
Testing branch-and-bound methods for global

optimization

Kaj Madsen

Julius �Zilinskas�

May 26, 2000

Abstract

This report presents results of some experiments with two codes im-

plementing attraction based branch-and-bound global optimization

methods: A non-deterministic method using real arithmetic, and a

deterministic interval arithmetic method. The domain of the opti-

mization is a compact right parallelepiped in <n, parallel to the coor-

dinate axes.

Traditional mathematical test functions as well as two practical prob-

lems were used for the testing.

�Department of Informatics, Kaunas University of Technology, Studentu 50-214b, Kau-
nas, Lithuania. (jzil@dsplab.ktu.lt)

1

1 Introduction

The idea of using interval arithmetic for global optimization has been inves-
tigated by many authors. A recent review is presented, e.g. in [3]. Besides of
many advantages interval methods have also some disadvantages as discussed
for instance in [8]. The last paper proposes to use a subdivision strategy of
the feasible region which is similar to that used in interval methods. However
the subdivision strategy is based on information from real arithmetic calcu-
lations only, so the need of applying interval arithmetic is avoided. Thus
the method has a much broader �eld of applications than the corresponding
interval methods, including problems with a "black box" calculation of the
objective function. On the other hand the reliability of the interval method
is lost.

In this report we compare two methods for solving the following opti-
mization problem: Find the global minimum of a smooth function f ,

f� = min ff(x) j x 2 Dg (1)

as well as the set of points for which it is attained,

X� = fx 2 D j f(x) = f�g (2)

where D is a compact right parallelepiped in <n, parallel to the coordinate
axes. Two codes implementing the methods have been tested using a set of
traditional mathematical test functions and two practical problems. The �rst
code (which is denoted by StoGO) is a C++ implementation of the method
proposed in [9] (inspired by the implementations of [11] and [2]), whereas
the interval code (denoted by IntGO) is the C++ implementation [7] of
the method of Jansson and Kn�uppel described in [5]. The latter method
involves combination of local (real arithmetic) searches, branch-and-bound
techniques and interval arithmetic.

2 Test functions

Test functions with di�erent dimensions and di�erent numbers of local and
global minimizers were used in the experiments. Apart from the last prob-
lem, denoted by BoneGrowth, all test problems are know from the global
optimization literature. The dimensions and the numbers of minimizers of

2

Function Dimension Number of Number of
local min. global min.

Rosenbrock 2 1 1
McCormic 2 1 1
Box&Betts 3 1 1
Paviani 10 1 1
Gen Rosenbrock 30 1 1

Gold&Price 2 4 1
Shekel 5 4 5 1
Shekel 7 4 7 1
Shekel 10 4 10 1
Levy 4 4 71000 1
Levy 5 5 105 1
Levy 6 6 106 1
Levy 7 7 108 1
Griewank 10 103 1

Cola 17 ? 1
Growth 12 ? ?

Six Hump Camel 2 6 2
Branin 2 23 5
Shubert 2 400 9
Hansen 2 760 9

Table 1: The dimensions and the numbers of local and global minimizers of test functions.

test functions are shown in Table 1 where the problems are divided into the
categories: 1 local minimizer; 1 global minimizer and a few local; 1 global
minimizer and many local; a few global minimizers; practical problems.

The �rst practical problem, denoted by Cola, is the MDS problem which
is discussed in [10]; the data used in this test correspond to the classical
"Cola testing" problem. The number of variables is 17. There are many
local minimizers with function values close to the global minimum, see [10].
The second practical problem is given in [1]. It is related to a linear growth
model of the human mandible (the lower jar). The dimension of this problem
is 12 and there are many local minimizers.

3

Detailed descriptions of the test problems are given in Appendix A. C++
de�nitions of the test problems (and also of the StoGO program) can be found
in [4].

3 Criteria of e�ciency

The main criteria of e�ciency of global optimization algorithms are the num-
bers of calls of the objective function and perhaps its gradient, and the cal-
culation time of the optimization. The number of calls is used when the
objective function is expected to be "expensive", i.e its calculation requires
more time than the auxiliary calculations by the optimization algorithm. In
case of the contrary relation, the calculation time is an important criterion.
In this report we use the numbers of function calls as e�ciency criterion.

