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Abstract

This lecture note was written for use in the course 04310 Scientific Computing at
the Technical University of Denmark, and it also supplements the material in the
author’s book [11] about regularization methods. It continues to evolve as the author
obtains more insight into world of structured matrices.

By deconvolution we mean the solution of a first-kind integral equation with a
convolution-type kernel, i.e., a kernel that depends only on the difference between
the two independent variables. The corresponding computational problem takes
the form of structured matrix problem. The aim of the lecture note is to present
numerical methods for the practical treatment of these discretized deconvolution
problems, with emphasis on methods that take the special structure of the matrix
into account. Wherever possible, analogies to classical DI'T-based deconvolution
problems are drawn.

We start with a brief introduction to deconvolution problems and their dis-
cretization in §1. Then we discuss general properties of first-kind Fredholm integral
equations in §2 and give an introduction to numerical regularization methods in
§63-4, with no emphasis on matrix structure.

The core algorithmic material for structured matrices is presented in §5 and §6
that treat 1-D and 2-D problems, respectively. In §5 we introduce Toeplitz and
circulant matrices, and show how Toeplitz matrix-vector computation is performed
by means of FFT, being useful in iterative methods. We also present some direct
methods for regularization with Toeplitz matrices. In §6 we introduce the Kronecker
product and show how it is used in the discretization and solution of 2-D problems
whose variables separate.
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1. INTRODUCTION TO DECONVOLUTION
PROBLEMS

The main purpose of this lecture note is to present modern computational methods
for treating linear deconvolution problems, along with some of the underlying theory.
The main focus is on large-scale problems, and we shall illustrate how mathematics
helps to arrive at efficient numerical algorithms.

The term “deconvolution” seems to have slightly different meanings in different
communities — to some, it is strongly connected to the operation of convolution in
digital signal processing, while to others it denotes a broader class of problems. In
the remainder of Chapter 1, we shall briefly describe both meaning of the term.

Before we present the algorithms, we make a detour in Chapter 2 into the world
of inverse problems and, in particular, Fredholm integral equations of the first kind.
The reason for this is that deconvolution problems are special cases of these integral
equations. Extensive amounts of both theory and algorithms have been developed
for these general problems, and our detour will provide us with important insight
and therefore a stronger background for solving deconvolution problems numerically.

Having thus set the stage, we turn to the numerical methods in Chapters 3-6.
We start in Chapter 3 with a general discussion of the discretization and numeri-
cal treatment of first-kind integral equations, and we introduce the singular value
decomposition which is perhaps the most powerful “tool” for understanding the dif-
ficulties inherent in these integral equations. Next, in Chapter 4 we discuss general
regularization algorithms for computing stabilized solutions to the discretized linear
systems, with no emphasis on matrix structure.

In the remaining chapters we turn to numerical methods that exploit matrix
structure. In Chapter 5 we discuss various direct and iterative methods for one-
dimensional problems, and show how we can compute the numerical solutions accu-
rately and efficiently. Finally, in Chapter 6 we turn to two-dimensional problems,
and here we focus on problems in which the variables separate, allowing us to also
develop very efficient numerical schemes for these problems.

Some acquaintance with numerical linear algebra is necessary; the most complete
reference is the book [8] that discusses all state-of-the-art techniques, classical as well



as modern.

The presentation lends itself strongly to Matlab, and we shall occasionally use
Matlab notation in our expressions, such as “.*” for element-wise multiplication
of two vectors or matrices. We shall also make reference to the Matlab package
REGULARIZATION TOOLS [10] from time to time. More details about the theory
that is briefly presented in this note can be found in the “deconvolution primer” [19],
while a recent survey of numerical methods for general inverse problems is given in
the monograph [11].

1.1. Deconvolution in Digital Signal Processing

Given two discrete (digital) signals f and h, both of infinite length, the convolution
of f and h is defined as a new infinite-length signal g as follows

j=—o0

Note that one (or both) signals may have finite length, in which case the above
relation still holds when the remaining elements are interpreted as zeros. The de-
convolution is used to represent many useful operations in digital signal processing.
For example, the output of a FIR filter with n nonzero filter coefficients hy, ..., hy, 1
is given by

n—1
gi:ijhifju i€ L
=0

Throughout, let 7 denote the imaginary unit satisfying i = —1. If glw) =
E;‘;ioo gj € 2™ is the Fourier transform of g, then the following important relation
holds for the Fourier transforms of f, ¢, and h:

~

W) = flw)hw), weR

If the two signals f and h are both periodic with period N, and represented by
the sequences fy, f1, ..., fv_1 and hq, hq, ..., hy_1, then the convolution of f and
h is another periodic signal g with period N, and the elements of ¢ are defined as

N-1
gi= fihij, i=01... N—1,
j=0



where the subscript of h is to be taken modulo N. The discrete Fourier transform
(DEFT) of g is defined as the sequence

N-1
1 —22my
GkENZgje 2mik/N k=01,... N—-1,
=0
and it is convenient to denote the N-vector consisting of this sequence by DFT(g).
Then, using Matlab notation, the following relation holds for the DE'T of the con-
volution of f and g¢

DFT(g) = DFT(f) .* DFT(h), (1.1)

Le., DFT(g) equals the element-wise product of the two vectors DFT(f) and DET(h).
Consequently, g = IDFT(DFT(f) .*DFT(h)), where IDFT denotes the inverse
DFT. Note that f and h can be interchanged without changing g. We remind that
the DFT and the IDFT of a signal can always be computed efficiently by means
of the fast Fourier transform (FFT) in O(N log, N) operations. A very thorough
discussion of the DFT (and the FE'T) is presented in [4].

Deconvolution is then defined as the process of computing the signal f given the
other two signals g and h. For periodic discrete signals, Eq. (1.1) leads to a simple
expression for computing f, considered as an N-vector:

f =IDFT (DFT(g)./DFT(h)). (1.2)

Again, the FFT can be used to perform these computations efficiently. For general
discrete signals, the Fourier transform of the deconvolved signal f is formally given
by f(w) = g(w)/h(w), but there is no similar simple computational scheme for
computing f — although the FFT and Eq. (1.2) are often used (and occasionally
misused) for computing approximations to f efficiently; cf. Section 5.5.

