance number at the tip, see Fig. 4(a), which is undesirable in cubic Hermite
finite element interpolation. As an improvement, a new circle-square template is in-
troduced in Fig. 4(b). This template limits the valence to be within four, and provides
elements with better quality.

The basic idea of the circle-square template is that we use a square mesh to re-
place the center part in Fig. 4(a). As shown in Fig. 4(b), the number of peripheral nodes
can only be 2n (n≥2). The center point locates on the skeleton. To generate a con-
formal mesh, each green node is projected to the epicardial boundary, and each blue
node is projected to the endocardial boundary. Red nodes are adjusted proportionally
via smoothing, see Fig. 4(d). This procedure is repeated for each cross section along the
skeleton. For most cross sections, only the yellow region in Fig. 4 is needed. However,
the inner green region is required for enclosing the tips of each chamber. By connect-
ing the corresponding control nodes in adjacent cross-sections, we obtain a hexahedral
control mesh for one branch. Notice that in the process of sweeping, we translate the
cross-section template to the selected locations on the skeleton, and rotate it to make its
normal vector lie along the central-line path.

Ventricle construction: In contrast to one branch construction, the ventricle has
two inner surfaces and one outer boundary. To mesh the ventricle muscle structure, we
design another template as shown in Fig. 5. The two inner black points are located on
the skeleton, and a middle line is defined to separate the two inner surfaces. For each

(a) (b) (c) (d)

Fig. 5. Ventricle template. (a) Locate two inner center points (black) on the skeleton and deter-
mine the middle-line points (red); (b) the sweeping template; (c) the sweeping template with
one epicardial (green) and two endocardial (blue) boundaries; and (d) project green points to the
epicardial boundary, and blue points to the two endocardial boundaries.
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(a) (b) (c)

Fig. 6. Branch connection. (a) The chamber body with an open mouth; (b) one slave branch; and
(c) the left atrium model after branch connection.

cross section, we first create a sweeping template like Fig. 5(b). Then, taking the black
center points as the references, green points are projected to the epicardial boundary,
and blue points are projected to the corresponding endocardial boundaries. The middle
line is also adjusted by moving the corresponding red points to the middle of the septum.
The final control mesh is obtained by connecting the corresponding nodes in adjacent
cross-sections.

Branch connection: To obtain a hexahedral control mesh for the whole heart, we
need to connect all the separated branches or components one by one following the
cardiac topology. For each connecting procedure, a so-called master branch and a so-
called slave branch are chosen. Typically, the master branch is a chamber or artery with
a larger diameter, and the slave branch is relatively smaller.

For example, let’s choose the left atrium in Fig. 6(a) as the master branch and one
small artery in Fig. 6(b) as the slave branch. First, we choose one segment on the master
branch which is close to the slave branch and has half number of nodes as on the cross-
section of the slave branch. Then these nodes are duplicated. Half of them are moved
up, and half of them are moved down, resulting in an open mouth on the left atrium, see
Fig. 6(a). Now the open mouth has the same topology as the cross-section of the slave
branch. Then, we can easily connect the mouth with the slave branch to obtain an inte-
grated control mesh, see Fig. 6(c). This mesh will be considered as the master branch
in the next connecting procedure. Following this way, we connect all the components
together and obtain a hexahedral control mesh for the whole heart, see Fig. 1(b).

3.3 Cubic Hermite Mesh Construction

One solid Hermite patch is constructed for each hexahedral element in the control mesh:
the inner and outer surfaces are 2D bi-cubic Hermite, and the thickness direction is
interpolated linearly. First, let’s take a look at a 1D Hermite curve

P(u) = h00P0 +h10P1 +h01Pu
0 +h11Pu

1 , (1)

where h00 = 2u3− 3u2 + 1, h10 = −2u3 + 3u2, h01 = u3− 2u2 + u, h11 = u3− u2, and
u ∈ [0,1] is the variable. Fig. 7(a) shows these four Hermite blending functions. P0 and
P1 are two endpoints. Pu

0 and Pu
1 are the first derivatives at the two endpoints. Similarly,

the parametric form of a 2D Hermite surface can be written as

P(u,v) =UT MHCMT
HV, (2)
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(a) (b)

Fig. 7. (a) 1D Hermite blending functions; and (b) one bi-cubic-linear solid Hermite patch.

where

U =
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u2

u
1
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v
1
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.

Here Pu = ∂P
∂u , Pv = ∂P

∂v , and Puv = ∂2P
∂u∂v . For each element on one cross section as shown

in Fig. 7(b), the peripheral direction is referred to u (u∈ [0,1]), and the normal direction
is referred to v (v ∈ [0,1]). Linear interpolation is conducted along the wall thickness
direction. Fig. 8 shows the bi-cubic-linear solid Hermite constructed from the bi-atrial
control mesh. Each element of the control mesh is subdivided into 4x4 sub-elements
using the bi-cubic-linear Hermite interpolation for visualization.

The constructed bi-cubic-linear Hermite is C1-continuous over the heart surface
except the local region around extraordinary nodes, which is C0-continuous. These ex-
traordinary nodes are induced when connecting two separated branches. To obtain G1-
continuity for them, we need to adjust control nodes surrounding each extraordinary
node: the boundary node shared by two patches in the control mesh should be collinear
with its two neighbors across the shared boundary, and the boundary node shared by
three or more patches should be coplanar with all of its neighboring boundary nodes.