Comparison of two algorithms with respect to function calls of the overall
optimization is well grounded when the stopping conditions are the same.
For StoGO the stopping condition is the time limit since it can normally not
be detected if all global minimizers have been found. For IntGO, however,
the calculations are normally stopped when all global minimizers have been
found, and it has been justi�ed that there are no more. Because of this
di�erence in stopping conditions we chose to use the numbers of calls needed
to �nd the �rst and the last global minimizer, respectively, as the criterion
of e�ciency for both algorithms.

For StoGO the criteria of e�ciency are the number of objective func-
tion calls (Nrf) and the number of gradient calls (Nrg). If the gradient is
expressed analytically, then the gradient call may cost the same as the objec-
tive function in some cases, in other cases up to n times a call of calls of the
objective function. If the gradient is evaluated using automatic di�erentia-
tion the gradient call usually costs about 3 times the objective function call.
If the gradient is evaluated using �nite di�erence approximations, the call of
gradient function costs approximately n + 1 calls of the objective function.
In our experiments most gradients expressed analytically, otherwise (for in-
stance in the two practical problems) they are found using �nite di�erence
approximations.

IntGO does not use gradients, however interval function values must be
found. Therefore the criteria of e�ciency for IntGO are the number of real
function calls (Nrf) and the number of interval function calls (Nif). The
authors of IntGO state that the average cost of an interval function call is

4

twice the cost of a corresponding real function call [5].

4 Experiments with StoGO

In the experiments with StoGO the default settings of parameters (see [2])
were used. The number of regular sample points nreg = 2n+1, the number of
random points nrnd = 0. The parameter of the generation of regular points
inside a box rs = 0:3.
In the stopping condition of the local searches we use � = 10�4, and two
values of the cluster radius were used: �cluster = 0:1 and �cluster = 0:01.
Improved initialization using the alternative variables method was not used.

The numbers of objective and gradient function calls and outer iterations
needed to �nd the �rst and all minimizers are given in Tables 2 and 3. All
global minimizers were found for all test problems. (For the Growth problem
this means that the smallest known function value, f� = 205:104 and the
corresponding minimizer were found.) Notice that in almost all cases the
solutions are found during the �rst outer loop of the algorithm.

For many test functions the two choices of �cluster give the same perfor-
mance of StoGO. For the 8 problems with di�erences, �cluster=0.1 is always
the best, however the di�erences are not very large (except for the Levy 4
function). In general we conclude that the experiments indicate some inde-
pendence of the choice of �cluster.

The algorithm has di�culties with functions having very many oscilla-
tions and local minima, like the Levy, Shubert and Hansen functions. For
such functions the performance seems to be a bit random: For Levy 4 which
is the "easiest" of the four Levy functions, the solution requires many func-
tion evaluations, whereas the most di�cult one, Levy 7, is solved rather
quickly because the algorithm accidentally �nds the global minimizer at the
beginning of the optimization. The performance in such cases may depend
on how close the starting points of the local searches are to the global opti-
mum. Thus the performance may change if the boxes D of feasible regions
are shifted.
For other di�cult functions with many local minimizers, like the Griewank,
Cola and Growth functions, the algorithm works rather well.

5

Function all minimizers

n Nrf Nrg OI

Rosenbrock 2 27 23 1

McCormic 2 11 10 1

Box&Betts 2 6 6 1

Paviani 2 14 11 1

Gen Rosenb 30 359 346 1

Gold&Price 2 75 51 1

Shekel 5 4 66 37 1

Shekel 7 4 24 13 1

Shekel 10 4 22 12 1

Levy 4 4 30502 23798 1

Levy 5 5 2786 2147 1

Levy 6 6 5292 4154 1

Levy 7 7 35 30 1

Griewank 10 124 81 1

Cola 17 8995 7226 1

Growth 12 529 414 1

Function �rst minimizer all minimizers

n Nrf Nrg OI Nrf Nrg OI

Six Hump C 2 37 33 1 49 45 1

Branin 2 21 10 1 666 527 2

Shubert 2 26 15 1 6825 4412 1

Hansen 2 218 129 1 7655 5037 1

Table 2: �cluster=0.1. The numbers of objective function (Nrf) and gradient (Nrg) calls

needed to �nd the �rst and all minimizers using improved StoGO with default parameters.

