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Abstract. In this paper, we present a fully automated technique two
stage technique for segmenting brain tumours from multispectral human
brain magnetic resonance images (MRIs). From the training volumes,
we model the brain tumour, oedema and the other healthy brain tissues
using their combined space characteristics. Our segmentation technique
works on a combination of Bayesian classification of the Gabor decom-
position of the brain MRI volumes to produce an initial classification
of brain tumours, along with the other classes. We follow our initial
classification with a Markov Random Field (MRF) classification of the
Bayesian output to resolve local inhomogeneities, and impose a smooth-
ing constraint. Our results show a Dice similarity coefficient of 0.668 for
the brain tumours and 0.56 for the oedema.

1 Introduction

Brain tumours are a serious health problem, and it is estimated that roughly
100,000 people are diagnosed with brain tumours every years. One of the pri-
mary diagnostic and treatment evaluation tools for brain tumours is the mag-
netic resonance image (MRI) of the brain. A reliable method for segmenting
brain tumours would be very useful. However, brain tumours, owing to their ex-
treme diversity of shape, size, type of tumour, etc., present a serious challenge to
segmentation techniques. Given the importance of the problem, over the years,
there have been a large number of techniques attempted to segment brain tu-
mours automatically. Some of the more important techniques include multilevel
segmentation by Bayesian weighted aggregation [1], knowledge based fuzzy tech-
niques [2], and atlas based classification [3]. Wavelet based decompositions are
attractive since they are good at capturing large textures of the kind found in
brain tumours effectively, and it is unsurprising that there are a few attempts
to employ wavelets. One of the more prominent is the wavelet decomposition
used in conjunction with support vector machines [4]. In this paper, however,
we build on this technique by constructing models not for just the tumours and
the oedema, but also for the healthy tissues. We, then, utilise the natural ability
of the combined space features to capture the existing patterns to train the ma-
chine to recognise the patterns of the tumours, and distinguish it from the other
healthy tissues, and provide us with an initial classification. From this initial
classification, we then use Markov Random Fields (MRFs) to capture the local
label homogeneities and also eliminate false positives that occur due to spurious
tumour textures that may arise in other parts of the brain.
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2 Gabor Bayesian Classification

2.1 Training

Our goal is to correctly identify the oedema and the active tumour. During the
initial training phase, we first register a tissue atlas to the training volumes ob-
tain the healthy tissues, Grey Matter (GM), White Matter (WM), and Cerebro-
Spinal fluid (CSF). We superimpose the tumour and oedema maps provided by
the experts to obtain all the classes in the training volumes.

We decompose the training volumes into their constituent Gabor filter bank
outputs. The input volumes are the MRI intensity volumes in the four modalities,
viz, T1, T2, T1c and FLAIR, so at each voxel, we have a four dimensional vector
Ii = (IT1

i , IT1c
i , IFLAIR

i , IT2

i ). Each image is decomposed to its filter bank output
using multiwindow Gabor transforms of the form suggested by [5]. The filter bank
outputs are obtained by convolving each modality volume with the Gabor filter
bank, which is obtained using the equation
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where σx and σy are the spreads in the x and y directions and u0 is the modu-
lating frequency. In our case, we choose 4 orientations between 0 and π radians
and 5 frequencies. Each chosen frequency is an octave of the previous to ensure
that the entire spectrum is covered. We model each class as a Gaussian mixture
model, and an 8 component Gaussian mixture suffices to model the different
classes in the combined space. We model the Gabor coefficients of all classes,
including the tumour and the oedema, using Gaussian mixture models.

2.2 Classification

Once the test volume is obtained, it is decomposed into its Gabor filter bank
outputs using eqn. (1). The class of each voxel is obtained using Bayesian clas-
sification, which is given by

P (Ci | I
G
i ) ∝ P (Igi | Ci)P (Ci), (2)

where C is a random variable that can take the value of the 5 classes, and
IGi = I0i , I

1

i , . . . , I
R−1

i is the set of R Gabor coefficients of the particular voxel
i. It is our experience that the active tumours are quite correctly determined
by the Gabor Bayesian technique, but there are often false positive oedema
segmentations in regions that mimic the presence of oedema.

3 Markov Random Field Classification

The first Bayesian classification results in tumour candidates. We refine this
classification by building an MRF based model. We focus on both the intensities
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of the voxels and the intensity differences as contrasts are much more consistent.
The MRF model is based on the intensity of the voxel, the spatial intensity
differences and the class of neighbouring voxels. This can be written as

P (Ci | Ii, INi
) = P (Ii | Ci)P (Ci)

M−1
∑

CNi
=0

P (∆INi
| Ci, CNi

)P (CNi
| Ci) (3)

where CNi
are the classes of the neighbours of i, ∆IN−I = INi

− Ii.

3.1 Training

Here, we build the intensity distributions of the classes and model them using
multivariate Gaussian models. For the neighbourhood, we consider an 8 neigh-
bourhood around the voxel in axial plane and the corresponding voxels in the
slices above and below, and build the distributions of each pair, triplet and
quadriplet of classes that have an edge or vertex in common in the defined
neighbourhood using multivariate Gaussian models. This allows us to model
all neighbourhood relations completely in both a mathematical and a practi-
cal sense. We use the initial Gabor classification as the prior with the oedema
probabilities falling sharply away from the tumour for the second phase.

3.2 MRF Classification

We need to compute P (C | I) where C is a configuration of the labels of all the
voxels in the volume and I is the set of intensities across all the modalities for
all the voxels in the configuration. A sound method of computing P (C | I) is
by considering the problem as an MRF, which suggests that all class labels are
dependent only on their local neighbourhood. Using eqn. (3), we can obtain the
energy funcion for the configuration of labels in the volume with
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where ∆INi
= INi

− Ii, m(CNi
, Ci) = 1 if CNi

= Ci, Z is the total number of
voxels, and 0 otherwise, and α is the weighting coefficient vector. To maximise
P (C), we use iterated conditional modes (ICM) [6] to minimise U(C), where
Cmin = argminC∈FU(C), and F is the set of all possible label configurations.

4 Results

In Fig. 1, we compare the results of the two slices where our results are compared
against those of the experts’ segmentation. In both cases, it can be seen that our
results are comparable to the experts’ comparison.
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Fig. 1. (a) (b) (c) (d)
(a) Expert labelling of slice 81 of the volume LG0015 and (b) its corresponding algo-
rithmic labelling. (c) Similarly, the expert labelling of slice 93 of the volume HG0015
and (d) its corresponding labelling by the algorithm. As may be seen, visually, our
algorithm’s performance is very close to the experts’ evaluation.

Quantitatively, we train our algorithm on 29 volumes given and test it on the
remaining one in a leave one out fashion. We get a Dice similarity coefficient of
0.561± 0.118 for the oedema and 0.668± 0.126 for the active tumour when we
compare our segmentation against those of experts.
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