4 Deformable Registration using Optical Flow
After constructing one Hermite atlas for the first patient, we set his image data as the
static image S (or the reference image), and set a new patient’s image data as the moving
image M (or the target image). To construct the cubic Hermite model for the new patient,
instead of going through each step as explained in Section 3, we deform the atlas control
mesh to match it with the moving image M by minimizing the difference between S
and M. In this way, we can construct the cubic Hermite model automatically for any
new patient, avoiding the tedious manual interaction required by segmentation and path
extraction. In addition, this registrations method provides an efficient approach to build
an atlas database for the human heart.

Here we choose an enhanced optical flow algorithm, which is primarily based on
Thirion’s diffusing model, also known as the “demons” algorithm [14, 16]. The “demons”
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(a) (b)

Fig. 8. A bi-atrial model. (a) Control mesh; and (b) bi-cubic-linear Hermite model.

algorithm calculates the demons force, using the gradient value from the static image
S, in order to match with the moving image M. Usually, the optical flow formula was
applied to calculate the “demons” force at each grid point in a greyscale image,

#»
fs =

(m− s)
#»

∇s

|
#»

∇s|2 +(s−m)2
, (3)

where s, m are the intensity values in the static image S and the moving image M,
respectively.

#»

∇s is the gradient, and
#»
fs = ( #»ux,

#»uy,
#»uz) is the displacement vector also

called the “passive” force.
The original algorithm may not be efficient, especially when image varies little

among neighbouring grid points in a local region. Based on Newton’s third law of mo-
tion, Rogelj and Lovaicic introduced a new force [11]. The advantage of this accelerated
algorithm was that it made use of the information from both static and moving images,
which could speed up the rate of convergence. Another force named as an “active” force
is introduced based on the information from the moving image M,

# »
fm =− (s−m)

#»

∇m

|
#»

∇m|2 +(s−m)2
. (4)

The term “passive” force denotes the contribution to the force from the static image S.
Similarly, the term “active” force denotes the influence from the moving image M. The
reason why the second term was named “active” might be that the equation iteratively
calculates the deformation to match with the moving image M and it was active to track
the corresponding point in M. Combining both the “passive” force

#»
fs in Eqn (3) and the

“active” force
# »
fm in Eqn (4), the total force at a specific grid point can be calculated as

#»
f =

#»
fs +

# »
fm = (m− s)× (

#»

∇s

|
#»

∇s|2 +(s−m)2
+

#»

∇m

|
#»

∇m|2 +(s−m)2
) . (5)

To calculate the displacement for each vertex in the atlas control mesh, we use a
trilinear interpolation on the 3D regular grids. As shown in Fig. 9, Eqn (5) is calculated
iteratively in the “demons” algorithm. The demons set Ds is pre-computed from S.
Here we choose the whole image grid as Ds. After each iteration, a stopping criterion is
required to determine when the program ends. If, for each mesh vertex, the maximum
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Fig. 9. Flowchart of the optical flow scheme.

difference of its displacement is less than a pre-defined threshold such as 0.01, which is
roughly 10% of the minimum span among X, Y and Z coordinates, the program stops. In
each iteration, a regulation of the deformation field follows this optical flow calculation,
using a Gaussian filter in which the variance of σ2 is set as 1.0. The regulation plays
an essential role as a smoothing operation to remove noise and preserve the geometry
continuity, when the displacement is calculated merely using the local information. To
obtain precise displacements, a scaling factor needs to be included in the algorithm to
compensate the differences in intensities between the static and moving images.

We set Patient 61 as the static image, and Patient 64 or 66 as the moving image. The
optical flow method is used to deform Patient 61’s control mesh to obtain the control
mesh for Patients 64 and 66. As shown in Fig. 10, we can observe that our registration
algorithm catches some detailed differences between various patients.

5 Cardiac Electrical Activity Analysis

To facilitate visualization of electrical activation data, the pulmonary veins of the left
atrial control mesh were shortened. The local activation times of tissue were projected
onto the left atrial shell and fit as a scalar field based on a least-squares problem with
Sobolev smoothing weights [3]. This least-squares problem was solved for a smooth

(a) (b) (c)

Fig. 10. Results for deformable registration. (a) Control mesh of Patient 61 (reference model); (b)
the obtained control mesh for Patient 64; (c) the obtained control mesh for Patient 66.
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(a) (b)

Fig. 11. Result for cardiac electrical activation analysis. (a) Posterior view; and (b) side view.

scalar field representing activation time of that region of the atrium. Regions of the
mesh have no measurements, so the values of activation times had to be extrapolated.

Fig. 11 depicts the measured activation sequence of the human left atrium as elec-
trical activity propagates during an in-vivo electroanatomic mapping study. A stimulus
was applied on the floor of the left atrium, and local times of activation were identified
from potential waveforms recorded by 32 bipoles. Red regions indicate early activation,
and blue regions indicate late activation. The black lines indicate isochrones, or regions
of identical temporal activation, at a space of 5 milliseconds. The relative slowing of
activation near the pulmonary veins on both the left and the right sides is consistent with
the abrupt changes in fiber bundles and wall thickness that have been observed near the
pulmonary veins in humans [8].

