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Abstract

An approximate maximum likelihood method for direct estimation of
embedded parameters in nonlinear, multivariate stochastic differential equa-
tions using discrete-time input-output data encumbered with additive mea-
surement noise is proposed. The stochastic differential equations act as the
system equation of a continuous-discrete time state space model which is
introduced to describe nonlinear, multivariate and quasi-stationary systems.
The likelihood is formulated as a function of the embedded parameters of
the stochastic state space model, and an Iterated Extended Kalman filter is
used in evaluating the likelihood function. A transformation is introduced to
remove level effects (state-dependent diffusion terms) in some multivariate
SDEs such that the filtering problem may be solved using the IEKF. Monte
Carlo simulation of a nonlinear predator-prey system is used to study the sta-
tistical properties of the proposed method.
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1 Introduction

Models of physical, chemical and biological systems derived from first princi-
ples are inherently continuous in time, which implies that continuous-time (CT)
models support a better understanding of the actual behavior of the system, see
e.g. (Unbehauen and Rao, 1997). Stochastic state space models provide a means
of combining the hallmarks of grey box identification (Ljung, 1987; S¨oderström
and Stoica, 1989), namely by combining a priori knowledge about the system
and statistical methods for parameter estimation and model validation. How-
ever, the formal definition of stochastic state space models in the system iden-
tification community, see e.g. (S¨oderström, Fan, Mossberg and Carlsson, 1997;
Haverkamp, Verhaegen, Chou and Johansson, 1997) differs from the definition in
other fields (Protter, 1990; Karatzas and Shreve, 1996) in a way that makes gen-
uine probabilistic methods difficult to apply. The latter considers stochastic dif-
ferential equations in the Itˆo sense. In (Bohlin and Graebe, 1994), it is argued that
a model consisting of a stochastic differential equation (SDE) and a discrete-time
measurement equation is a natural framework for modelling real dynamical sys-
tems. We confine ourselves to SDEs driven by Wiener processes, although SDEs
may be driven by more general classes of stochastic processes (Protter, 1990). Itˆo
SDEs as opposed to Stratonovitch SDEs are particularly well suited for state and
parameter estimation purposes. Kloeden and Platen (1995, Chapter 7) provides
an extensive list of applications of SDEs in many areas of the technical sciences.
Yet it is evident that there are numerous open research problems with respect to
model structure identification, choice of sampling time and related topics.

There is increasing evidence of both theoretical and empirical nature that the level
of the process noise depends on the state variables. This will be referred to aslevel
effects. This multiplicative process noise is an important reason for consider-
ing stochastic differential equations more rigorously in the Itˆo sense. In general,
SDEs with level effects necessitate higher order filters (Jazwinski, 1970; May-
beck, 1982) that offers only approximate and very computerintensive solutions
to the filtering problem. However, for a limited class of models, a transforma-
tion may be used to remove the level effects such that first order filters e.g. the
Iterated Extended Kalman Filter (IEKF) is sufficient. The transformation has the
additional advantage that the transition probability density function (pdf) of the
transformed SDE is “closer” to the normal pdf.

The main contributions are a method for estimation of embedded parameters
in Itô stochastic differential equations without level effects using discrete-time
measurements and a multivariate generalization of the transformation proposed
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in (Baadsgaard, Nielsen, Spliid, Madsen and Preisel, 1997).

The remainder of this paper is organized as follows: Section 2 introduces the
nonlinear, multivariate and quasi-stationary stochastic state space model and the
discrete-time, multivariate measurement equation to be considered. Section 3 in-
troduces a transformation of some SDEs. In Section 4 the IEKF is considered in
the continuous-discrete time framework and linear systems are treated as an im-
portant special case. Section 5 presents a derivation of the quasi-likelihood func-
tion, and Section 6 presents some numerical aspects of a software implementation.
In Section 7 Monte Carlo simulation is used to examine the statistical properties
of the parameter estimates. Section 8 considers two financial applications where
level effects are clearly present. Finally, Section 9 concludes.

2 Nonlinear stochastic differential equations

Consider the nonlinear, multivariate, quasi-stationary Stochastic Differential Equa-
tion with eXternal inputs (SDEX) in the sense of Itˆo calculus

dXt = ft(Xt;ut; �)dt+ gt(Xt;ut; �)dWt; t0 � t � T; (1)

whereXt 2 Rn is a stochastic state vector,Xt0 is a stochastic initial condition
satisfyingE[kXt0k2] < 1, andut 2 Rd is a vector of deterministic inputs
(e.g. control signals), which is known for allt. It is assumed that the drift term

f : [t0; T ] � Rn � Rd 7! R
n and the diffusion termg : [t0; T ] � Rn � Rd 7!

R
n�m satisfy sufficient regularity conditions to ensure the existence of strong

solutions to (1), see (Øksendal, 1995). The process noise is modelled as a Wiener
processWt = (W 1

t ; : : : ;W
m
t )0 with incremental covarianceQt. For reasons of

identifiability it is assumed thatQt is the identity matrix. The parameter vector�

may be restricted to a subset� � Rp due to physical considerations. The real-
valued discrete-time observationsfYtkg are obtained at the sampling instants

t1 < : : : < tk < : : : < tN , whereN denotes the number of observations. Letl

denotedim(Ytk). The measurement equation is

Ytk = htk(Xtk ;utk; �) + etk; k = 1; : : : ; N (2)

whereh is a nonlinear function, which is assumed to be continuously differen-
tiable with respect toXt, andetk is a zero mean Gaussian white noise process
with covariance�tk . The stochastic entitiesXt0 ,Wt andetk are assumed to be
mutually independent for allt andtk.
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3 A multivariate transformation

In this section, a generalization of the transformation proposed by (Baadsgaard
et al., 1997) to a special class of multivariate SDEs is introduced. The trans-
formation has been proposed by (Kloeden and Platen, 1995) in order to obtain
closed-form solutions to some SDEs and applied by (A¨ıt-Sahalia, 1998) as a
means of obtaining a pdf that is closer to the normal pdf, but it also has an in-
teresting application in nonlinear filtering theory, because it alleviates the need
for computerintensive higher order filters.

Assume a bijective transformation ofXt given by

Zt = 	t(Xt) (3)

where	t : [t0; T ] �Rn 7! R
n and	t is C1;2, i.e. it is continuously differen-

tiable with respect tot and twice continuously differentiable with respect toXt

such that, by Itˆo’s multivariate formula, see e.g. (Øksendal, 1995), the SDE forZt

is given by

dZt = ~ft(Zt;ut; �)dt+Gt(ut; �)dWt (4)

where the diffusion term is independent of the stateZt. Thus it is assumed that
the dimension of the Wiener processWt is preserved by the transformation (3).
The inverse transformationXt = 	�1(Zt) should be applied to the measurement
equation (2).