1.2. General Deconvolution Problems

Outside the field of signal processing, there are many computational problems which
resemble the classical deconvolution problem in signal processing, and these prob-
lems are also often called deconvolution problems. Given two functions f and h, the
general convolulion operation takes the generic form

o(s) = /01 s —0) f(t)dl, 0<s<l, (13)

where we assume that both integration intervals have been transformed into the
interval [0, 1]. Certain convolution problems involve the interval [0, o), but in order
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Figure 1.1: The geometry of the geomagnetic prospecting model problem.

to focus our presentation on the principles of deconvolution we omit these problems
here. Notice that by means of a change of variables, we can also write g(s) =
fol f(s — 7)h(7)dT, showing that the two forms are equivalent. Hence, from a
mathematical point of view, the two functions f and h play similar roles — although
in applications, they may have very different interpretations.

The general problem of deconvolution is now to determine either f or h, given
the other two quantities. Due to the above-mentioned equivalence between f and h,
we shall always assume that h is the known function while we want to compute f.
Usually, the function h comes from a mathematical model of the underlying problem,
while ¢ is available as measured data for a discrete set of s-values, 1.e., we are given
“noisy samples” of g at certain discrete abscissas sy, Sg, ..., $m:

gi:9<31‘)+€i, 1=1,...,m.

Here, e; denotes the measurement noise associated with the ith data point. The noise
usually comes from some statistical distribution, which may be known or unknown.

One example of deconvolution is the following model problem in geomagnetic
prospecting. Assume that a horizontal iron ore deposit lies at depth d below the
surface — cf. Fig. 1.1 for the geometry and the location of the s and ¢ axes. From
measurements of the vertical component of the magnetic field, denoted g(s), at the
surface, we want to compute the vertical component of the field, denoted f(), right
at the ore. The contribution to g from an infinitesimal part dt of the ore at ¢ is
given by

sin 0

dg = f(t)dt,

r2

where the angle 0 is shown in Fig. 1.1, and the distance is given by r = /d? 4+ (s — t)2.
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Using that sinf = d/r, we get

sin @ d
r2 f)dt = (d + (s — t)2)3/2 I

t)dt.

The total value of g(s) for any s is therefore

g(s) = /0 o (Sd_ EEG f(t)dt.

Thus, we arrive at a deconvolution problem for computing the desired quantity f
with kernel given by h(s —t) = d (d? + (s — t)?)73/2.

Deconvolution problems also arise, e.g., in statistics, and we shall briefly describe
an example from astrometry. Assume that we are given a measured statistical
distribution g of stellar parallaxes (the parallax is a small angle {rom which the

distance to the star can be computed). This distribution is perturbed due to various
measurement errors, and it can be shown that if f denotes the true distribution of
parallaxes, then f and ¢ are related by the equation

[ e

where ¢ is a parameter that characterizes the accuracy of the particular set of mea-
surements. The above equation is obviously a deconvolution problem with kernel

h(s—t) = (U 27T>71 exp (—% (%)2) for computing the true distribution f of par-
allaxes. This problem is implemented as the function parallax in REGULARIZATION
Toors [10].

The inverse heat equation is yet another example of a deconvolution problem.
Assume that we wish to determine the temperature f, as a function of time ¢, on

one side of a wall (which is inaccessible) given measurements g of the temperature

on the other (accessible) side of the wall. This leads to a deconvolution problem of
the generic form

[ s =0 s0d1 =g (1.4)

with kernel h given by

h(s —1t) = % exp <—m> ;

where the parameter k describes the heat conduction properties of the wall. This
model problem is implemented in REGULARIZATION TOOLS as the function heat.



2. FIRST-KIND FREDHOLM INTEGRAL
EQUATIONS

At this stage, we begin our detour into the world of inverse problems and Fredholm
integral equations of the first kind. Inverse problems can often be characterized
as problems in which we wish to compute certain properties of the interior of a
domain, given measurements made from the outside along with a mathematical
model of the relation between the interior and the measured data. Seismology is a
classical example of an inverse problem, where the goal is to map the various layers
of the earth, given measurements at the earth’s surface of seismic waves penetrating
the layers and reflected by the layers. Another classical example is computerized
X-ray tomography, where we wish to compute images of, say, the human brain, given
measurements of the damping of the X-rays through the brain.

It should be emphasized here that inverse problems do not always involve a
strictly interior region. It is perhaps more precise to say that from measured data
one wants to infer about certain hidden data, unaccessible to be measured directly.
The two examples mentioned above are clearly in this class of problems. Another
example is image deblurring: here, given a recorded (e.g., digitized) blurred image
and a mathematical model for the blurring process, the goal is to reconstruct the
original sharp image as accurately as possible. For several years, before it was finally
repaired, the Hubble Space Telescope provided nothing but such blurred images.

All the above-mentioned inverse problems, as well as the deconvolution problems
from the previous chapter, can be formulated as Fredholm integral equations of the
first kind. The generic form of a first-kind Fredholm integral equation looks as follows

/1 K(s,0) f(1)dt = gls), 0<s<1, (2.1)

where the function K, called the kernel, is a known function of the two variables s
and ¢, and the right-hand side ¢ is also known — or at least measured for discrete
values of s — while f is the unknown function that we wish to compute. Note that
the deconvolution problems from the previous chapter are merely special cases of
(2.1) in which the kernel K(s,t) = h(s —t) depends solely on the difference s — ¢
between the two variables.



We point out that the integration interval in Eq. (1.4) is from 0 to s; such an
integral equation is called a Volterra integral equation of the first kind. It can be
considered as a special Fredholm integral equation whose kernel is zero for ¢ > s
and it shares the same difficulties as the Fredholm equation.

2.1. Smoothing and Inversion

As already mentioned, the advantage of working with the general formulation (2.1)
is that the underlying theory of first-kind Fredholm integral equations is so well
developed. For example, it is well understood that the integration of f with K is
a smoothing operation that tends to dampen high-frequency components in f, such
that the function g is a smoother function than f. Consequently, the inverse process,
namely, that of computing f from g, can be expected to amplify the high-frequency
components and it is thus a “de-smoothing process,” so to speak.

The above statement is quantified by the following example. If we choose the
function f to be given by

f(t) = sin(27 pt), p=1,2 ...,

such that the corresponding right-hand side g is given by

1
g(s) = / K(s,t) sin(27 pt) dt, p=1,2 ...,
0

then the Riemann-Lebesgue lemma' states that
g—0 as p — 00.