6 Conclusion
In this paper, we have developed a novel atlas-based geometry pipeline to construct
cubic Hermite finite element models from image data. From the segmented images of
one patient, the surface model and the 1D center-line path tree were extracted, and a
hexahedral control mesh was constructed via a skeleton-based sweeping method. Given
images of another patient, instead of going through each step again during the atlas
construction, an optical flow method was used to deform the constructed atlas to match
with the new patient’s images. In this way, an atlas-based cardiac database can be built
efficiently and automatically. For different patients, the cardiac topology may have dif-
ferent anatomic details. By using this registration method, we can also build new atlases.
For a new cardiac topology, we can first search in the database which atlas is the most
similar one, then we deform that one to construct a new atlas. As part of our future
work, we will test our pipeline on more patients’ data and build a larger database by
collaborating with VA Medical Center in University of California, San Diego.
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Abstract. In 3D surface scanning it is desirable to filter away bad data
without altering the quality of the remaining good data. Filtering of raw
scanner data before surface reconstruction can minimize the induced er-
ror and improve on the probability of reconstructing the true surface.
If outliers consist of actual data such as hair, and not just evenly dis-
tributed noise, these outliers tend to err smoothing algorithms away from
the wanted result. We present a novel algorithm based on a Markov Ran-
dom Field that uses a distance constraint to robustly classify a 3D scan
volume. Through this classification a signal preserving filtering of the
data set is done. The remaining data are used for a smooth surface re-
construction creating very plausible surfaces. The data used in our work
comes from a newly developed hand held 3D scanner. The scanner is
an Ultra Fast Optical Sectioning scanner, which is able to extract high
quality 3D surface points from 2D images recorded at over 3000 fps. The
scanner has been developed for digital impression taking in the dental
area. Our work relates to future in-ear scanning for fitting custom hearing
aids without impression taking.
-Keywords: 3D scanning, Markov Random Field, computer vision, sur-
face reconstruction, noise filtering.

1 Introduction

3D surface acquisition is an established and active research and development
area. Novel applications and devices continues to emerge, where the data scale
ranges from minuscule in microscopy optical sectioning [7] to large scale aerial
surface laser scanning of the earth [13]. A variety of scanners and cameras exist;
each with their own strengths and weaknesses. While some scanners produce 3D
surface data, scanning an object from one direction is known as 2.5D scanning as
it only portrays the object from one side and does not provide a full 3D model.
To construct a 3D model several 2.5D scans need to be patched creating a full
reconstruction [8].

We have worked with a new scanner, the Ultra Fast Optical Sectioning
TRIOS scanner from 3Shape[1], which has been developed to facilitate 3D im-
pression taking in the dental area. Our work is a study on how to reconstruct
surfaces in the presence of structured noise. The study is a preliminary study,



which relates to fitting custom hearing aids, where the construction of an in-the-
ear scanner would make the ear canal impression step obsolete.

Anticipating the problem of structured noise from hair in the ear canal we
want an algorithm that filters the data and leaves only valid surface data. As
no scanner has yet been produced that will actually go into the ear, we have
used data of hairy arms and bearded chins recorded by the TRIOS scanner. The
scanner produces high quality data with some very sparse salt-and-pepper type
noise and also good scanning of actual hair strands. As the scanner is a dental
scanner with both high precision and accuracy, we were faced with a specific
problem of removing only the hair without degrading the remaining data.

Simple mean or median filtering can make any surface fair (if one smoothens
enough) but these filters also distort the data set and are useable only when
the noise is Gaussian (mean filtering) or when the number of outliers are few
(median filtering). An adaptive application of such filters used only on outliers
can remove noise without too much degrading of the data, but such an approach
would break down in areas with a lot of outliers. Generally, local filtering does
only preserve local structure; for areas with a lot of hair a global method is
needed.

Implicit functions err towards outliers and noise. Splines [10] are a well known
tool for creating both smooth curves and surfaces, but if noise is not Gaussian
the smoothing will be skewed. This is the case in our data, where outliers are
mainly found above the surface. Splines are also continuous and therefore do not
handle discontinuity well.

A way of removing outliers in a data set is to use random sampling such as
RANSAC [4] and fit to the random sample until a fit matches the data well. Even
though this removes the influence of outliers it does not guarantee an optimal
match. A RANSAC approach is described in [11], where an algorithm is created
that finds basic shapes and structures in noisy data sets.

There exist a large body of literature covering noise properties and handling
in direct surface scanners [3]. However, the used scanning device is not directly
comparable with devices previously investigated.

To maintain as much of the good data as possible in our scans, we have
solved our problem based a Markov Random Field (MRF) formulation on a 3D
voxel grid. An early description of MRFs in 2D image analysis is on the noise
removal in dirty pictures addressed in [2]. The novelty of our work is the use
of a 3D MRF with a distance based smoothness prior that classifies the data
set into surface data and not surface data. The classification allows for a signal
preserving filtering of the data set before any actual surface reconstruction.