REMARK 3.1.Note that (4) contains the same parameters as (1) and describes
a relation between the same input and output variables as the originating conti-
nuous-discrete state space model (1)–(2). H
ASSUMPTION 3.1.Assume that the diffusion terms are strictly nonzero, i.e.

gijt (Xt;ut; �) 6= 0; i = 1; : : : ; n; j = 1; : : : ;m (5)

N

ASSUMPTION 3.2.Assume that for eachi there exists only onegij as a function
of one and only one state variableX�(i)

t , where�(i) should be different foreach

i, i.e.

gijt (Xt;ut; �) = gijt (X
�(i)

t ;ut; �); i = 1; : : : ; n; j = 1; : : : ;m (6)
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Assume further thatgijt (X
�(i)

t ;ut; �) is bijective and that the reciprocal function

[gijt (x;ut; �)]
�1 is integrable with respect tox. N

Given these assumptions, we have the following theorem.

THEOREM 3.1.LetXt be a solution to (1). Then Assumptions 3.1 and 3.2 pro-
vide necessary and sufficient conditions for the existence of a transformation (3)
given by

 kt (X
�(i)

t ) =
Z
dx

gijt (x;ut; �)
���

x=X
�(i)

t

; k; i = 1; : : : ; n; j = 1; : : : ;m (7)

such that (4) is fulfilled.

Proof. Applying the multivariate Itˆo formula to (3) yields a new Itˆo SDE with the

kth componentZk
t , k = 1; : : : ; n, satisfying

dZk
t =

 
@ kt (Xt)

@t

+

nX
i=1

@ kt (Xt)

@xi

f it (Xt;ut; �)

+ 1
2

mX
j=1

nX
i1=1

nX
i2=1

@2 kt (Xt)

@xi1@xi2
gi1jt (Xt;ut; �)g

i2j
t (Xt;ut; �)

1
A dt

+

mX
j=1

nX
i=1

@ kt (Xt)

@xi

gijt (Xt;ut; �)dW
j
t (8)

To obtain a constant diffusion term (unity for reasons of parameter identifiability),
it immediately follows that the following should hold

@ k(Xt)

@xi

g
�(i)j

t (Xt;ut; �) = 1 and

@ k(Xt)

@xi

gijt (Xt;ut; �) = 0 (9)

for k; i = 1; : : : ; n; j = 1; : : : ;m; �(i) 6= i. Assumption 3.2 ensures that there
exists only oneX�(i)

t for each k. Under Assumption 3.1, Eq. (7) follows imme-
diately from (9). �

REMARK 3.2.The drift term~ft(Zt;ut; �) in the transformed system (4) is given
by the factor in front of thedt term in (8). Thus the transformation (3) may

6



introduce additional nonlinearities in the drift~f . The implications with respect to
parameter identifiability must be analyzed ineach particular case. An example is
given in Section 7. H

In the remainder of the paper, only multivariate SDEs without level effects are
considered, i.e. the diffusion term is denoted byGt(ut; �).

4 Nonlinear filtering

Let YN = [Y1; : : : ;YN ] denote the measurements up to and including timetN .
Further, letp = p(xtjYk) denote the conditional probability of the process being
in stateXt = xt at time t conditioned on the information setYk up to time

tk. Assuming thatXt is given as the solution to (1), the conditional distribution

p(xtjYk) may be found as the solution to the Kolmogorov partial differential
equation

@p
@t

= �
nX

i=1
@(pf i)

@xi

+ 1
2

nX
i=1

nX
j=1

@2(p(GQG0)ij)

@xi@xj

t 2 [tk; tk+1) (10)

From (10), it is possible, givenp(xtk jYk), which is assumed to exist and to be
continuously differentiable with respect tot and twice continuously differentiable
with respect toX, to determine the a priori distributionp(xtk+1 jYk) of the state
vector at timetk+1.

The a posteriori distribution of the state vectorp(xtk+1 jYk+1) at timetk+1, when
a new observationytk+1 has been acquired, follows from Bayes’ formula,

p(xtk+1 jYk+1) =

p(ytk+1 jxtk+1 ;Yk)p(xtk+1 jYk)

p(ytk+1 jYk)

(11)

Eqs. (10)-(11) yield the exact solution to the filtering problem provided thatp is
known. However, closed form solutions to (10)-(11) do rarely exist.

For linear systems driven by Wiener processes both the transition pdf and the sta-
tionary pdf are normal provided that the density of the initial valueXt0 is normal.
The Kalman filter provides the exact solution to the filtering problem (Jazwinski,
1970), because the mean and covariance of the state estimate^Xtjtk at timet given
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information up to timetk, t > tk,

^Xtjtk = EfXtjFkg (12)

Ptjtk = Ef(Xt � ^Xtjtk)(Xt � ^Xtjtk)
0jFkg (13)

completely characterize the normal distribution. Albeit the infinitesimal transition
pdf in the time interval[t; t + dt] is normal due to the properties of the Wiener
process, this does not hold for the transition pdfs between sampling instants for
nonlinear systems. However, Eqs. (12) and (13) describe the conditional mean
of the sample path and the dispersion around it, and by using these quantities to
parametrize a normal pdf these moments provide a reasonable approximation to

p under the assumptions thatp is unimodal and symmetric, i.e. the higher order
odd central moments are negligible, and thatp is centered around the mean, i.e.
higher order even central moments are negligible (Jazwinski, 1970).

4.1 The Extended Kalman Filter

For the nonlinear system (1) and (2), the Extended Kalman Filter (EKF) is used as
a first order approximative filter, i.e. the nonlinear system is approximated by the
first term of a Taylor expansion. No assumptions are made about the distribution
of the states and the observations in the following formulation of the EKF besides
those stated in the previous section.

THEOREM 4.1 (CONTINUOUS-DISCRETE EXTENDED K ALMAN FILTER ). For
the continuous-discrete time state space model (1) and (2) the linearized predic-
tion equations are

d ^Xtjtk

dt

= ft( ^Xtjtk;ut; �) (14)

dPtjtk

dt

= Ft( ^Xtjtk ;ut; �)Ptjtk +PtjtkF
0
t( ^Xtjtk ;ut; �)

+Gt(ut; �)QtG
0
t(ut; �) (15)

with initial conditions^Xkjtk andPkjtk, respectively, fort 2 [tk; tk+1).