In words, the higher the frequency of f, the more ¢ is damped — and this is true inde-
pendently of the kernel K; see Fig. 2.1 for a numerical example. Consequently, the
reverse process, i.e., that of computing f from ¢, will amplify the high frequencies.

If all data were unperturbed, and all computations could be done in infinite
precision, then the inversion process in getting from ¢ to f would be perfectly
possible. Unfortunately, this situation never arises in practice: measured data are
always contaminated by errors, and numerical computations always involve small
but non-negligible rounding errors. Due to the above result, small perturbations
of the high-frequency components in g are transformed into large perturbations
of f, and the higher the frequency the larger the perturbation of f. Hence, the

IThe Riemann-Lebesgue lemma can be formulated as follows: if the function ¥ has limited total
fluctuation in the interval (0,1), then, as A — oo, fol () sin(\d) df is O(X™1).
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Figure 2.1: Tlustration of the Riemann-Lebesgue lemma for the geomagnetic
prospecting problem, with f(t) = sin(27 pt), g(s) = fol h(s —t) f(t)dt, and p = 1,
2,4, and 8.
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unavoidable data and rounding errors make the practical inversion process a very
unstable process indeed, and in practise it is impossible to compute or estimate f
by means of a direct inversion. Some kind of stabilization technique is needed in
order to recover a reasonably accurate approximation to the desired solution f.

2.2. An Example from Signal Processing

We can illustrate the above-mentioned difficulties by means of the deconvolution
formula (1.2) for periodic digital signals. If h corresponds to a smoothing operation,
then the spectral components of h, i.e., the components of the vector DET(h), are
such that the higher the frequency, the smaller the corresponding element. Hence,
the same is true for the elements of the DFT of the exact right-hand side. Assume
now that we are given the vector g = g + e of measured values, consisting of the
exact data g contaminated by additive white noise e with elements from a normal
distribution with zero mean and standard deviation ogse. Then the DEFT of g is
given by
DFT(g) = DFT(g) 4+ w,

where all the elements in the vector w = DFT(e) have the same probability. Thus,

the expression for the DFT of the computed solution f becomes

DFT(f) = DFT(j)./DFT(h)
= DFT(g)./DFT(h) + w./DFT(h)
= DFT(f) +w./DFT(h),

showing that the high-frequency components of f are perturbed the most, due to
the division of the elements in w by the small elements in DET(h).

We illustrate the above with a numerical example involving a low-pass filter with
filter coefficients 0.5, 1, 1, 1, and 0.5, applied to a short sequence of 512 samples of
a speech signal. Fig. 2.2 shows various power spectra of the signals involved in this
example. The noise e is generated in Matlab as e = 0.1*randn(512,1), and the power
spectrum of e is flat, as we expect from white noise. Notice how the high-frequency
components of the deconvolved signal are perturbed wildly, especially around the
zeros of the low-pass filter! Clearly, “naive” inversion by means of Eq. (1.2) is useless.

2.3. The Singular Value Expansion

A deeper understanding of the behavior of first-kind Fredholm integral equations can
be achieved by means of the singular value expansion (SVE) of the kernel K, as long

11
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Figure 2.2: Power spectra of the various signals involved in the low-pass filtering
example.
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as K is square integrable, i.e., as long as the quantity | K2 = fol fol K(s,t)*dsdt is
bounded. Such kernels can always be written as the following infinite sum

K(S,t) = ZMZUZ<S) Ui<t)7 (22>

where the functions u; and v; are termed the singular functions of K, and the num-
bers p, are called the singular values of K. The singular functions are orthonormal
with respect to the usual inner product, i.e.,

1
(ui, uz) = (vi,v5) = i, where (¢, 9) = / o(1) ¥ (1) dt,
0
and the singular values are ordered in non-increasing order such that

>y > >0

The singular values satisfy the relation > .7, p? = || K||3, showing that the p; must
decay faster than i~ /2,

Perhaps the most important relation between the singular values and functions
is the following fundamental relation

1
/ K(‘S?t)UZ(t)dt:/’LzuZ(s)? i:1727"'7
0

which shows that any singular function v; is mapped onto the corresponding singular
function u;, and that the singular value p, is the amplification factor of this particular
mapping. If this relation, together with Eq. (2.2), is inserted into the integral
equation (2.1), then we obtain the equation

Zﬂi (vs, f) ui(s) = Z(Uz‘,g) u;i(s), =12

which, in turn, leads to the following expression for the solution

iy =31, (23)

i M

The overall behavior of the singular values and functions is by no means “arbi-
trary,” and the difficulties with solving first-kind Fredholm integral equations are
due to the following two facts.

13



e The singular values p; decay to zero, at least as fast as i~'/2,
e The smaller the p,;, the more oscillations (or zero-crossings) there will be in
the corresponding singular functions u; and v;.

The practical implication of the above is that the SVE can be regarded as a
kind of spectral expansion in which the coefficients (v;, f) and (us,9) = p; (vs, f)
describe the spectral properties of the solution f and the right-hand side g. Again,
we see that the integration with K has a smoothing effect: the higher the spectral
components in f, the more they are damped in g due to the multiplication with p,.
Moreover, Eq. (2.3) shows that the inverse problem, that of computing f from g,
indeed has the opposite effect on the oscillations in g, namely, an amplification of
g’s spectral components (u;,g) with the factor g, '. This, of course, amplifies the
high-frequency components.

The trouble arises when the right-hand side ¢ is contaminated by errors, for then
we will most likely divide small but non-negligible coefficients (u;, g) with very small
singular values p,;, which will lead to a dramatic high-frequent perturbation of the
computed solution.
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3. NUMERICAL TREATMENT

Before we turn our attention to practical schemes for stabilizing the inversion process,
it is convenient to discuss the numerical treatment of integral equations, as well as
some important concepts from numerical linear algebra associated with ill-conditioned
matrices.