2 Data

The data come from an Ultra Fast Optical Sectioning TRIOS scanner, which
records a stream of 2D images. Approximately 130 images are collected into a
set that constitutes a voxel volume. From known changes in the scanner during
the volume acquisition a scan surface is constructed which can be converted



into a real world coordinate system through a calibration step. The scanner
computes the voxels that defines the interface between air and solid material
as seen from the scanners viewpoint. Since the scanner is known to be above
the surface it is possible to label the voxels along the depth axis as either above
or below the sought surface. When the scanner firmware has determined which
voxels belong to the interface, the row, column and depth volume is transformed
into real world 3D points using the calibrating parameters. The resulting 2.5D
point cloud represents the interface between air and solid material as seen from
the scanners viewpoint. To perform a full 3D surface scan, the scanner is moved
around the object and the partial scans are merged together using a proprietary
algorithm.

The scanner is normally used for digital impression taking in dental work,
which requires a very high accuracy. Therefore, the quality of scans are very
high and the noise levels due to the scanner hardware is minimal. However, real
physical objects as for example hair will also be captured by the scanner. In the
current application (direct ear-scanning) we are interested in the true surface of
the ear and therefore hair is considered noise and should be removed from the
scan. In the following we consider hair as being structured noise.

A 2.5D scan can also be considered a depth map, where the pixel value
reflect the distance to the object. Figure 1 shows four depth maps of scans from
different surfaces. The scans constitute a range from very bad to perfect, and
the algorithm should be able to handle all examples. When there is a lot of
structured noise in the scan, we need an algorithm that does not break down
but does a good filtering leaving only the actual surface data (even if it is very
little).

Fig. 1. Four depthmaps of scan surfaces. From left to right: Little surface coverage
with hair, half coverage with hair, full coverage with hair, full coverage without hair.

3 Markov Random Field volume classification

The raw output from the scanner (and the scanner firmware) is a voxel set where
the scanner is virtually placed above the voxel volume looking down the depth
direction. Each voxel is labeled as being either above or under the scan surface.
The scan surface, Sscan, is the initial surface that can be extracted as the in-
terface between the above and under voxel sets. However, Sscan is noisy (in the



sense that hair is present in the scan) and does not represent the true underlying
skin surface. We aim to produce a consistent and locally smooth skin surface,
Sskin, from the data set. In order to re-label the voxel set and thereby implicitly
producing, Sskin, a Markov Random Field (MRF) classification/regularisation
approach is chosen. In the following, a short introduction to MRFs and a de-
scription of the chosen models are given.

3.1 The volume random field

We define a random field with spatial voxel positions {v1, v2, . . . , vn} in the
volume V with the index set I. In this set each voxel vi takes a value xi from
the binary label set L={under,above}, where under is under and above is over
the skin surface. Notice that we make a distinction between scan surfaces Sscan

and skin surfaces Sskin; the classification relates to the latter. All values of xi
are represented by the vector x, which is the configuration of the random field.

A neighbourhood system to vi is defined as N = {Ni|i ∈ I} for which it holds
that i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random field is said to be a Markov field,
if the probability P of any configuration of x satisfies the positivity property:

P (x) > 0 ∀x ∈ L (1)

And the Markovian property:

P (xi|{xj : j ∈ I\{i}}) = P (xi|{xj : j ∈ Ni}) (2)

Or in other words the probability of xi given the index set I\{i} is the same
as the probability given the neighbourhood of i. Our use of neighbourhood is
limited to the direct 6-neighbours in the volume. The goal is to compute the
configuration of the field that maximizes the probability.

3.2 Defining the Markov Random Field

We aim to produce a labelling x of the voxel volume V , such that the boundary
of the labelling coincides with the skin surface. A likelihood term and two priors
are defined on the following:

– Under scan surface is likely to be under skin surface (under), while above
scan surface is likely to be above skin surface (above).

– Skin surface points are in the vicinity of scan points.
– Skin surface is locally smooth.

Here surface points and scan points are defined as the local interface between
above and under labelled voxels. Using these priors a MRF is created for which
a minimal energy problem is defined using the following:

Likelihood term: This term is based on the relative position of a voxel and
the scan surface:

Φ(vi|xi) = − logP (vi|xi) (3)



Generally, we expect the scan and skin surfaces to coincide and therefore
make a simplification of the likelihood function, such that voxels below the
scan surface Sscan have low energy if labelled under and high energy if la-
belled above and vice versa for voxels above the scan surface. The energy
then becomes:

Φ(vi < Sscan|xi) =

{
1 xi = under
0 xi = above

Φ(vi > Sscan|xi) =

{
0 xi = under
1 xi = above

(4)

This somewhat loosely defined term alone would just produce the scan sur-
face.

Vicinity prior: The skin surface should be close to scan surface points. This
is induced by adding an energy penalty to changes in label, which relates to
the distance from the voxel vi to the nearest scan point Sscan:

λ(xi, xj) =

{
Kdist · dist(vi, Sscan) xi 6= xj

0 xi = xj
(5)

The distance is approximated using an Euclidean distance transform (EDT) [5].
This is a fast linear time algorithm that approximates distance in a number
of sweeps. This penalty should only affect voxels that are not in the immedi-
ate neighbourhood of scan surface points, which is why 1 is subtracted from
the distances, such that both an actual surface point and its direct neigh-
bours have distance 0. The vicinity constraint mainly effects areas with high
discontinuity but it also forces the resulting surface to be true to the data
in areas with continuity.

Smoothness prior: Neighbouring voxels are expected to have the same la-
bel with higher probability than having different labels, therefore an energy
penalty is given to adjacent voxels with different label:

ψ(xi, xj) =

{
Kij xi 6= xj
0 xi = xj

(6)

This is a general smoothness constraint.