When a new observation becomes available at timetk+1 the update is given by

^Xtk+1jtk+1 = ^Xtk+1jtk +Ktk+1�tk+1 (16)

Ptk+1jtk+1 = Ptk+1jtk

�Ktk+1Htk+1 ( ^Xtk+1jtk ;utk+1; �)Ptk+1jtk (17)
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where the mean and covariance of the one-step prediction errors are given by

�tk+1 = Ytk+1 � htk+1( ^Xtk+1jtk;utk+1; �) (18)

Rtk+1jtk = Htk+1 ( ^Xtk+1jtk ;utk+1; �)Ptk+1jtkH
0
tk+1(
^Xtk+1 jtk;utk+1 ; �)

+�tk+1 (19)

andFt andHtk+1 are given by the linearizations

Ft( ^Xtjtk ;ut; �) =

@f
@x

���
x=^Xtjtk

(20)

Htk+1( ^Xtk+1jtk ;utk+1; �) =

@h
@x

���
x= ^Xtk+1jtk

(21)

The Kalman gain is given by

Ktk+1 = Ptk+1jtkH
0
tk+1
( ^Xtk+1 jtk;utk+1 ; �)R
�1
tk+1jtk

(22)

Proof. See (Jazwinski, 1970). �

REMARK 4.1. If the nonlinearities in (1) vary fast compared to the sampling fre-
quency, the first order Taylor approximation applied in (14) may be too crude.H

4.2 The Iterated Extended Kalman Filter

In the EKF the evolution of the nonlinear system (1) in each sampling instant is
based on the state estimate at timetk, ^Xtkjtk. A better approximation is provided
by the Iterated Extended Kalman Filter (IEKF), which evaluates the linearized
version of (1) atr equidistant subsampling instants in each sampling interval

[tk; tk+1). In particular, for linear systems (1) with a nonlinear measurement
equation (2) the IEKF provides a good approximation (Jazwinski, 1970).

THEOREM 4.2 (CONTINUOUS-DISCRETE I TERATED EKF). Let �i denote
the “pseudo-state” at timet 2 [tk; tk+1). The Iterated Extended Kalman Filter
consists of Theorem 4.2 with (16) replaced by

�i+1 = ^Xtk+1jtk +Ktk+1(�i+1)[(Ytk+1 � htk+1(�i;ut; �)

� ~H( ^Xtk+1jtk � �i)] (23)
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where

~H =
@h

@x
��
x=�
i

(24)

andKtk+1 is given by (22). Starting with�1 = ^Xtk+1jtk and terminating with

�r = ^Xtk+1jtk+1 , Eq. (23) is iterated fori = 1; : : : ; r.

Proof. See (Jazwinski, 1970). �

4.3 Linear systems

Consider for a moment the linear, multivariate, time-varying stochastic differen-
tial equation

dXt = AtXtdt+Btutdt+GtdWt; X0 = Xt0 (25)

Ytk = CtkXtk +Dtkutk + etk ; k = 1; : : : ; N (26)

where then� n system matrixAt, then� d input-coupling matrixBt, thel� n

state measurement matrixCtk , the l � d transmission matrixDtk andGt are
assumed to be known up to the parameter vector�.

REMARK 4.2.This system may be obtained from the nonlinear system (1) and
the nonlinear measurement equation (2) using the linearizations (20) and (21)
at each sampling instant. The system should also be linearized with respect to

ut. H

The following well-known result is essential for the proposed estimation method,
because it provides a connection between the continuous-time and discrete-time
systems.

L EMMA 4.1.Let �k = tk+1 � tk denote the sampling time, and let^Xtk+1jtk =

EfXtk+1 jFtkg andPtk+1jtk = V fXtk+1 jFtkg denote the mean and covariance
of the predicted state estimate, respectively. Assume thatAt, Bt and�t =

GtQtG
0
t are constant during the sampling interval[tk; tk+1).

Assuming thatut is stepwise constant, i.e.ut = utk, t 2 [tk; tk+1), it holds that

^Xtk+1jtk = �tk
^Xtkjtk + �tkutk (27)

Ptk+1jtk = �tkPtkjtk�
0
tk +R

(1)
tk (28)

10



where

�tk = eAtk
�k (29)

�tk =

tk+1Z
tk

eAtk
(tk+�k�s)Btkds =

�kZ
0

eAtk
sBtkds (30)

R
(1)
tk =

�kZ
0

�s�tk�
0
sds; �s = eAtk

s (31)

Assuming instead thatut is linear in the sampling interval, i.e.

ut =
t� tk

�k

(utk+1 � utk) + utk; t 2 [tk; tk+1[ (32)

Then (27) is replaced by

^Xtk+1jtk = �tk
^Xtkjtk + �tkutk +�tk(utk+1 � utk) (33)

where�tk and�tk are given by (30) and

�tk =

�kZ
0

eAtk
sBtk
�k � s

�k

ds (34)

Proof. Follows directly by integrating (25) fromtk to tk+1 and taking expecta-
tions, see e.g. (̊Aström, 1970) or (Kloeden and Platen, 1995). �

Clearly the solution to (25) involves the exponential matrix and it may be infea-
sible to obtainAt, and henceforth� using indirect methods (e.g. by estimating�

and taking the natural logarithm). The inherent problems associated with indirect
parameter estimation methods are covered in (Haverkamp et al., 1997). In addi-
tion these methods do not allow for estimation of unobserved state variables, see
Section 5.1.

REMARK 4.3. In numerical work the exponential matrix may be computed using
the Pad´e approximation (Moler and van Loan, 1978). It is easily shown that the
Tustin approximationz = �(j!�k + 2)=(j!�k � 2) used in e.g. (Unbehauen
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and Rao, 1987; S¨oderström et al., 1997) corresponds to the first order (1,1) Pad´e
approximation ofz = ej!�k . In our work a Pad´e approximation of higher order
with repeated scaling and squaring is used as suggested by (Moler and van Loan,
1978). H

REMARK 4.4.Assuming thatAt in (25) is time-invariant and that the system is
equidistantly sampled, the exponential matrix in (30) need only to be computed
once, see also (Pedersen, 1994). In other cases, but still under the assumption
thatAt is approximately constant during the sample interval[tk; tk+1), it must be
computed at each sampling instanttk. H

5 Maximum likelihood method

The maximum likelihood method is based on an assumption of normality for the
innovations (18). The method is similar to the prediction error decomposition
method proposed by (Schweppe, 1965).