3.1. Discretization by Quadrature Rules

There is a variety of schemes available for discretization of integral equations, i.e., for
turning the integral equation into a system of linear equations that can be solved
numerically in order to provide an approximate discrete solution to the integral
equation. Here, for pedagogical reasons, we limit or discussion to quadrature methods
based on well-know quadrature rules. Recall that a quadrature rule for computing
an approximation to a definite integral takes the following general from

1 n
/ ot dt = wy (1),
0 e

where 14,...,1, are the abscissas for the particular quadrature rule, and wy,...,w,
are the corresponding weights. For example, for the midpoint rule, we have

t; =(j—0.5)/n, w; = 1/n, j=1,...,n,

while for Simpson’s rule (where n must be odd) the abscissas are given by

j—1 .
t] - ) j = 17 Jn
n—1
and the weights are
Wy, We, W3, Wa, Wy, ..., Wy_1, Wy = ¢, 4c,2¢,4¢,2¢,...,4c,c

with ¢ = 1/(3(n — 1)). This formulation also covers more advanced rules such as
the Newton-Cotes rules. Using a quadrature rule, we can approximate the integral
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in our Fredholm integral equation as follows

/0 K(s,t) f(t)dt ~ ij K(s,t;) f(t;) =v(s),

and we emphasize that the right-hand side #(s) in the above expression is still
a function of the variable s. Notice that we have replaced f with f because we
introduce approximation errors in the above expression and thus cannot expect to
compute f exactly.

In order to arrive at a system of linear equations, we can now use collocation,
i.e., we require that the function v defined above equals the right-hand side ¢ at
given points si,..., Sm:

W(s;) = g(ss), 1=1,...,m.

Here, the numbers ¢(s;) are usually the measured values of the function g. Note
that m need not necessarily be equal to n, but to keep our exposition simple we
shall assume so throughout the note, i.e., m = n. Inserting the expression for ¥(s)
into the collocation scheme, we arrive at the following equations

S wi K(sity) [(t;) =g(s:),  1,5=1,....n.
=1

When we rewrite these equation in matrix notation, we obtain the system

w1K<81,t1) U)QK(Sl,tQ) v wnK<81,tn) i(tl) g(Sl)
w1K<82,t1) U)QK(SQ,tQ) v wnK<82,tn) f<t2> _ g(SQ)
le('sn,tl) w2K<‘Sn7t2) wnK(ZSn,tn) f(tn) g(sn)

or simply Az = b, where A is an n X n matrix. The elements of A, b, and x are
given by
a; = wiK(s; ;)
by = QN(Sz‘) ,]=1,...,n
;= [ft;)

To illustrate the above scheme, we use the midpoint rule to discretize the geomag-
netic prospecting problem from Chapter 1, with quadrature and collocations points
equidistantly distributed in the interval [0,1] as s; =¢; = (i — 0.5)/n, i =1,... n.
Thus, the matrix elements are given by

d/n n’d

ij = = — , ,j=1,...,n.
Qi (2 + (s; — 1,022 (m2d® + (i — j)2)*/° 2N, n
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Figure 3.1: “Naive solution” to the geomagnetic prospecting model problem.

As the solution in our model problem, we choose f(t) = sin(nt) + 0.5sin(27t), and
the elements of the exact solution z thus consists of the sampled values of f at
the abscissas t; = (7 — 0.5)/n for j = 1,...,n. Finally, the right-hand side b is
computed as b = Ax. Due to our choice of quadrature and collocation points we
obtain a symmetric matrix, and the depth is chosen to be d = 0.25.

At this stage, we emphasize that in practise the right-hand side is usually a
perturbed version of this b. That is, we solve the system Axz = b, where b = b + ¢,
and the vector e represents the perturbation of the exact data.

The elements of the computed vector Tpave = A 1b are, in principle, approxi-
mations to the desired solution, i.e.,we compute “samples” of the function f at the
abscissas 11, ...,1, given by

f(tj):<a:naive)j, ]:1,,71

From a naive point of view one would think that these quantities are supposed to
approximate the solution f at the same abscissas. But as we have already empha-
sized several times, we cannot expect the naively computed solution to a first-kind
Iredholm integral equation to be stable with respect to perturbations of then right-
hand side, and hence we should not expect the computed values f(¢;) to be good
approximations to the quantities f(¢;) if we solve the system Ax = b by standard
tools in numerical analysis.

Figure 3.1, which shows the “naive” solution Zj.ie. to the geomagnetic model
problem, illustrates this fact — the solution has nothing in common with the exact
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solution, the norm is not even of the correct order of magnitude. We postpone the
discussion of how to stabilize the computed solutions to the next chapter, and turn
our attention to tools-of-the-trade in numerical linear algebra.

3.2. Linear Equations and Condition Numbers

One of many useful results in linear algebra is concerned with the perturbation of
the solution x to a system of linear equations Az = b due to a perturbation of
the right-hand side b. The following notation is quite standard: let the perturbed
right-hand side be b = b + e, where e is the perturbation, and let the corresponding
solution be Z, which is formally given by T = A~'b. We now wish to bound the
norm of the perturbation z — x.

To arrive at a useful result, we fist note that due to the linearity of the problem,
the perturbation can be written as T — z = A 'e, and hence |7 — z| < || A7 |||,
where || - || denotes a vector norm such as the 2-norm. This is an upper bound
on the absolute perturbation, but it is always more useful to bound the relative
perturbation of the solution. To arrive at such a bound, we use the relation Az = b
to derive the inequality ||b]] < ||A| ||z||, which we rewrite as 1/||z| < | A|/||?]].
Combining the two bounds, we thus arrive at the following important perturbation

bound
el

|7 — ] 1
R I A=) ol
The factor ||A]l |[A™!|| is a magnification factor which controls how much the rel-
ative perturbation ||e||/||b]| of the right-hand side can be amplified into a relative
perturbation |z — || /||z|| of the solution. The larger this factor, the more sensitive
the solution is to perturbations of the right-hand side.