Combining the likelihood term with the vicinity and smoothness prior, we get
the following energy minimization problem for the scan volume:

E(x) =
∑
i∈I

Φ(vi|xi) +
∑
j∈Ni

(λ(xi, xj) + ψ(xi, xj))

 (7)

Where x is the classification of the whole volume. The vicinity constant Kdist and
the smoothness constant Kij relates to each other and the likelihood term, which
we defined to be 0 or 1. The solution to the MRF ensures maximum probability
with the constraint that the labelling is both highly consistent with the data
and smooth. To solve the minimization problem the Graph Cut algorithm [6]
is used. This algorithm is an efficient way to find the optimal solution for such
binary problems. From the resulting MRF classification a new surface SMRF is
extracted as the interface between the under and above labelled voxels.



4 Filtering based on the MRF solution

With a solution to the MRF and a new surface estimate SMRF the changes
compared to the original surface Sscan can be analyzed. As the MRF is set up so
create a surface that coincides with the skin surface Sskin, we set up a filtering
based on the following:

Sskin = Sscan ∩ SMRF ∧ Shair = Sscan \ SMRF

This results in a pure skin surface estimate and an estimate of the structured
noise (hair) removed from the original scan to create the skin surface. We have
used the strict definition but to give some flexibility one might add a threshold
on how much is considered a change when comparing the original data with the
MRF surface. Figure 2 shows examples of the resulting depthmaps of the MRF
based filtering. Even though it is difficult to quantify the result, clearly both
hair and noise are removed leaving only the smooth skin surface data.

(a) Very little skin with hair

(b) Half skin coverage with hair

Fig. 2. From left to right: depth map of original scan, surface based on volume classi-
fication, changes made in new surface, unchanged data in new surface. It is especially
worth noting that the first scan is of very poor quality. The scanner is only focusing
on very little skin surface and on top of that there is a lot of hair. In spite of this the
algorithm returns the small amount of actual skin surface present in the scan.

Setting the relations between the likelihood term, the vicinity and smooth-
ness prior is not trivial and based on trial-and-error. However, a reasonable
approach is (at least for this type of data) to set the smoothness prior Kij to
0, while incrementing the vicinity prior Kdist until a good result is achieved
(Fig. 3(a)). This parameter effects areas with discontinuity such as skin to hair,



while it actually forces the algorithm to be true to the input data in areas with
continuity such as skin to skin. Setting the parameter removes most of the hair
strands leaving only a little stubble, which can then be removed by adding the
smoothness constraint. Figure 3(b) shows the difference between surface data
found using only the vicinity prior and using both vicinity and smoothness, the
difference is seen as green, and the blue is the filtered surface data.

Even though the MRF solution actually creates a surface without holes,
this surface tends to have bumps where the surface is closed below the hair
strands. This is why only the unchanged part of the MRF surface should be
kept. These remaining data are a much better starting point for a smooth surface
reconstruction, as these data belong to the actual surface. Figure 3(c) shows a
surface reconstruction based on the filtered point set. The surface has been
reconstructed with the Markov Random Field Surface Reconstruction [9]. This
algorithm uses a Markov Random Field to regularize a point distance field and
it creates plausible hole filling, where data is missing. If computation time is a
factor a simple 2D Delaunay triangulation [12] (considering the data as a 2D
height map) would produce a reasonably fair surface.

5 Conclusion

In this paper data from a novel surface scanner has been used in an approach
to remove structured noise from raw scanner data. The approach is based on re-
labelling a voxel set using a Markov Random Field classification and extracting
the sought surface as the interface between two voxel labels.

We have achieved good results on filtering noise and hair from our surface
scans. Even though it is hard to quantify the ability to filter both noise and hair,
qualitative visual inspections of the results are very promising. Because of the
high quality expectance of the scans it is a strong point that the data is filtered
such that the remaining data is unchanged.

Our algorithm has been implemented in Matlab with crucial parts in C++
.mex-files and it filters in a matter of a few seconds on a 2.8 GHz Intel processor
laptop. There is good reason to believe that the surface filtering could be done
in realtime with a full implementation in a precompiled programming language.

One could argue that a full volume classification as part of the filtering is
not necessary. This is meant in the sense that large parts of the scan volume
will be far from the actual surface and therefore a smarter way of classification
close to the surface could speed up the process. This would however complicate
the approach and is a topic for future research.