OI denotes the number of outer iterations of the algorithm. The two blocks of the table

indicate whether there is one or several global minimizers

6

Function all minimizers

n Nrf Nrg OI

Rosenbrock 2 27 23 1

McCormic 2 11 10 1

Box&Betts 2 6 6 1

Paviani 2 14 11 1

Gen Rosenb 30 359 346 1

Gold&Price 2 81 56 1

Shekel 5 4 66 37 1

Shekel 7 4 24 13 1

Shekel 10 4 22 12 1

Levy 4 4 44316 33438 1

Levy 5 5 2823 2184 1

Levy 6 6 5389 4241 1

Levy 7 7 35 30 1

Griewank 10 124 81 1

Cola 17 9229 7413 1

Growth 12 529 414 1

Function �rst minimizer all minimizers

n Nrf Nrg OI Nrf Nrg OI

Six Hump C 2 37 33 1 49 45 1

Branin 2 21 10 1 733 580 2

Shubert 2 26 15 1 8810 5380 1

Hansen 2 218 129 1 10296 6409 1

Table 3: �cluster=0.01. The numbers of objective function (Nrf) and gradient (Nrg) calls

needed to �nd the �rst and all minimizers using improved StoGO with default parameters.

OI denotes the number of outer iterations of the algorithm. The two blocks of the table

indicate whether there is one or several global minimizers

7

5 Comparison with IntGO

We compare the performance of StoGO with a method of Jansson and
Kn�uppel, [5], which is based on a combination of local searches, branch-
and-bound techniques and interval arithmetic. The implementation of
Kn�uppel, [7], here denoted by IntGO, was tested using the same test functions
as for StoGO. We have used three values of the parameter nd of IntGO which
determines the number of bisections made in each iteration: nd = 2 (which is
the default value used for the corresponding parameter of StoGO), nd = n+1,
and nd = a value tuned for each individual test problem. The numbers of real
and interval function calculations needed to �nd the �rst and all minimizers
are shown in Tables 4, 5 and 6.

The tables demonstrate some dependence of the choice of nd. Table 6
shows that sometimes quite a lot may be gained by tuning this parameter.
In the Generalized Rosenbrock, for instance, the number of real function calls
used by IntGO varies from 2698 to 14260.
The IntGO failed to minimize the two practical problems Cola and Growth.
To be more speci�c the computation broke down because of overow of mem-
ory. For the Cola problem the number of unexplored boxes generated by the
algorithm was more than 131072 at the stopping time, and the number of
interval function calls was greater than 393213. Similar results were seen for
the Growth problem.

The numbers of calls when minimizing other problems are relatively small,
i.e. the method performs well for these problems.

When comparing IntGO with StoGO we notice that normally IntGO is
clearly best for the trigonometric functions Levy, Shubert and Hansen (which
have very many oscillations and local minimizers). For the other functions
StoGO seems to be the best. In Table 7 we provide comparisons between the
optimal case of IntGO (i.e. nd being tuned) and StoGO with �cluster=0.1 and
default parameter values otherwise, i.e. Table 7 is a combination of �gures
from the Tables 2 and 6. In this table we have divided the problems into
three categories: Problems for which IntGO is clearly the best, problems
for which StoGO is slightly best, and problems for which IntGO is clearly
best (according to function calls, and assuming that a real gradient call
costs approximately the same as an interval function call, which is true when
automatic di�erentiation is used).

8

Function all minimizers

n Nrf Nif

Rosenbrock 2 170 13

McCormic 2 97 9

Box&Betts 2 97 21

Paviani 2 366 41

Gen Rosenbrock 30 6513 125

Gold&Price 2 129 9

Shekel 5 4 172 17

Shekel 7 4 166 17

Shekel 10 4 211 17

Levy 4 4 614 6839

Levy 5 5 555 202

Levy 6 6 527 330

Levy 7 7 543 506

Griewank 10 fails

Cola 17 fails

Growth 12 fails

Function �rst minimizer all minimizers

n Nrf Nif Nrf Nif

Six Hump Camel 2 225 554 321 819

Branin 2 324 119 fails

Shubert 2 524 1543 fails

Hansen 2 89 17 862 1421

Table 4: Results of optimization using the implementation IntGO of Kn�uppel [7]. The