Given all the observationsYN , the likelihood function,L(�;YN ), is expressed as
the joint probability density ofYN provided that the parameters are known, i.e.

L(�;YN ) = p(YN j�) = p(yN jYN�1; �)p(YN�1j�)

=

NY
k=1

p(ykjYk�1; �)p(y0j�)

= ~L(�;YN jy0)p(y0j�) (35)

where successive applications of the ruleP (A\B) = P (AjB)P (B) is used to ex-
press the likelihood function as a product of conditional densities. Note that (35)
is expressed as the product of the conditional likelihood function~L(�;YN jy0)

and the probability density of the initial observationY0, p(y0j�), where the latter
is expressed in terms ofp(x0) such that the initial value of the stateX0 may be
estimated.

REMARK 5.1.Prior information about the parameters�, if any, can be included
in (35) by multiplying the likelihood function by the prior distribution�(�) of
the parameters, i.e. the parameters are considered as stochastic variables rather
than constants. This Bayesian approach gives rise to various possibilities for
point estimates of� e.g. the Maximum A Posteriori (MAP) estimate proposed
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by (Goodwin and Payne, 1977), which is obtained as the mode of the posterior
pdf. H

The innovations (18) are independent stochastic variables with zero mean and
pdf p(�tk(�)) such that the conditional likelihood function,~L in (35), may be
expressed in terms of the prediction error decomposition, i.e.

~L(�;YN jy0) =
NY

k=1
p(�tk(�)) (36)

Assuming that the innovations are normal with zero mean and covariance matrix

Rtkjtk�1

, it is convenient to consider the logarithm of (36), i.e.

l(�) = � log ~L(�;YN jy0)

=

1
2

NX
k=1

�
�0tkR
�1
tkjtk�1
�tk + logdetRtkjtk�1 + l log 2�

�

(37)

such that the maximum likelihood (ML) estimate is determined by minimizing
the negative log-likelihood function, i.e.

^� = arg min

�2�
l(�) (38)

An estimate of the uncertainty of the parameters is obtained using the fact that the
ML-estimator is asymptotically normal with mean� and covariance� given by
the lower bound of the Cramer-Rao inequality, i.e.

� = H�1 (39)

where the Hessian matrixH = fhijg is given by

fhijg = �E
�
@2l(�)

@�i@�j
�

(40)

An estimate ofH is obtained by equating the observed value with its expectation
and applying

fhijg � �
�
@2l(�)

@�i@�j
�

�
�
�
�
�=^�

(41)
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such that the covariance matrix of the estimated parameter vector is readily avail-
able.

For linear systems,p is normal such that an exact maximum likelihood method
is readily obtained. For nonlinear systems, the pdfp implied by the model (1)
is not normal. However, under the assumption thatp is approximately normal,
the first order filters described in Section 4 still applies. This assumption may be
tested using standard statistical tests for Gaussianity. If these tests are rejected
at all reasonable levels of significance, then the method can be considered as a
prediction error method (Klimko and Nelson, 1978; Ljung, 1987).

5.1 Related work

Extensive literature exists on filtering and estimation in the discrete-discrete time
framework, where the model (1) is also formulated in discrete-time, see e.g.
(Söderström and Stoica, 1989; Ljung, 1987; Harvey, 1989; Tanizaki, 1996). Sim-
ilarly for the continuous-continuous framework, where (2) is also formulated as a
SDE, see e.g. (Øksendal, 1995; Pugachev and Sinitsyn, 1987). The latter frame-
work is useful for design purposes, but it is argued that for filtering and estimation
it is inappropriate.

In recent years, a large variety of indirect orthogonal basis function methods
have been proposed for stochastic state space models such that well-known LS-
estimation methods may be applied (Young, 1981; Sagara and Zhao, 1990; Unbe-
hauen and Rao, 1997). The Poisson moment functionals (PMF) method retain the
physical interpretation of the CT parameters and avoids direct derivative measure-
ments, which tends to accentuate the measurement noise, but it is only applicable
for models that are linear in the parameters (Unbehauen and Rao, 1990). This also
applies for Laguerre functions and Hartley modulating functions (Unbehauen and
Rao, 1997). PMF suppress low levels of measurement noise by low-pass filtering,
but it cannot cope with both process and measurement noise. The latter also ap-
plies for state-variable filtering methods (Haverkamp et al., 1997). For high levels
of noise instrumental variables (IV) may be used to remove the bias of the PMF
method (Unbehauen and Rao, 1990).

The Indirect Prediction Error Method (IPEM), proposed by (S¨oderström, Stoica
and Friedlander, 1991), is difficult to analyze with respect to identifiability and
infeasible for unevenly sampled data (Bigi, S¨oderström and Carlsson, 1994). In
particular, the concept of embedding, where the CT parameters are obtained by
taking the logarithm of the DT transition matrix�k in (30), poses at least one re-
striction on the applicability of IPEM, i.e. the eigenvalues of�k must be positive.
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In addition the transition matrix is only an approximation for nonlinear systems.

Forward or backward Euler discretization schemes of the CT model are consid-
ered in (Bigi et al., 1994), where they are shown to yield biased estimates, see
also (Söderström, 1999). An IV bias-correction method is suggested in (S¨oderström
et al., 1997). Discretization of SDEs is in general complicated due to Itˆo’s Lemma
and conventional discretization methods may converge to a SDE in the FS sense as
opposed to the appropriate Itˆo sense (Kloeden and Platen, 1995), so it is difficult to
extend classical discretization based methods to cover SDE models. See (Nielsen,
Madsen and Young, 1999) for an extensive overview of other estimation methods,
which, mostly, considers stochastic state space systems modelled by SDEs.

The Extended Kalman Filter Parameter Estimator (EKFPE) may be used in a
continuous-discrete time framework, but it is shown in (Wiberg and DeWolf,
1993) that for CT-systems it fails, with probability one, to converge to the true
values of the parameters in a system whose state noise covariance is unknown.
For DT systems, a similar result has been shown by (Ljung, 1979).

We argue that the method for direct estimation of embedded parameters of the
CT model suggested in the present paper solves most of the problems associated
with the other methods in the literature partially due to a proper mathematical
specification of the system noise in terms of Wiener processes. The proposed
estimation method1 has been applied to stochastic modelling of environmental
systems (Jacobsen and Madsen, 1996; Jacobsen, Madsen and Harremo¨es, 1996),
hydraulic robots (Schmidt, Madsen, Zhou and Hansen, 1997), heat dynamics
of buildings (Madsen and Holst, 1995; Nielsen and Madsen, 1996), bond pric-
ing (Nielsen, 1996) and interest rate modelling (Baadsgaard et al., 1997).