Notice that this sensitivity is merely controlled by properties of the matrix A,
namely, the product of the norm of the matrix times the norm of the inverse of the
matrix. This quantity is so important that it has its own name — it is called the
condition number of A, and we shall denote it by

cond(4) = [A] AT

We shall also make the definition that if A is singular, then the condition number is
infinite. As long as cond(A) is small, we say that the matrix A is well conditioned,
because small perturbations are bound to lead to small perturbations of the solution.
However, if cond(A) is large, then even small perturbations in b can lead to large
perturbations in x, and we say that A is ill conditioned. The larger the condition
number, the more ill conditioned the matrix (and a singular matrix is infinitely ill
conditioned).
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3.3. The Singular Value Decomposition

One of the most versatile tools in linear algebra is probably the singular value
decomposition (SVD) of a matrix, and we shall make heavy use of this decomposition
throughout the note. The SVD is defined for any rectangular matrix, but we limit
our discussion to square n X n matrices, for which the SVD takes the form

A:UEVT:ZUZ-UZ-UZ-T.
i=1

The two matrices U and V' consist of the left and right singular vectors,
U= (uy,...up), V=(v1,...,0),

and both matrices are orthogonal, i.e., UTU = VIV = I. This implies that the
left and right singular vectors are orthonormal, u]u; = v}v; = §;;. The middle
matrix ¥ = diag(oy,...,0,) is a diagonal matrix whose diagonal elements o; are
the singular values of A. They are nonnegative and ordered in non-increasing order,
1Le.,

0120y >0, >0,

and it can be shown that the number of nonzero singular values is equal to the rank
of A. The condition number of A as defined above has a simple expression in terms
of the SVD if we use the 2-norm, for then

cond(4) = || 4]l [ A"l = =+

If A is singular, i.e., rank(A) < n, then 0, = 0 and cond(A) = oo in agreement with

the above definition. Software for computing the SVD is available in all modern
software packages.

If Ais a symmetric matrix, A = AT, then the SVD of A is related to the eigen-

value decomposition A = W AWT with W = (wy, ..., w,) and A = diag(Ay,..., \,)

as follows
( . . ) _ (wi7 )\Zuwz> for )\Z Z 0
Uiy O4,V5) = (w“—)\“—wl) for )\z <0

and this relation can be used to simplify the computation of the SVD for symmetric

(3.1)

matrices.
The singular values and vectors satisfy a number of important relations, and the
following is the most important:

Ayi:giui7 HAUZ-HQZO'Z', 1=1,...,n. (32>
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This relation leads to a simple expression for the solution in terms of the SVD. First
note that we can expand b and z in terms of the left and the right singular vectors
u; and v;, respectively, as

n n

b= Z(ulTb) U, x = Z(UZTQT) ;.

=1 i=1
The latter relation, combined with (3.2), leads to the expression
n
Az = Zoi (vi ) us,
=1

and equating the expressions for b and Az, we arrive at the relations (u]b) =

o; (vixz) fori =1,... n. Hence, the “naive” solution to Az = b can be written as
n_o.T
o u; b ‘ (3.3)
a”.nalve - UZ' *
T

=1

In the next section, we shall use these relations to analyze and explain the diffi-
culties associated with the solution of discretizations of first-kind Fredholm integral
equations.

3.4. SVD Analysis and Insight

For general matrices, one cannot say much about the singular values and vectors,
except that the singular values decay, by definition. However, for matrices that arise
from the discretization of first-kind Fredholm integral equations, a lot can actually
be said. We omit the underlying theory here (see, e.g., [11] for details) and state
the most important results here.

1. The singular values of A decay gradually, until they level off at a plateau
approximately at the machine precision times oy (in infinite precision they
would decay to zero).

2. Consequently, the condition number cond(A) = ¢ /0, is approximately the
reciprocal of the machine precision which, for practical purposes, can be con-
sidered as infinite.

3. There is no particular gap in the singular value spectrum — typically, the sin-
gular values follow a harmonic progression ¢; ~ i~ or a geometric progression
o; ~ e, where « is a positive real constant.
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Singular values
T

Figure 3.2: The singular values of the geomagnetic prospecting model problem,
discretized with the midpoint quadrature rule and n = 64.

4. The singular vectors u; and v; have an increasing number of sign changes
in their elements as 7 increases, 1.e., as the corresponding singular values o;
decrease. Often, the number of sign changes is precisely 7 — 1.

To illustrate the above results, we computed the SVD of the matrix A from the
geomagnetic prospecting problem from Chapter 1, discretized as explained above
with n = 64. The singular values are shown in Fig. 3.2, and we see that all the
singular values indeed decay gradually (almost geometrically) until they level off at
approximately 10716, Not surprisingly, the decay rate depends on the depth d — the
larger the d, the faster the decay.

The coeflicient matrix A in this example is symmetric, and for symmetric ma-
trices the singular vectors satisfy u; = +wv;. Thus, we only need to consider the
left singular vectors u; which are shown in Fig. 3.3. We see that the number of
sign changes in the elements of wu; is precisely ¢ — 1, supporting our claim that the
higher the index 7 and the smaller the corresponding singular value o;, the more
high-frequent the singular vectors u; and v;.

From the analysis in the previous section, it is clear that in connection with
the analysis and solution of the problem Ax = b we should monitor the behavior
of the singular values o;, the SVD-components u! b of the right-hand side, and the
SVD components u!b/c; of the computed “naive” solution. Figure 3.4 shows these
quantities for the geomagnetic model problem, and we see that the quantities |ulb|
decay until they, too, hit the level set by the machine precision. Note that in the
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Figure 3.3: The first nine left singular vectors

problem.
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22

u; for the geomagnetic prospecting



Picard plot
T

Figure 3.4: Combined plot of the singular values o; and the coefficients |u!b| and
|ul'b| /o; for the geomagnetic prospecting model problem. Apart from rounding
errors, there is no noise in the right-hand side b.
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Figure 3.5: Same plot as before; noise with o = 107° added to the right-hand
side.

decay region, the quantities |u] b| decay strictly faster than the singular value, such
that in the same region the quantities |u! b/0;| also decay, only slower. In the region
where ]u?b[ levels off, the quantities ]uZTb/ ;| increase. The “naive” solution Zyaive
given by Fq. (3.3) is completely dominated by the SVD components corresponding
to the smallest singular values, and therefore x,.5vc appears as a highly oscillatory
solution with a large norm ||Zpaivello = 6.1 10'%. Figure 3.1 from the previous chapter
confirms this.

It is not a coincidence that the absolute values of the SVD components wu] b
in this example decay faster than the singular values. It can be shown that as
long as there exists a square integrable solution to the underlying integral equation
(i.e., a solution f such that fol f(t)?dt < oo), then independently of the particular
discretization scheme the quantities |u! b| will decay faster than the singular values
0; (until they eventually hit the machine precision level). It is beyond the scope of
these notes to go further into the underlying theory; see [10] and [11] for details.
Before attempting to solve any discretization of a first-kind Fredholm equation, one
should always try to check whether the quantities |u)b| indeed decay faster than the
singular values — otherwise there is no point in trying to solve the problem.