number of subdivisions per iteration, nd, is 2 for all problems. n = dimension, Nrf = the

number of real function calls, Nif = the number of of interval function calls. The two

blocks of the table indicate whether there is one or several global minimizers

9

Function all minimizers

n Nrf Nif

Rosenbrock 2 104 19

McCormic 2 96 13

Box&Betts 2 103 33

Paviani 2 524 221

Gen Rosenbrock 30 14260 1921

Gold&Price 2 243 226

Shekel 5 4 98 41

Shekel 7 4 101 41

Shekel 10 4 101 41

Levy 4 4 111 41

Levy 5 5 127 61

Levy 6 6 235 85

Levy 7 7 235 113

Griewank 10 186 221

Cola 17 fails

Growth 12 fails

Function �rst minimizer all minimizers

n Nrf Nif Nrf Nif

Six Hump Camel 2 268 4532 342 5411

Branin 2 506 453 803 687

Shubert 2 940 3802 1550 4776

Hansen 2 193 200 892 1686

Table 5: Results of optimization using the implementation IntGO of Kn�uppel [7]. The

number of subdivisions per iteration, nd, is n+1 for all problems. n = dimension, Nrf =

the number of real function calls, Nif = the number of of interval function calls. The two

blocks of the table indicate whether there is one or several global minimizers

10

Function n nd all minimizers

Nrf Nif

Rosenbrock 2 3 104 19

McCormic 2 3 96 13

Box&Betts 2 1 93 11

Paviani 2 2 366 41

Gen Rosenbrock 30 7 2698 431

Gold&Price 2 1 120 5

Shekel 5 4 4 94 33

Shekel 7 4 4 85 33

Shekel 10 4 4 85 33

Levy 4 4 5 111 41

Levy 5 5 4 187 41

Levy 6 6 4 178 49

Levy 7 7 4 233 57

Griewank 10 8 419 161

Cola 17 any fails

Growth 12 any fails

Function n nd �rst minimizer all minimizers

Nrf Nif Nrf Nif

Six Hump Camel 2 1 273 352 365 443

Branin 2 3 506 453 803 687

Shubert 2 4 357 1008 1060 3472

Hansen 2 2 89 17 862 1421

Table 6: Results of optimization using the implementation IntGO of Kn�uppel [7]. The

number of subdivisions per iteration, nd, is tuned for each individual problem. n =

dimension, Nrf = the number of real function calls, Nif = the number of of interval

function calls. The two blocks of the table indicate whether there is one or several global

minimizers

11

Function n nloc nglob StoGO IntGO

Nrf Nrg Nrf Nif

Levy 4 4 71000 1 30502 23798 111 41

Levy 5 5 105 1 2786 2147 187 41

Levy 6 6 106 1 5292 4154 178 49

Shubert 2 400 9 6825 4412 1060 3472

Hansen 2 760 9 7655 5037 862 1421

Rosenb. 2 1 1 27 23 104 19

McCormic 2 1 1 11 10 96 13

Gold&P. 2 4 1 75 51 120 5

Shekel 5 4 5 1 66 37 94 33

Branin 2 23 5 666 527 803 687

B.&B. 3 1 1 6 6 93 11

Paviani 10 1 1 14 11 366 41

Gen Ros. 30 1 1 359 346 2698 431

Shekel 7 4 7 1 24 13 85 33

Shekel 10 4 10 1 22 12 85 33

Levy 7 7 108 1 35 30 233 57

Griewank 10 103 1 124 81 419 161

Cola 17 ? 1 8995 7226 fails

Growth 12 ? ? 529 414 fails

Six H.C. 2 6 2 49 45 365 443

Table 7: Numbers of function calls of StoGO and IntGO needed to �nd all global mini-

mizers (fromTables 2 and 6). nloc and nglob are the numbers of local and global minimizers,

respectively, and the other names are identical to those of Tables 2 and 6. The upper block

is the set of problems for which IntGO is clearly the best, in the middle block StoGO is

slightly best, whereas StoGO is clearly best in the last block .