6 Software implementation

The maximum likelihood procedure described in the previous section is imple-
mented in a software package called CTLSM2. The package contains support for
preprocessing (or filtering) of the observations and input variables, constraints on
the parameter space� during optimization and some postprocessing (or model
verification) tools.

1An implementation of the proposed method written in Fortran 77 may be obtainedupon request
from the authors.

2CTLSM is an acronym for Continuous-Time Linear Stochastic Modelling.
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6.1 Constrained optimization

A quasi-Newton method based on the Broyden-Fletcher-Goldfarb-Shanno(BFGS)
updating formula for a secant approximation of the Hessian matrix (40) and soft
line search is used for optimizing the likelihood function (37). The first or-
der derivatives of (37) are approximated by finite differences (Dennis and Schn-
abel, 1983). The minimization algorithm is an extended and modified version
of the subroutine VA13CD from the Harwell Library (1989), see (Melgaard and
Madsen, 1993).

Although the exact parameter values are not known a priori, the parameter space
might be constrained due to prior knowledge of the dynamics of the system. To
implement simple constraints on the form�min

i < �i < �max

i the optimization is
made with respect to a transformation of the original parameters

�0i = log
 
�i � �min

i

�max

i � �i
!

i = 1; : : : ; p

Furthermore, a penalty function given by the inverse Lagrange relaxation

P (�; �; �min; �max) = �
 
pX

i=1

j�min

i j

�i � �min

i

+

pX
i=1

j�max

i j

�max

i � �i
!

(42)

is added to the likelihood function (37). For proper choices of�, �min

i and�max

i ,
Eq. (42) has little influence on the estimation when� is well within the constraints,
but it will force the gradient to increase once�i moves towards the imposed con-
straints.

6.2 Robustness in the estimation

The log-likelihood function (37) is approximately a quadratic loss function in�k,
which implies that the obtained estimates are greatly influenced by outliers. To
decrease the sensitivity to outliers (or increase the robustness of the estimation)
the quadratic term in�k, i.e.

etk = �0tkR
�1
tkjtk�1
�tk (43)

is replaced by the function

F (etk) =
�
etk for etk < c

c(2
p
etk � c) for etk � c

(44)
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which is quadratic in�tk for smalletk and linear in�tk for largeetk . Numerical
studies show thatc = 3 is a reasonable choice, but the choice may be case-
dependent.

6.3 Alternative implementations

It is outside the scope of the present paper to discuss all available software pack-
ages, but some comments will be put forth in this Section. Emphasis will be
placed on the two software packages,IdKit described in (Graebe, 1990b), see (Bohlin
and Graebe, 1995) for additional references and applications, andCTLSM. Both
packages may be applied to the transformed model proposed in Section 3.

IdKit andCTLSMare both based on a Prediction Error Decomposition (PED) that
provides the residuals for which a likelihood function is specified assuming that
the residuals are Gaussian. The residuals are obtained using the KF and the IEKF,
respectively, in the following way:IdKit computes a deterministic reference tra-
jectory by numerical integration of (1) under the assumption that the diffusion
is zero and applies the KF to a linear perturbation model (linearized about the
reference trajectory) to obtain also the covariances, whereasCTLSMsolves a lin-
earized version of (1) by means of the exponential matrix using the IEKF. The
perturbation approach used inIdKit is only feasible provided that the level of the
process noise is sufficiently “small”, cf. (Graebe, 1990a). This assumption that
may be too restrictive for SDEs with level effects is not made inCTLSMwhich is
based entirely on a stochastic model specification and implementation of the filter
as argued in (Mortensen, 1969). To decrease the sensitivity of outliersCTLSM
uses a transformation of the residuals in the optimization.

Both packages allows for imposing constraints on the parameters. InCTLSM
the mean and covariance of a Gaussian a priori pdf of the parameters may be
specified. In the optimizationIdKit uses a finite difference approximation to the
derivative of the residuals wrt. the parameters and uses that to compute the gradi-
ent and the Hessian, and finds the optimum by Gauss-Newton iterations.CTLSM
computes finite difference approximations to the gradient and the Hessian, and
a quasi-Newton method based on the BFGS updating formula for a secant ap-
proximation of the Hessian and soft-line search to find the optimum. For model
validationIdKit uses the weighted square of scores, whileCTLSMcomputes the
portmanteau-lack-of-fit test statistic, the autocorrelation function of the residu-
als, crosscorrelation functions between the residuals and the input variables and a
cumulative residual periodogram.

Both packages rely on a large amount ofprovided application-independentcode
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and a small amount ofapplication-dependentcode. However,IdKit and the as-
sociated user’s shell,IKUS, constitutes a more modern environment for system
identification.

7 A simulation study

In this section, the statistical properties of the parameter estimation method is
examined using Monte Carlo simulation of a nonlinear system.

Consider a nonlinear system describing the temporal oscillations of a population
of predators and their prey in a localized geographic region, where the prey pop-
ulation is denoted byX1

t and the predator population byX2
t . It is assumed that

the growth rate of prey, in the absence of predators, is�1X
1
t , while the predator

multiplication rate is�3X1
tX

2
t . Further, it is assumed that the loss rate of prey

is proportional to the numbers of prey and predators, i.e. loss rate of prey equals

��2X1
tX

2
t , while the loss rate of predators equals their death rate��4X2
t . These

assumptions lead to the deterministic Lotka-Volterra equations, but assuming that
the rate of change of eachpopulation is further influenced by an additive stochas-
tic term the interaction is described by the stochastic Lotka-Volterra equations,
i.e.

dX1
t = X1
t (�1 � �2X

2
t )dt+ �1dW

1
t (45)
dX2
t = X2
t (�3X

1
t � �4)dt+ �2dW

2
t (46)

where�i, i = 1; 2; 3; 4; and�1; �2 are positive constants, andW 1
t andW 2
t are

assumed to be mutually uncorrelated standard Wiener processes. The diffusion
terms represent the effect of other factors not included in the model, such as other
predators in the food chain and weather conditions.

It is assumed that the populations are measured at discrete time instants

Y 1
tk = X1
tk + e1tk (47)

Y 2
tk = X2
tk + e2tk (48)

wheree1tk ande2tk are mutually uncorrelated zero mean normal white noise pro-
cesses with variance�21;m and�22;m, respectively.