We now repeat the SVD analysis of the same problem as before, but with noise
added to the right-hand side b = b + e, where the noise vector e has normally
distributed elements with zero mean and standard deviation opeise. Figures 3.5
and 3.6 show plots of the SVD quantities oy, u!b, and u!b/0; for two noise levels,

24



Picard plot
T

Figure 3.6: Same plot as before; noise with opeise = 1072 added to the right-hand
side.

Onoise = 1078 and 0,010 = 1973. We see that as the noise level increases, the decay
region of the quantities |u b| gets narrower, and the norm of the “naive” solution
increases.

What happens in these plots is obviously that for small indices 7, the SVD
components uTb are dominated by the exact parts u!b, while for larger indices in
the region where ]uTb] has levelled off, the SVD components uTb are dominated by
the noise part ule. In this last region, the information in the exact right-hand side
b is lost, due to the noise. Moreover, the number of lost components increases as the
noise level increases. Consequently, only the first SVD components u! b/a; of the
“naive” solution carry information about the desired solution. Hence, all numerical
algorithms — direct or iterative — that attempt to compute x,,5v fail to compute a
reasonable approximation to the desired solution; and increasing the problem size n
or the machine precision do not provide any improvements.
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4. REGULARIZATION

It is now the time to present various algorithms for stabilizing the computed solution,
such that it becomes less sensitive to the perturbations. This process is called reg-
ularization, and the corresponding algorithms are called regularization algorithms.

4.1. A Simple Approach: Truncated SVD

It should be clear from the discussion in the previous chapter that although the
“naive” solution Tp,ve = A 'bis useless, because it is dominated by the contributions
from the errors in the right-hand side, some of the SVD components still carry useful
information about the desired solution. This information is associated with the first
SVD components, corresponding to the largest singular values. The question is
how to extract this information, while discarding the remaining, erroneous SVD
components.

Clearly, a simple “brute force” approach to achieve this is to actually compute
the SVD and neglect all the undesired SVD components. This type of regularization
is called truncated SVD (TSVD), and the TSVD solution is computed as

k T
- b

O‘.
i=1

where the truncation parameter k& must be chosen appropriately, e.g., from a plot
of the SVD quantities, such that only the desired SVD components are retained in
the TSVD solution z;. The TSVD method is implemented in REGULARIZATION
TooLS as the function tsvd.

In spite of its simplicity, this regularization method has been used successively in
a variety of applications. Figure 4.1 shows some TSVD solutions to the geomagnetic
model problem with peise = 1072, along with the exact solution.

The choice of the truncation parameter k is quite straightforward. Monitor the
quantities |u! b and choose k at the transition between the decaying region and the
flat region. This ensures that x; consists mainly of those SVD components that
can be trusted; cf. the discussion in the previous chapter. There are also other
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k=2 k=4 k=6
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k=8 k=10 k=12
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k=14 k=16 Exact solution
1 1 1
0.5 0.5 0.5
0 / 0 0
0 20 40 60 0 20 40 60 0 20 40 60

Figure 4.1: TSVD solutions x; to the geomagnetic prospecting model problem with
Onoise = 1072 for k= 2,4,...,16, and the exact solution.



techniques available that do not require the monitoring of the |u] b|-quantities; but
this topic lies outside the scope of this note (see [11]).

There is an alternative formulation of the TSVD methods which gives more
insight. We first introduce the rank-k matrix Ay, defined in terms of the SVD:

k
Ak: E U,Z'O'Z"UZ-T
i=1

where k is the TSVD truncation parameter. Then the TSVD solution solves the
following minimization problem

min ||z]|s subject to min || Ay z — b9,

i.e., there is an infinity of solutions to the rightmost minimization problem involving
the rank deficient matrix A;, and we single out the unique solution with minimum
2-norm. We mention in passing that other regularized solutions with different prop-
erties can be obtained by replacing the 2-norm in the left minimization problem with
other norms — e.g., the use of the 1-norm leads to solution vectors that represent
piecewise polynomial solutions, cf. [12].

We emphasize that the TSVD method is only useful when it is reasonable to
compute the SVD. Indeed, this is possible for small problems — but as the problem
size increases, it becomes prohibitive to compute the SVD.

4.2. Tikhonov Regularization

This algorithm was developed independently by Phillips [16] and Tikhonov [17]. Tt is
most commonly referred to as Tikhonov reqularization, and occasionally as damped
least squares. The key idea is to accept a nonzero residual Az — b and in return
obtain a smaller solution norm. This problem can be formulated as follows

min { [ Az — blf5 + A?||z]3} (4.2)

where the regularization parameter A controls the weight given to minimization of
the solution norm ||z ||y relative to minimization of the residual norm ||Ax — b|s. It
can be shown that there is always a unique solution x, to the above problem, which
we denote the Tikhonov solution. Note that as A approaches zero, the Tikhonov
solution z, approaches the “naive solution” .. (or the least squares solution, if
A is rectangular), while £y — 0 as A — co. In between, there is (hopefully) a range
of A-values for which there is a reasonable balance between the residual and solu-
tion norms, and for which the Tikhonov solution x, is a reasonable approximation
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to the desired solution. In REGULARIZATION ToOOLS, Tikhonov regularization is
implemented in the function tikhonov.

To obtain a deeper insight into the properties of the Tikhonov solution, we can
express z, in terms of the SVD of A as follows:

n
o?  ulb
Ty = E — ;.

2
— g2 + \* 0
=1

The quantities f; = 02/(c2 + \?) are called the Tikhonov filter factors. They all
satisfy 0 < f; < 1, and they control the damping of the individual SVD components
of the solution x,. Specifically, if A is fixed somewhere between ¢y and ,,, then for
0; > A we have f; =1+ (9()\2/0?) ~ 1, while for o; < A we have f; = 0?/)\2 +
O(c}/\Y) =~ 02 /). For singular values o; near A, the filter factors are in a transition
region between the two above extremes. Thus, we see that the first SVD components,
corresponding to singular values greater than A, contribute with almost full strength
to the Tikhonov solution x,. Similarly, the last SVD components corresponding to
singular values smaller than A\ are damped considerably and therefore contribute
very little to x,. Hence, we would expect that the Tikhonov solutions resemble the
SVD solutions when k£ and A are chosen such that o ~ A; more details can be found
in [9].