12

A Test Problems

In the following descriptions of test problems the notation will be used:
n - dimension,
X - feasible region,
f(x) - objective function,
G(x) - Gradient function,
f� - global minimum,
X� - set of global minimizers,
nloc - number of local minimizers.

A.1 Rosenbrock function

n = 2, X = [�2; 2]n

f(x) = 100(x2 � x21)
2 + (1� x1)

2

G1(x) = 200(x2 � x21)(�2x1)� 2(1 � x1)

G2(x) = 200(x2 � x21)

f� = 0, X� = (1; 1), nloc = 1

A.2 McCormic function

n = 2, X = ([�1:5; 4]; [�3; 4])

f(x) = sin(x1 + x2) + (x1 � x2)
2 � 1:5x1 + 2:5x2 + 1

G1(x) = cos(x1 + x2) + 2(x1 � x2)� 1:5

G2(x) = cos(x1 + x2)� 2(x1 � x2) + 2:5

f� = �1:9133, X� = (�0:54719;�1:54719), nloc = 1

13

A.3 Box and Betts exponential quadratic sum

n = 3, X = ([0:9; 1:2]; [9; 11:2]; [0:9; 1:2])

f(x) =
10X
i=1

g(x)2

where:

g(x) = (exp(�0:1ix1)� exp(�0:1ix2)� (exp(�0:1i)� exp(�i))x3)

G1(x) =
10X
i=1

�0:2g(x)i exp(�0:1ix1)

G2(x) =
10X
i=1

0:2g(x)i exp(�0:1ix2)

G3(x) =
10X
i=1

2g(x)(� exp(�0:1i) + exp(�i))

f� = 0, X� = (1; 10; 1), nloc = 1

A.4 Paviani function

n = 10, X = [2:001; 9:999]n

f(x) =
nX

i=1

�
ln2(xi � 2) + ln2(10� xi)

�
�

nY
i=1

xi

!0:2

Gj(x) =
2 ln(xj � 2)

xj � 2
� 2 ln(10� xj)

10 � xj

� 0:2
Qn

i=1 xi

xj (
Qn

i=1 xi)
0:8

f� = �45:778470, X� = (9:350266; 9:350266; : : : ; 9:350266), nloc = 1

A.5 Generalized Rosenbrock function

n = 30, X = [�n; n]n

f(x) =
n�1X
i=1

h
100(xi+1 � x2i)

2 + (xi � 1)2
i

14

G1(x) = �400(x2 � x21)x1 + 2(x1 � 1)

Gi(x) = �400(xi+1 � x2i)xi + 2(xi+1 � 1) + 200(xi � x2i�1)

Gn(x) = 200(xn � x2n�1)

f� = 0, X� = (1; : : : ; 1), nloc = 1

A.6 Goldstein and Price function

n = 2, X = [�2; 2]n

f(x) =
h
1 + (x1 + x2 + 1)2(19 � 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)

i
�
h
30 + (2x1 � 3x2)

2(18 � 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)
i

f� = 3, X� = (0;�1), nloc = 4

A.7 Shekel function

n = 4, X = [0; 10]n

f(x) = �
mX
i=1

1

(x�Ai)(x�Ai)T + ci

where :

A =

2
6666666666666666664

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3:6 7 3:6

3
7777777777777777775

c =

2
6666666666666666664

0:1
0:2
0:2
0:4
0:4
0:6
0:3
0:7
0:5
0:5

3
7777777777777777775

Gj(x) =
mX
i=1

2(xj � ai;j)

((x�Ai)(x�Ai)T + ci)
2

for m = 5: f� = �10:1532, X� = (4:00004; 4:00013; 4:00004; 4:00013), nloc =
5

15

for m = 7: f� = �10:4029, X� = (4:00057; 4:00069; 3:99949; 3:99961),
nloc = 7

for m = 10: f� = �10:5364, X� = (4:00075; 4:00059; 3:99966; 3:99951),
nloc = 10

A.8 Levy function

n = 4; 5; 6; 7
for n = 4: X = [�10; 10]n
for n = 5; 6; 7: X = [�5; 5]n

f(x) = sin2(3�x1) +
Pn�1

i=1 (xi � 1)2(1 + sin2(3�xi+1)) +

(xn � 1)(1 + sin2(2�xn))