For the purpose of making a statistical evaluation of the estimation method 50
sequences of stochastic independent realizations of the system were simulated
using an Euler discretization scheme (Kloeden and Platen, 1995). Each sequence
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Figure 1: Time series plot of the populationsX1
t andX2
t for the stochastic Lotka-

Volterra system (45)-(46).

consists of 500 observations. The chosen parameters were�1 = 10, �2 = 1,

�3 = 2, �4 = 10, �21 = �22 = 0:3, �21;m = �22;m = 0:03, the sampling time,

Ts = 0:005, and the deterministic initial populations(x10; x
2
0) = (2; 5). The

time series of the measured populations of one of these sequences are shown in
Figure 1. It is clear that the nonlinear system (45)-(46) exhibits selfsustained
oscillations. The estimation results are provided in Table 1.

7.1 Statistical tests

The asymptotic normality of the parameter estimates makes it possible to do statis-
tical inference. In particular for simulated data, a statistical test for unbiasedness
and a test for correct estimation of the variances of the parameter estimates may
be constructed as follows.

In order to verify if the variance of the parameter estimates provided by the pro-
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Parameter xsim �X s2x

�s2 F -stat. jtj-stat.

�1 10.0000 9.9850 8.568e-3 9.589e-3 0.8936 1.151

�2 1.0000 0.9990 6.453e-5 8.267e-5 0.7805 0.914

�3 2.0000 2.0012 1.253e-4 1.095e-4 1.1441 0.758

�4 10.0000 10.0010 4.756e-3 4.481e-3 1.0614 1.446

x10 2.0000 2.0066 5.426e-3 5.888e-3 0.9215 0.630

x20 5.0000 5.0175 7.893e-3 5.902e-3 1.3373 1.393

�21 0.3000 0.2909 2.883e-3 3.529e-3 0.8169 1.196

�22 0.3000 0.2896 9.011e-3 7.981e-3 1.1290 0.773

�21;m 0.0300 0.02966 3.229e-6 3.855e-6 0.8377 1.346

�22;m 0.0300 0.03047 4.593e-6 4.184e-6 1.0978 1.534

Table 1: Results from estimation of thene = 50 series from the stochastic Lotka-
Volterra system. The columns of the table are:xsim, the values used for the
simulation, �X , the mean of the estimated values,s2x is the empirical variance of
the estimated parameters,�s2 is the mean of the estimated variance of the param-
eters,F -stat. is aF -distributed statistic given byZF = s2x=

�s2 and jtj-stat. is a

t-distributed statistic given byZt = j �X � xsimj=(sxpne).

posed method is equal to the empirical variance of the estimates, one may wish to
test the hypothesis

H01 : s
2
x = �s2 against H11 : s

2
x 6= �s2

wheres2x is the empirical variance of the estimated parameters and�s2 is the mean
of the estimated variance of the parameters. TheF -statistic under the null is
given byz = s2x=

�s2, and with a 10% level of significance the critical set isfz <

0:70 ^ z > 1:35g. It is seen from Table 1 thatH01 cannot be rejected for any
parameter on the chosen level. This indicates that the method provides correct
estimates of the variance of the parameter estimates.

Another test is performed in order to examine if the estimated parameters are
unbiased. The following hypotheses is tested

H02 : �X = xsim against H12 : �X 6= xsim

UnderH02 the distribution of the test statistic isZt � t(49). The critical set is

fz > t(49)1��=2g on level�. For� = 10%, the critical set isfjzj > 2:0g. Thus,
from Table 1, it follows thatH02 cannot be rejected for any of the parameters on
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the chosen level. This indicates that the method provides correct estimates of the
parameters.

As an illustration of the transformation proposed in Section 3, assume that the
growth rates are subject to uncertainty which depends on the current population
then level effects are introduced in the model (45)–(46), i.e.

dX1
t = X1
t (�1 � �2X

2
t )dt+ �1

q
X1
t dW

1
t (49)

dX2
t = X2
t (�3X

1
t � �4)dt+ �2

q
X2
t dW

2
t (50)

where�i, i = 1; 2; 3; 4; and�1; �2 are positive constants, andW 1
t andW 2
t are

mutually uncorrelated Wiener processes as before. The measurements are still
modelled by (47)–(48).

For this system the transformations

 it(Xt) =  it(X
i
t) =

Z
dxp

x
���x=Xi

t

= 2
q
Xi
t ; i = 1; 2

yield the transformed model

dZ1
t = 1
2

�
�1Z
1
t � 1
4�2Z

1
t (Z

2
t )

2 � (Z1
t )

�1
�
dt+ dW 1
t (51)

dZ2
t = 1
2

�
1
4�3(Z

2
t )

2Z2
t � �4Z

2
t � (Z2
t )

�1
�
dt+ dW 2
t (52)

Y 1
tk = 1
4 (Z

1
tk)

2 + e1tk (53)

Y 2
tk = 1
4 (Z

2
tk)

2 + e2tk (54)

Note that the transformed model (51)–(54) without state-dependent diffusion terms
contains exactly the same parameters as the original model (47)–(50), and that the
transformed model describes also exactly the same input-output relations. For the
considered case, however, the input comes only from the Wiener processes.

REMARK 7.1. If the diffusion term in e.g. (49) is replaced by e.g.�1
p
X1
tX

2
t

due to uncertainties in e.g. the interaction parameter�2, then there does not exist
a transformation, because this diffusion term constitutes a violation of Assump-
tion 3.2. In this case higher order filters should be used (Jazwinski, 1970; May-
beck, 1982), see (Nielsen, Vestergaard and Madsen, 2000)(PaperC herein) for an
example. H
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8 Empirical work

In this section a financial application of the proposed transformation and estima-
tion method is given using simulated and real data. Some comparisons are made
with a second order filter (Maybeck, 1982). Finally, a limitation of the transfor-
mation method is illustrated.

8.1 Second order filters

For easy reference and comparison the derivation of a second order filter is out-
lined. The presentation follows (Maybeck, 1982; Nielsen, Vestergaard and Mad-
sen, 1999).