(a) Filtering done using only the vicinity prior

(b) Filtering after adding the smoothness prior

(c) Filtered data and surface reconstruction

Fig. 3. The figure shows a side view of a hairy surface. In the first image the effect of
adding the vicinity prior alone is shown. Hair strands are coloured red and the surface
green. The second image shows the difference between the surface using only vicinity
prior and the surface, where both vicinity and smoothness prior has been applied.
The difference is shown in green, while the resulting surface points of both vicinity
and smoothness prior filtering are shown in blue. The third image shows a surface
reconstruction using the filtered point set.
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Abstract. This paper presents an adaptation of a two-stage tetrahedralization,
featuring boundary-faithful controlled-resolution surface and volumetric mesh-
ing, suitable for multi-grid finite-element based neurosurgery simulator,whose
architecture reflects the choice of neurosurgical approach and the nature of the
pathology. Moreover, the first application of our approach-guided methodology
is a simulation of the pterional approach, which entails a brain mesh that is separa-
ble about the left or right Sylvian fissure, providing access to deep-seated lesions.
In addition to this sulcal separability constraint, the emphasis of this procedure
on lesions in the skull base also suggests that the meshing should model ventri-
cles faithfully. However, another requirement that conflicts with the faithfulness
to these sulcal and ventricular boundaries is the need to limit the number of tetra-
hedra, at the coarsest level, in order to produce an interactive yet materially and
geometrically nonlinear response, which will be achieved by GPU-accelerated
Total Lagrangian Explicit Dynamics. Finally, we view a controlled resolutionas
a cornerstone of a multi-grid approach to the simulation, which in turn we view
as a necessity, given also the conflicting requirements of having to compute a de-
formation on a relatively large organ such as the brain, while also capturing finely
detailed critical tissues, such as blood vessels, deleterious gestures to which must
be penalized by the simulation.

1 Introduction: clinical need and conflicting requirements

CBTRUS has calculated a worldwide estimate of 186,678 newlydiagnosed primary
non-malignant brain and central nervous system tumors per annum for 2002 [4]. The
five-year relative survival rate following diagnosis of a primary malignant brain tumor
is 33.8% for males and 37.5% for females. It has been recognized that the main factor
in long-term patient survival, other than the nature of the tumor, is completeness of the
excision [5][22] underscoring the importance of surgical efficacy.

Surgical efficacy can be improved by simulation-based training, but despite ad-
vances in other areas and an important clinical need, simulation has not made major
inroads into neurosurgery. Surgery simulation can be broadly categorized into predictive
and interactive techniques, respectively used by expert surgeons for planning, through
high-quality finite element (FE) computations, and by surgical residents for develop-
ing their skill, through interactive biomechanics and haptics. Correction of scoliosis of



the spine [1] and maxillofacial bone repositioning [13] exemplify predictive simulation.
Meanwhile, validation studies have shown that residents having trained with an interac-
tive simulator outperformed residents without such training in performing laparoscopic
cholecystectomies [18]. The two types of simulation can be seen as poles of a spectrum
characterized by the conflicting requirements of interactivity and faithfulness to tissue
response, which research increasingly attempts to bridge through new efficiencies [10].

The clinical need that justifies pursuing interactive neurosurgery simulation with a
strong predictive aspect lies in two tendencies in modern surgery: the compression of
training schedules of surgical residents and the constant influx of new therapeutic tech-
nologies available to expert surgeons. Training schedule compression coincides with a
recent movement to limit resident duty hours [14]. Interactive surgery simulation can
provide a means for accelerating the training of residents,allowing them to take a more
active role than in the traditional framework, whereby residents observe senior surgeons
and gradually assume increased responsibility, and can result in measurable improve-
ments to both skill and patient outcome. Meanwhile, the influx of new technology in
neurosurgery is characterized by the increasing use of physics- and computer-based
technology in modern practice [6]: stereotactic and minimally invasive neurosurgery,
modalities such as ultrasound and digital atlases, as well as recent therapies such as the
ultrasonic surgical aspirator, lasers, radiotherapy, andmolecular therapies. The result is
an armamentarium that is broad and technically complex, where simulation could play
a pivotal role for expert surgeons assimilating or refining new treatments.

Our main objective is a neurosurgery simulator that can effectively model skull base
surgery. Its architecture is organized according two nearly orthogonal parameters: i) the
neurosurgical approach (e.g.: pterional, trans-nasal, and so on), which has implications
for relevant critical tissues and the subvolume of clinicalinterest; and ii) the nature of
the pathology, which dictates the choice of surgical tools and treatment. A requirement
of skull base surgery simulation is depicted in figure 1 (a): one of the techniques avail-
able to the neurosurgeon for resecting deep-seated lesionsinvolves parting the brain
tissue about the Sylvian fissure. This technique characterizes pterional approach, which
consists of approaching the brain and the anterior skull base through their lateral aspect
after removing the frontal and temporal bones and the greater wing of the sphenoid
[12]. The extensive spectrum of the neural and the vascular structures within reach
includes insula, basal ganglia, lateral ventricle, middlecerebral artery, temporal oper-
culum, frontal and parietal opercula, uncus, orbit, anterior cranial fossa, optic nerve,
internal carotid artery and branches, lamina terminalis, and interpeduncular fossa.

This paper presents on-going research that features an adaptation of controlled-
resolution clustering-based surface meshing, which is sulcal-separable if the surgical
approach requires it of the anatomical model, followed by controlled-resolution tetrahe-
dralization suitable for multi-grid FE [24] based neurosurgery simulator. Currently, the
second stage is the Almost-regular Tetrahedralization method [9], which uses a mesh
size objective consistent with that of the surface mesh. Moreover, simulation of the pte-
rional approach entails a brain mesh that is separable aboutthe left or right Sylvian
fissure, providing access to deep-seated lesions. In addition to this sulcal separability
constraint, the emphasis of this procedure on lesions in theskull base also suggests that
the meshing should model ventricles faithfully. However, another requirement that con-



flicts with the faithfulness to these sulcal and ventricularboundaries is the need to limit
the number of tetrahedra, to roughly 2000 or fewer, at the coarsest level, in order to pro-
duce an interactive yet materially and geometrically nonlinear response, which will be
achieved by GPU-accelerated Total Lagrangian Explicit Dynamics [20][10]. We view a
multi-grid approach to the simulation as a necessity, giventhe conflicting requirements
of modeling a large organ such as the brain and finely detailedcritical tissues, however
the scope of this paper is restricted to the computation of the coarse-level mesh. Last,
this model is used in conjunction with the SOFA platform, which implies that this tetra-
hedral mesh can be significantly coarser than the surface-based visual model, as long as
the main structures relevant to the biomechanics, e.g. ventricles, are represented.