G1(x) = 6 sin(3�x1) cos(3�x1)� + 2(x1 � 1)(1 + sin2(3�x2))

Gi(x) = 6(xi�1 � 1)2 sin(3�xi) cos(3�xi)� +

2(xi � 1)(1 + sin2(3�xi+1))

Gn(x) = 6(xn�1 � 1)2 sin(3�xn) cos(3�xn)� +

1 + sin2(2�xn) + 4(xn � 1) sin(2�xn) cos(2�xn)�

for n = 4: f� = �21:502356, X� = (1; 1; 1;�9:752356), nloc = 71000
for n = 5; 6; 7: f� = �11:504403, X� = (1; : : : ; 1;�4:754402), nloc =
105; 106; 108

A.9 Griewank function

n = 10, X = [�500; 700]n

f(x) =
nX

i=1

x2i
4000

�
nY

i=1

cos

xip
i

!
+ 1

Gj(x) =
xj

2000
+

Qn
i=1 cos

�
xip
i

�
sin

�
xip
i

�
p
i cos

�
xip
i

�
f� = 0, X� = (0; 0; : : : ; 0), nloc = 103

16

A.10 Six Hump Camel Back function

n = 2, X = [�5; 5]n

f(x) = 4x21 � 2:1x41 +
1

3
x61 + x1x2 � 4x22 + 4x42

G1(x) = 8x1 � 8:4x31 + 2x51 + x2

G2(x) = x1 � 8x2 + 16x32

f� = �1:03163, X� = f(0:08984;�0:71266); (�0:08984; 0:71266)g, nloc = 6

A.11 Branin function

n = 2, X = [�10; 10]n

f(x) =
�
1 � 2x2 +

1

20
sin 4�x2 � x1

�2
+
�
x2 � 1

2
sin 2�x1

�2

G1(x) = �2
�
1 � 2x2 +

1

20
sin 4�x2 � x1

�
�

2
�
x2 � 1

2
sin 2�x1

�
� cos 2�x1

G2(x) = 2
�
1 � 2x2 +

1

20
sin 4�x2 � x1

��
�2 + �

5
cos 4�x2

�
+

2
�
x2 � 1

2
sin 2�x1

�

f� = 0

X� =

8>>>>>><
>>>>>>:

(1; 0);
(0:148696; 0:402086);
(0:402537; 0:287408);
(1:59746; �0:287408);
(1:85130; �0:402086)

9>>>>>>=
>>>>>>;

nloc = 23

17

A.12 Shubert function

n = 2, X = [�10; 10]n

f(x) = �
nX

i=1

5X
j=1

j sin((j + 1)xi + j)

Gj(x) = �
5X

i=1

i(i+ 1) cos((i+ 1)xj + i)

f� = �24:062499

X� =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(�6:774576; �6:774576);
(�6:774576; �0:491391);
(�6:774576; 5:791794);
(�0:491391; �6:774576);
(�0:491391; �0:491391);
(�0:491391; 5:791794);
(5:791794; �6:774576);
(5:791794; �0:491391);
(5:791794; 5:791794)

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

nloc = 400

A.13 Hansen function

n = 2, X = [�10; 10]n

f(x) =
5X

i=1

i cos((i� 1)x1 + i)
5X

j=1

j cos((j + 1)x2 + j)

G1(x) = �
5X

i=2

i(i� 1) sin((i� 1)x1 + i)
5X

j=1

j cos((j + 1)x2 + j)

G2(x) = �
5X

i=1

i cos((i� 1)x1 + i)
5X

j=1

j(j + 1) cos((j + 1)x2 + j)

18

f� = �176:541793

X� =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(�7:589893; �7:708314);
(�7:589893; �1:425128);
(�7:589893; 4:858057);
(�1:306708; �7:708314);
(�1:306708; �1:425128);
(�1:306708; 4:858057);
(4:976478; �7:708314);
(4:976478; �1:425128);
(4:976478; 4:858057)