Consider a univariate, homogeneous SDE given as the solution to (1) withn =

m = 1 and no inputs, i.e.

dXt = f(Xt)dt+ G(Xt)dWt (55)

Introduce the notationEkf�g = Ef�jYkg for the conditional mean. The prop-
agation of the conditional mean and variance, respectively, in the time interval

t 2 [ti�1; ti) may be shown to satisfy

d ^Xtjti�1

dt

= Ei�1[f(Xt)] (56)
dPtjti�1

dt

= 2Ei�1[f(Xt)Xt] +Ei�1[G
2(Xt)]

�2Ei�1[f(Xt)]Ei�1[Xt] (57)

REMARK 8.1.Note that these are not ordinary differential equations, because
the densityp is needed to compute the expected valuesEi�1[�]. Unfortunately
a closed form expression forp is rarely available. Informally, the problem is
that (55) provides a very local description of the evolution of the state, and that
the mapping from (55) to the conditional mean and the conditional variance of
the state is not straightforward for nonnormal processes. However, it is possible
to derive an approximate set of prediction and updating equations that have a
structure similar to the ordinary Kalman filter (Maybeck, 1982). H
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By performing a second order Taylor expansion about the current estimate^Xtjtk�1 ,
the following prediction equations are obtained

d ^Xtjtk�1

dt

= f( ^Xtjtk�1 ) +
Ptjtk�1

2

@2f( ^Xtjtk�1
)

@X2
t

(58)

dPtjtk�1

dt

= 2
@f( ^Xtjtk�1 )

@Xt

Ptjtk�1
+G( ^Xtjtk�1
)2

+
 
@G( ^Xtjtk�1
)

@Xt

!2
Ptjtk�1

+Ptjtk�1
G( ^Xtjtk�1
)

@2G( ^Xtjtk�1
)

@X2
t

+
3

4
P 2
tjtk�1

 
@2G( ^Xtjtk�1
)

@X2
t

!2

(59)

where it has been assumed that the transition density is sufficiently close to the
normal density to ensure that the third and higher order odd central moments are
essentially zero, that the fourth central moment may be expressed in terms of the
variance, and that the sixth and higher order even central moments are negligible,
see (Maybeck, 1982) for the technical details.

The updating equations are

^Xtkjtk = ^Xtkjtk�1 +K(Ztk � ^Xtkjtk�1) (60)

Ptkjtk = (1�K)Ptkjtk�1 (61)

and the Kalman gain is

K =

Ptkjtk�1

Ptkjtk�1 + �2"

(62)

Equations (58)-(62) constitute the modified truncated second order filter (Maybeck,
1982).

8.2 Short term interest rates

To compare the transformation approach using the EKF with a truncated second
order filter, a model of short term interest rates is considered. A univariate SDE
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is considered for clarity. In financial econometrics, the following model is often
considered, see e.g. (Chan, Karolyi, Longstaff and Sanders, 1992),

dXt = �(� �Xt)dt+ �X

t dWt (63)

whereXt is the continuous-time short term interest rate. Many of the term struc-
ture models found in the literature may be nested within this model class by im-
posing appropriate parameter constraints, see (Chan et al., 1992) for a survey. For

� � 0,� < 0, Eq. (63) may be used to model biological growth in a single-species
population with unlimited ressources.

By inserting the diffusion term from (63) in the transformation (7) and applying
Itô’s Lemma the following transformed process is obtained

dZt =
�

��f(1 � 
)Ztg



�1 � �(1� 
)Zt � 
�2

2(1� 
)Zt
�

dt+ �dWt (64)

Applying the inverse transformation to the measurement equation

Ytk = Xtk + etk

yields the transformed measurement equation

Ytk = f(1� 
)Ztg
1
1�
 + etk (65)

For the model (63) the prediction equations (58)–(59) takes the form

d ^Xtjtk�1

dt

= �(� � ^Xtjtk�1) (66)

dPtjtk�1

dt

= (�2�+ �2
(2
 � 1) ^X2
�2

tjtk�1
)Ptjtk�1 + �2 ^X2

tjtk�1

(67)

The solution to (66) is

^Xtjtk�1 = � + e��t( ^Xtk�1jtk�1 � �) (68)

which shows that, for� > 0, � is the long-term mean. Inserting this solution into
(67) yields a linear first order ODE of the form

dPtjtk�1

dt

= �'1(t)Ptjtk�1 + '2(t) (69)
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where

'1(t) = 2�� �2
(2
 � 1)(� + e��t( ^Xtk�1jtk�1
� �))2
�2 (70)

'2(t) = �2(� + e��t( ^Xtk�1jtk�1
� �))2
 (71)

which cannot readily be solved in closed-form. However, if� is close to zero, the
change in the predicted mean (68) is small, the two ODEs may be uncoupled by
replacing the process^Xtjtk�1 with a value of the conditional mean in the sampling
interval�t 2 [0; �k]. For �t = �k, the predicted mean is inserted and the ODE may
be solved, i.e.

Ptkjtk�1

= �'2(�k)

'1(�k)
+ e'1(�k)�k

�
Ptk�1jtk�1 +

'2(�k)

'1(�k)
�

(72)

The updating equations are

^Xtkjtk = ^Xtkjtk�1 +
Ptkjtk�1
(Ytk � ^Xtkjtk�1
)

Ptkjtk�1 + �2e

(73)

Ptkjtk =

�2e

Ptkjtk�1 + �2e

(74)

A closed-form solution to the prediction equations obviously leads to less compu-
tation time, and simulation studies (not reported here) confirms that this approxi-
mation does not significantly affect the parameter estimates.

8.2.1 A Monte Carlo study

The model (63) is solved numerically using the Euler discretization scheme (Kloeden
and Platen, 1995). Each sampling interval[tk�1; tk) is divided intoS = 200

small time steps of length� = 1=S and independentN(0;�) distributed ran-
dom variables�Wtk�1+s�, s = 1; : : : ; S � 1, are simulated. A discrete time
approximation to (63) is then generated by the Euler scheme, i.e.

~Xtk�1+s� = ~Xtk�1+(s�1)� + �(� � ~Xtk�1+(s�1)�)�

+� ~X

tk�1+(s�1)�
�Wtk�1+s� (75)

Using this scheme 50 stochastic independent time series consisting each ofN =

2000 observations are generated.
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Extended Kalman filter with transformation
Parameter True values Mean t-value F -value

� 0.0250 0.0261 1.4409 0.9862

� 10.0000 10.1700 2.5767 0.7881

�2 0.0100 0.0099 -0.1314 0.9922


 0.7500 0.7515 0.1945 0.8150

�2e 0.0500 0.0562 4.9328 1.1299

Truncated Second order filter
Parameter True values Mean t-value F -value

� 0.0250 0.0263 1.7078 0.9467

� 10.0000 10.1680 2.5468 1.2039

�2 0.0100 0.0111 1.3518 0.6872


 0.7500 0.7508 0.0633 0.8984

�2e 0.0500 0.0482 -1.3724 0.9624

Table 2: Results for 50 sample sequences from the short rate model (63) with
large variations.