(a) (b)

Fig. 1. Relevance and implementation of sulcal separability. (a) illustration of parting of Sylvian
fissure to provide access to deep-seated tumor, and depiction of criticaltissues; (b) illustration of
BrainVISA results for labeling sulci.

2 Preprocessing: segmentation and sulcal labeling

The first stage of our current processing method to produce descriptive anatomical mod-
els of the brain is the image analysis pipeline that segmentsT1-weighted MR data
according to white and grey matter (WM, GM) as well as corticospinal fluid (CSF),
based on scale-space analysis, which is also the first step ofthe BrainVISA image
analysis pipeline [3]. An alternate segmentation method isan atlas-based Expectation
Maximization [15], if sulcal labeling is not required. Withboth methods, a separate
tumor segmentation [16] will eventually be integrated for practical patient-specific neu-
rosurgery simulation. The latter method identifies tumors based on their statistical out-
lying characteristic inT1-T2 space, in conjunction with a probabilistic digital brain at-
las that incorporatesT1-T2 features vectors of WM, GM and CSF, and with a level-set
based region growing algorithm. In the BrainVISA pipeline,preliminary classification
in terms of WM, GM and CSF is followed by morphological analysis to separate hemi-
spheres and detect sulci on the basis of a white matter skeleton, which are subsequently
expressed as nodes within relational graphs, which nodes coincide with simple surface



(a) (b)

Fig. 2. Post-segmentation sulcus-aware morphological processing of brain binary image: (a) raw
brain binary image; (b) result of eliminating irrelevant sulci, while emphasizing clinically relevant
left Sylvian and hemisphere fissures, while preserving the ventricles.

primitives of various topological types [17]. The last computational stage of BrainVISA
inputs this relational graph, within which each node is labeled according to its underly-
ing surface type, to a multi-layer perceptron, which can deal with topological variability
of sulci across individuals. The output of the sulcal labeling pipeline is shown in fig-
ure 1 (b), and is postprocessed to produce a suite of VTKPolydata files, which serves
as input to the next stage, in addition to the brain tissue segmentation produced in the
preprocessing.

Prior to the computation of triangular surface mesh, the sulci are used to focus the
morphological filtering of the binary brain volume, so as to prevent clinically irrelevant
sulci from appearing in the anatomical model, while also imposing separability where
the clinically relevant sulcus appears, namely the left Sylvian fissure. The basic idea is
to ensure that the mesh does not bridge the sulcus about whichseparability is required,
while limiting the element count in the rest of the brain. This stage is implemented with
a series of morphological operations on each hemisphere:

– a small morphological dilation of a voxel-based representation of all sulci;

– a small morphological closing of the brain binary volume OR’ed with the dilated
irrelevant sulci;

– a small morphological opening of the closed brain binary volume from step ii on
the basis of the clinically relevant sulcus;



– a blurring with a small kernel to produce brain hemispheres and subcortical struc-
tures from which stable results can be obtained by the application of Marching
Cubes;

– a MAX operation of the blurred hemispheres and subcortical structure.

In addition, our experience suggests that rather than producing surface and volume
meshes that are of constant mesh size, it is more feasible to achieve a mesh size objec-
tive that is smaller at surfaces of high curvature, such as the ventricles and the relevant
Sylvian fissure. To this effect, the ventricles are isolatedby morphological filtering, and
a distance map is computed from them as well as from the relevant Sylvian fissure. Last,
this surface model will also emphasize the space between hemispheres, and the extrac-
tion of this space is improved by exploiting prior labeling of left and right hemispheres
produced by BrainVISA. This process is illustrated in figure2.

3 Surface mesh simplification with topological guarantees

3.1 Motivation for a two-stage approach

We adopt a two-stage method for achieving a controlled-resolution, boundary-faithful
mesh, in the spirit of the method developed by us in [2]. We have found by experience
that a number of one-stage tetrahedralization methods tendto fuse two boundaries that
are close together, which inevitably annihilates the Sylvian fissure imbedded in the
mesh. The surface meshing stage begins with a Marching Cubescomputation on the
preprocessed binary brain volume of image in figure 2 (b). This Marching Cubes result
is shown in figure 3.1 (b).

(a) (b)

Fig. 3.Preliminary steps in surface meshing: (a) Marching Cubes; (b) first iteration of clustering.



3.2 Adaptive coarsening

The simplification of the surface resulting from the Marching Cubes algorithm is carried
out using a modified version of the ACVD software. This algorithm, based on [23],
constructs an approximate Centroidal Voronoi Tesselation(CVT) [8] on the input mesh
by clustering its verticesvj in n clustersCi, in order to minimize the following energy:

ECVD =

n
∑

i=1





∑

vj∈Ci

ρ(vj)‖vj − ci‖2


 (1)

whereρ(v) is a density function defined for each vertexvj , and allows adaptive
clustering. In our experiments, we used a linear combination of the previously computed
distance map to generate more vertices near the ventricles and the Sylvian fissure. Once
the clustering is constructed, the set of cluster sitesci defines a point set that can be
easily triangulated by analysing the clusters connectivity. The resulting triangulation is
a good candidate for numerical simulations.