Figure 4.2 shows various Tikhonov solutions to the geomagnetic prospecting
problem with opeise = 1072 for a large range of A-values — notice the resemblance of
these solutions with the TSVD solutions in Fig. 4.1.

Equation (4.2) is not suited for numerical computations, but there are two other
formulations that lend themselves more to numerical computations. The first of
them is the following least squares formulation

(53)(5)

where [ is the identity matrix of order n, and the other is the normal equations for
this least squares problem

, (4.3)

2

min

(ATA4+ N 1)z = ATb.

While the latter may be suited in certain special situations, it is the least squares
formulation (4.3) that is best suited for numerical computations.

We shall now describe a two-stage algorithm developed by Eldén [5] for comput-
ing the Tikhonov solution. The first step consists of computing a bidiagonalization
of the coefficient matrix A:

A=TUBV',
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A=10 A =2.6827 A =0.71969

1 1 1
0.5 0.5 0.5
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A =0.19307 A =0.051795 A =0.013895
1 1 1
0.5 0.5 0.5
0 0 0
0 20 40 60 0 20 40 60 0 20 40 60
A =0.0037276 A =0.001 Exact solution
1 1 1
0.5 0.5 0.5
0 0 /\ /\ 0
0 20 40 60 0 20 40 60 0 20 40 60

Figure 4.2: Tikhonov solutions z, to the geomagnetic prospecting model problem
with T peise = 1072 for X in the range 1072 to 10, plus the exact solution.
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where U and V are orthogonal matrices, and B is an upper bidiagonal matrix. This
decomposition resembles the SVD, and in fact most algorithms for computing the
SVD include bidiagonalization as the first step. The bidiagonalization is most con-
veniently implemented by means of alternating Householder transformations, and
requires 4 (m — n/3) n? flops, cf. §5.4.3 in [8]. Software for computing the bidiago-
nalization is available in many software packages, either as stand-alone routines or
as part of the SVD routines; and it is available in REGULARIZATION TOOLS as the
function bidiag. Once the bidiagonalization of A has been computed, we can rewrite

(4.3) as .
()= (%)

where & = Vieer= V. The second step of Eldén’s algorithm is an efficient way
to solve the above equation for £, and this is done by a sequence of strategic Givens

min ,

2

rotations that annihilate the diagonal elements of A one at a time, starting from
the top. First we apply a Givens rotation to rows 1 and n 4+ 1 that annihilates the
first element of A I, followed by a Givens rotation applied to rows n + 1 and n + 2
that annihilates the newly created fill in position (n + 1, 2):

X X * % X X
X X X X X
X X X X X X
X X X
X o o« -
X *
X X X
X X X

Next, we apply a Givens rotation to rows 2 and n + 2 that annihilates the second
element of A I, followed by a Givens rotation applied to rows n + 2 and n + 3 that
annihilates the fill in position(n + 2, 3):

X X X X X
X X * ok X X
X X X X X X
X X X
— —
X 0 =
X *
X X X
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This process is repeated until all elements of A I have been removed, and the com-
plete step requires approximately 7 n flops.

The power of Eldén’s algorithm lies in the fact that the regularization problem in
bidiagonal form can be solved in only O(n) operations for each new value of A, which
is important because A usually has to be determined via computing and inspecting
a sequence of Tikhonov solutions for varying A-values. Most methods for computing
a suited value of A do not require x, explicitly, but only the solution norm and the
residual norm — and these norms can also be computed in O(n) operations due to
the following relations

=T
lzllz = ll€ll - and Az =blly = [|[BE =T bll,.

Hence, the transformation z = V¢ back to the original setting, which requires 2n?
operations, needs usually only be done once.

4.3. Variations of Tikhonov Regularization

When A is symmetric and positive definite, there exists an alternative form of
Tikhonov’s method — usually attributed to Franklin — that avoids the normal equa-
tions by instead working with the system

(A+AD)z=b, (4.4)

which can be solved by means of Cholesky factorization. If A = Y7  w; oy w} is the
eigenvalue decomposition of A, then the regularized solution in Franklin’s method is
given by z = Y1  (w!b)/(c; + A) w;. This method does not seem to be used much
in practise.

At this stage, it should be remarked that the 2-norm of the solution is not always
the optimal quantity to include in the Tikhonov formulation. Experience, supported
by theory, suggest that for some problems, it is better to minimize the 2-norm of a
quantity that approximates a derivative of the underlying solution. For example, if
we use the midpoint quadrature rule for discretization, then approximations to the
first and second derivatives are given by L; x and Ls x, respectively, where the two

matrices L1 and Lo are given by

-1 1
Ly=n"t (4.5)
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and

Notice that these matrices are not square: Ly is (n—1) xn and Ly is (n—2) xn. This
leads to the formulation of Tikhonov regularization in general form — as opposed to
the standard form in (4.2):

min {||Az —b|5 4+ N?||Lz|3}. (4.7)

This general-form version of Tikhonov regularization is also available via the function
tikhonov in REGULARIZATION TOOLS. Eldén’s algorithm can be extended to treat
the general case L # I, but we omit the details here; see instead [5] or §5.1.1 in [11].

Tikhonov regularization can be extended in other ways. For example, one can
add certain constraints to the Tikhonov solution, such as nonnegativity, monotonic-
ity, or convexity. All three constraints can be formulated as inequality constraints
of the form G x > 0, taking the following special forms

x > 0 (nonnegativity)
Lla:
LQQ?

> 0 (monotonicity)
>

0 (convexity)

where L and Ly are the two matrices from above. The constraints can, of course, be
combined by stacking the constraint matrices in G. Thus, the inequality-constrained
Tikhonov solution solves the problem

min {HAa:—bH%—I—)\QHLatHg} subject to Gz > 0.

A Matlab function tikhcstr for solving this inequality constrainted Tikhonov problem
is available from the author’s home page.