In Tables 2 and 3 the estimation results for two different parameter sets in (63) for
the EKF and the truncated second order filter are shown. Table 2 shows the results
for a model with large variations, whereas the parameters in Table 3 represents a
model with less variation. In each table the results are listed in three columns. In
the first column the mean of the estimated values are given. In the second column
the t-statistics given by

p
n(�x � xsim)=�x is stated, wheren is the number of

simulated series,xsim is the true value and�x is the empirical standard deviation
of the estimated parameters. TheF -statistics are listed in the third column. Thet-
values in Table 2 show that the four parameters in (63) are estimated consistently
except for the long-term mean�, which is overestimated for both methods. With
respect to�2e the transformation approach gives a biased estimate, contrary to the
second order filter. This is most likely due to the highly nonlinear measurement
equation caused by the transformation.

For the estimates in Table 3, the parameter� becomes biased for both methods.
Similar simulation studies in (Baillie, 1996) show that this bias frequently occur
when the data do not excite the model sufficiently well. However, due to the
fact the variations in the data are small, the two diffusion parameters�2 and


become almost perfectly correlated, which obviously gives rise to some estimation
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Extended Kalman filter with transformation
Parameter True values Mean t-value F -value

� 0.0250 0.0272 3.0053 0.8707

� 10.0000 9.9778 -0.6862 1.4721

�2 0.0500 0.0712 2.1411 0.8816


 0.5000 0.5332 0.9866 0.8210

�2e 0.0500 0.0518 4.4624 1.0029

Truncated Second order filter
Parameter True values Mean t-value F -value

� 0.0250 0.0272 2.9910 1.1234

� 10.0000 9.9763 -0.7212 0.6715

�2 0.0500 0.0296 2.3626 0.6217


 0.5000 0.5230 0.4348 0.7644

�2e 0.0500 0.0497 -0.5570 1.0642

Table 3: Results for 50 sample sequences from the short rate model (63) with
small variations.

problems. Again it is seen that the measurement noise becomes biased when the
EKF is applied.

REMARK 8.2.The complicated relationship between the choice of sampling time
and identification of parameters in the drift term in discretely, partially observed
SDEs is largely an unsolved problem, see e.g. (Nielsen, Madsen and Young,
1999). H

8.2.2 An empirical study

A data set consisting of 2155 weekly observations3 of the annualised yield of
the 3-month US Treasury Bills covering the time period January 1954 to April
1995. No provisions are made for holiday and weekend effects. The sampling
time is 1/50 corresponding roughly to weekly observations and annualised model
parameters. The results in Table 4 show that the two methods give almost identical
parameter estimates except for�. For 12 < 
 < 1, � is the long-term mean ofXt.

3The data was kindly provided by Jesper Lund. Any errors in the data set are our own responsibil-
ity.
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EKF 0:1183

(0:069)

6:3098

(2:333)

0:1136

(0:014)

7:0173

(2:371)

0:8486

(0:032)
TS 0:1066

(0:070)

6:9181

(2:955)

0:1307

(0:013)

6:8943

(2:290)

0:8297

(0:025)

Table 4: Estimation results of the 3-month U.S. Treasury-Bills yield with the
Extended Kalman Filter (EKF) and the Truncated Second order filter (TS). The
standard errors are shown in parenthesis.

The standard errors of the estimates of� are rather large, see Remark 8.2, but the
estimate suggests an annual mean interest rate of 6.3-6.9%. The estimates of


clearly suggest the presence of a level effect; a result that is consistent with other
empirical findings4.

It might be argued that a 40 years period covers different kinds of monetary
regimes, and hence that the parameters in the model considered should be al-
lowed to be time-dependent. For example in the period from October 1979 to
October 1982 the Federal Reserve had a monetary targeting policy as opposed to
an interest rate targeting policy, which caused an increase in the volatility. This
topic is left for future research.

8.3 Stochastic volatility models

Another recent application of thenonlinear filtering approach is univariatestochas-
tic volatility models,

dXt = �Xtdt+ �tXtdW
1
t ; Xt0 = X0 (76)

whereXt denote the price of a stock at timet, � > 0 is therate-of-return, �t is
thestochastic volatilityandW 1

t is a Wiener process. The famous Black-Scholes
model (Black and Scholes, 1973) is obtained for�t = �, i.e. constant volatility.
A univariate model with�t = �X
�1

t for which the transformation (63) is appli-
cable is considered in (Nielsen, Vestergaard and Madsen, 1999). This and other
studies show that a SDE should be specified for�t in order to model the dynamics

4Recent research (Lind, 1997) has shown that the interpretation of the parameters in (63) is not as
clear as suggested in e.g. (Chan et al., 1992), i.e. the interpretation of the parameter� as the long-term
mean actually depends on
 in a complicated way.
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of stock prices satisfactorily,

d (�t) = a(�t)dt+ b(�t)dW
2
t (77)

where (�t) is some mapping of�t, a(�) andb2(�t) is the instantaneous mean
and variance, respectively, of the stochastic volatility (these functions should be
identified from the data), and(W 1

t ;W
2
t ) are correlated Wiener processes with cor-

relation coefficient�. This generalization is considered in (Nielsen et al., 2000),
see also the references therein. However the transformation proposed in Section 3
approach is not applicable if�t is described by the SDE (77), see Remark 7.1.

9 Conclusion

An approximate maximum likelihood method for direct estimation of embedded
parameters in some nonlinear stochastic differential equations from discrete input-
output data encumbered with noise have been developed. For a limited class of
SDEs with level effects a transformation is proposed such that first order filters
like the IEKF may be used to obtain an approximate solution to the continuous-
discrete filtering problem. Hence the numerical problems that are most often
associated with higher order filters are avoided, but at the cost of a more compli-
cated drift term and measurement equation. For the transformation to exist, some
restrictions must be imposed on the diffusion term in the model specification. In
addition to these restrictions, it is also recommendable to parameterize the diffu-
sion term such that a likelihood ratio test may be carried out as a means of testing
for a statistically significant level effect. The method is evaluated using statistical
tests by considering a nonlinear predator-prey system and by using Monte Carlo
simulation. It is stressed that the method has already been used for successful
identification of a number of physical, financial and technical nonlinear systems.
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