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

nloc = 760

A.14 Cola function

n = 17, U = ([0; 4]; [�4; 4]n�1)
x1 = y1 = y2 = 0; x2 = u1; xi = u2(i�2); yi = u2(i�2)+1

f(x; y) =
X
j<i

(ri;j � di;j)
2

d =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

: : :

1:27 : : :

1:69 1:43 : : :

2:04 2:35 2:43 : : :

3:09 3:18 3:26 2:85 : : :

3:20 3:22 3:27 2:88 1:55 : : :

2:86 2:56 2:58 2:59 3:12 3:06 : : :

3:17 3:18 3:18 3:12 1:31 1:64 3:00 : : :

3:21 3:18 3:18 3:17 1:70 1:36 2:95 1:32 : : :

2:38 2:31 2:42 1:94 2:85 2:81 2:56 2:91 2:97 : : :

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ri;j = [(xi � xj)
2 + (yi � yj)

2]
1

2

f� = 11:7464

U� = (0:651906; 1:30194; 0:099242;�0:883791;�0:8796;
0:204651;�3:28414; 0:851188;�3:46245; 2:53245;�0:895246;
1:40992;�3:07367; 1:96257;�2:97872;�0:807849;�1:68978)

19

A.15 Growth problem

This problem represents a growth model of the human mandible (the lower
jar). The data of the problem are the coordinates of 271 points of equivalent
morphology from 3 mandibles of the same patient at the age of 9 months,
21 month and 7 years [1]. The goal of the problem is to position the three
mandibles in the space so that the squared sum of distances of points from
the middle mandible to the lines connecting corresponding points from the
�rst and third mandible is minimal. The middle mandible is �xed and each of
the two others has 6 degrees of freedom: 3 angles of rotation and 3 directions
of translation. Thus the dimension of the problem is n = 12. The domain is
X = [��; �]6�[�120; 120]6. The best known function value found previously
using a multistart strategy is f� = 205:104. The corresponding point is

X� = f�0:125288;�0:048084; 0:0683822;�5:28448; 13:5913; 47:4381;
0:100655; 0:00663149; 0:0861344; 15:1711;�19:2757;�44:7489g

The numbers of local and global minimizers are not known, but more than
15000 have been found. A precise description of the objective function can
be found in [4].

References

[1] P.R. Andersen, M. Nielsen, and S. Kreiborg. 4D Shape - preserving mod-
elling of bone growth. Medical Image Computing and Computer-Assisted
Intervention - MICCAI'98, Lecture Notes in Computer Science, Vol 1496,
pp 710-719, Springer Verlag 1998.

[2] S. Gudmundsson. Parallel Global Optimization. M.Sc. Thesis, IMM,
Technical University of Denmark, 1998.

[3] P. van Hentenryck. Numerica: a modeling language for global optimiza-
tion. MIT Press, 1997.

[4] http://www.imm.dtu.dk/�km/GlobOpt/testex/

[5] C. Jansson and O. Kn�uppel. A global minimization method: The multi-
dimensional case. Report 92.1, Technical University Hamburg-Harburg,
1992.

20

[6] C. Jansson and O. Kn�uppel. A Branch and Bound Algorithm for
Bound Constrained Optimization Problems without Derivatives. Journal
of Global Optimization 7, 297-331, 1995.

[7] O. Knuppel. A PROFIL/BIAS inplementation of a global minimization
algorithm. Report 95.4, Technical University Hamburg-Harburg, 1995.

[8] K. Madsen and S. Zertchaninov. Branch-and-Bound for Global Opti-
mization. IMM-REP-1998-05, Department of Mathematical Modelling,
Technical University of Denmark, DK-2800 Lyngby, Denmark, 1998.

[9] K. Madsen, S. Zertchaninov, A. �Zilinskas and J. �Zilinskas. A global op-
timization using branch-and-bound. Submited to the Journal of Global
Optimization, 1999.

[10] R. Mathar and A. �Zilinskas. A class of test functions for global opti-
mization. Journal of Global Optimization 5, 195-200, 1994.

[11] S. Zertchaninov and K. Madsen. A C++ Programme for Global Opti-
mization. IMM-REP-1998-04, Department of Mathematical Modelling,
Technical University of Denmark, DK-2800 Lyngby, Denmark, 1998.

21