Unfortunately, this algorithm does not guarantee that the resulting mesh will be a
manifold surface, as some regions might locally require more clusters to be represented
by a manifold surface in the simplified mesh. To overcome thisissue, after the triangu-
lation is constructed, we check that each simplified mesh vertex ring is equivalent to a
topological disk. If some vertices do not respect this constraint, we insert one cluster
near every failing vertex, and re-perform the clustering step. For this clustering step,
we freeze all clusters except those that are in the 1-neighbourhood of the problem ver-
tices. Freezing those clusters prevents the clusters to redistribute too much on the mesh,
otherwise the clusters insertion would have little impact on the topology correction.
This process is repeated until the resulting mesh is watertight. Since the input mesh is a
watertight mesh, the convergence of this algorithm is guaranteed.

Note that even if the resulting mesh is watertight, its genusmight be lower than the
genus of the original surface. As an example when a small handle fits entirely in one
cluster, it will be repaced by a single vertex in the simplified mesh. This allows our
approach to filter out topological noise that would forbid good coarse simplifications.

Figure 4 shows a closeup view of a simplification example. Themesh shown in (a)
contains relatively thin tubular regions where the clusters density is not big enough. The
resulting triangulation is highly non-manifold, and vertices need to be inserted. After
two insertion steps, the resulting mesh is manifold (e).

3.3 Further simplifications

Although the resulting mesh is watertight, it can happen that many vertices were in-
serted in thin regions, which can penalize the performance of the simulation toolchain.
In order to further reduce the number of vertices in the mesh,we perform a topology-
preserving simplification step, in spirit with [11] : we perform suvcessive edge collapse
operations on the mesh until the desired number of vertices is reached. Similarly to [11],
the ordering of the edge collapses is computed using QuadricError Metrics (QEM), and
we forbid any edge collapse that would alter the mesh topology. Final results are shown
in section 5.



(a) (b) (c) (d) (e)

Fig. 4. Enforcing the correct topology. (a) : close-up view of a tubular input surface. (b) initial
clustering. (c) resulting triangulation. This triangulation is not manifold, hence we introduce more
clusters in the vicinity of non-manifold vertices. (d) after one iteration. (e)after two iterations,
the result is manifold

4 Surface-mesh constrained Tetrahedral Meshing

The tetrahedralization stage uses as input the controlled-resolution surface meshing re-
sults from the previous stage. Currently this stage is stillunderway. We are experiment-
ing with open-source tetrahedralization software such as TetGen [21] that is faithful
to boundaries and with the Almost-regular Tetrahedralization (ART) [9] used by us
in past implementations where resolution control and boundary faithfulness were em-
phasized. The latter method admits an explicit mesh size objective, which is used to
govern insertion of Steiner points. The final tetrahedral mesh is converted to an input
format supported by the Simulation Open Framework Architecture (SOFA) platform
[19], namely the VTK legacy file format.

Preliminary results illustrating tissue parting on SOFA have so far been achieved
with the Co-rotational FEM, which demonstrate small-deformation parting of the brain
tissue about the left Sylvian fissure. The deformation tendsto be localized, which mo-
tivates our on-going integration of haptic interactivity with Total Lagrangian Explicit
Dynamics finite elements, which we feel will better resolve the large deformation re-
quired in this type of simulation.

5 Results

Figure 5 illustrates typical results of the surface meshing, whose wireframe render-
ing clearly shows the left Sylvian fissure and ventricles, aswell as extremely coarse
elements away from these structures. Figure 6 displays an exploded view of the tetra-
hedalization, and a preliminary mouse-based interaction via SOFA’s Co-RotationalFEM
biomechanics engine. These results also illustrate that a suitably sparse and coarse sur-
face mesh can be achieved, while the development of the tetrahedral mesh that mirrors
this edge size function is still work in progress. However wefeel that the application of
the ART method, which affords precise control over internaledge size, and the adap-
tation of the tetrahedral clustering method [7] in a manner that maintains the existing
boundary, show promise of producing volumetric mesh with that adheres to the density
function of the surface mesh.



(a)

(b)

Fig. 5.Surface mesh simplification results: (a) wireframe and (b) surface and edge-based render-
ings. The mesh displayed here contains fewer than 600 elements.



(a)

(b)

Fig. 6. Volume meshing results: (a) exploded view and (b) preliminary interactive biomechanics
results via SOFA co-rotational tetrahedral FEM class.



6 Conclusions

This paper presented a two-stage method for producing controlled-resolution brain
mesh for neurosurgical simulation applications, where in particular the meshing strat-
egy reflects an approach-specific adaptation. Moreover, we have shown that a mesh that
is separable about a Sylvian fissure is both desirable and achievable for the specific case
of the pterional approach. This method was restricted to thecomputation of the coarse-
level representation of the brain in a multi-grid framework, but the same techniques can
be applied to computing medium and fine representations of a subvolume of the brain.
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