Other variants of Tikhonov regularization arise when the two norms in (4.7)
are changed. Regarding the residual norm, it is often appropriate to include a
weighting matrix arising from statistical knowledge about the errors e in the right-
hand side. Specifically, if the covariance matrix for these errors has the form C C7,
where C' may be a Cholesky factor, then the residual norm ||Axz — b||2 should be
replaced with |C~'(Ax — b)||,. Regarding the solution norm, the 1-norm || Lz||; is
an interesting alternative to the 2-norm, because the 1-norm can provide regularized
solutions with steep gradients and small curvatures — which is not possible with the
2-norm. In certain problems one can also replace the 2-norm with the negative of the
entropy function, i.e., Y . | #; log(w; z;), where x; are the elements of the solution
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Figure 4.3: The function 1 — (1 — 0?)* which defines the Landweber filter factors,
for w =1 and k = 10, 20, 40, and 80.

x, and w; are associated weights that depend on the particular application. Entropy
regularization is possible when the solution has strictly positive elements, and it is
often used in image processing.

4.4. Tterative Methods

Tterative regularization methods are important for treating large-scale problems, for
which the direct computations involved in, e.g., the SVD algorithm and in Eldén’s
algorithm, become prohibitive. Iterative methods only “touch” the coefficient matrix
A via matrix-vector multiplication, and these methods are therefore well suited for
sparse and structured matrices.

We start with a classical stationary method called Landweber iteration (devel-
oped independently also by Cimino, Fridman, Picard, Richardson, and many others).
Let 2 denote the starting vector, and often (%9 = 0; then Landweber iteration
takes the form

a® = 21 4wy AT(b— Ag® D), k=1,2,3,...,

where w is a real positive parameter satisfying 0 < w < 2/||AT A|s, whose value
controls the behavior of the iterations. If we insert the SVD of A into the above
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formula, then we can show that the kth iteration vector is given by

n T
k) = Z (1-(1-wo))F) ui—bvi,

O‘ .
i=1 v

showing that the filter factors for this method are given by fi(k) =1—(1—-wa?),
fori =1,...,n. Plots of these filter factors are shown in Fig. 4.3 for k = 10, 20, 40,
and 80. We see that the filter factors resemble those for Tikhonov regularization,
with fi(k) ~ 1 for 0? > 1/w and fi(k) ~ kwo? for 02 < 1/w. This analysis
shows that the iteration number k& plays the role of the regularization parameter:
initially, only the largest SVD components are included in the iteration vector (¥,
and as we increase the number of iterations we include smaller and smaller SVD
components into the iteration vector. The analysis also reveals that Landweber’s
method converges slowly: doubling the number of iterations merely halves the value
of the small filter factors.

The literature is full of similar stationary iterative methods, some of them ex-
tensions of the classical Landweber method, and all of them simple to implement
and analyze (because the iteration matrix is independent of the right-hand side).
Unfortunately, all them share essentially the same slow convergence.

Instead, we turn our attention to the use of the conjugate gradient (CG) algo-
rithm. In connection with regularization problems, we need a variant of CG that
solves the normal equations AT Ax = ATb associated with a least squares problem
min ||[Az — b||5. This variant is called CGLS, and it was described in the origi-
nal paper by Hestenes and Stiefel [13] where the CG method was originally pub-
lished. Again, let 2@ denote the initial guess, and define the two auxiliary vectors
7@ = b — Az® and d© = ATr©®. Then the CGLS iterations take the following
form for k =1,2,...

a, = AT/l AdE D
N R N )
b 6D gD
B = [ATT O/ ATE )3
4O = AT® g gD,

The vector ® is the residual vector for the least squares problem, ie., r®) =
b— Az® while the vector d® is the residual vector for the normal equations, i.e.,
d® = ATb — AT A2®),

The CGLS algorithm can be used for regularization in two fashions. One is to
apply it to the Tikhonov problem in the least squares formulation (4.3) with A and
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b replaced by ()\A I) and (8), and in this fashion compute regularized solutions. The
other is to apply CGLS directly to Ax = b, and use the fact that the iteration
number k often plays the same role as a regularization parameter as in Landweber’s
method.

The first approach needs a good preconditioner to be of practical value, but none
of the preconditioners for general problems are suited for Tikhonov regularization
problems, due to the spectral properties of the coefficient matrix ATA + X?I. A
promising specialized preconditioner for regularization problems has been developed
recently by Hanke and Vogel, but more experience with the preconditioner is needed
before it can be evaluated (it will hopefully be included in future versions of this
note).

The second approach is much simpler to use, because the preconditioner is
avoided — we merely apply the above CGLS scheme to A and b. Unfortunately,
this method is hard to analyze theoretically, because it is a non-stationary method
(the iteration matrix depends on the iteration number k) and because the iteration
matrix depends on the right-hand side. Once again, we express the iteration vector
in terms of the SVD of A, and we obtain

n T
® =3 w U b
X fz 0. UZ?

i=1 v

where the CGLS filter factors f Z-(k) depend in a nonlinear way on both b and all the
singular values 4, ...,0,. It can be show that fi(k) ~ 1 for the large singular values
and fi(k) = O(0?) for the small singular values. In the transition range, certain filter
factors can become slightly larger than one.

Plots of typical filter factors are shown in Fig. 4.4 — notice the resemblance with
the Tikhonov filter factors. Also note that for certain values of k, there is a filter
factor slightly larger than one. We see once again that the filter factors dampen the
SVD components corresponding to small singular values, and the transition value
of o; at which the damping sets in decreases as k increases. But the converge of
the CGLS method is faster than that of Landweber and other classical stationary
methods. One can think of CGLS as an iterative scheme for computing approximate
TSVD or Tikhonov solutions, in which a number ¢(k) < k of SVD components are
captured in the kth iteration, cf. Table 4.1.

One of the difficulties with this use of CGLS as an iterative regularization method
is to determine under which conditions the algorithm has an intrinsic regularization
property. Le., for which class of problems do the filter factors look as in Fig. 4.4,
with a flat region where fi(k) ~ 1 and a decaying region where fi(k) = O(0?). A full
analysis of this problem has not been developed yet — partial results can be found
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10° 10 10
10° 10? 10?
0 0 0
10 10 10
k=8 k=10 k=12
10° 10 10
10° 10° 10°
0 0 0
10 10 10
k=14 k=16 k=18
10° 10° 10°
10° 10° 10°
10° 10° 10

Figure 4.4: CGLS filter factors fi(k) as functions of the singular values o; for the
geomagnetic prospecting test problem with 0,4 = 10732,

2 4 6 8 10 12 14 16 18
(k)2 4 6 7 8 9 10 11 11
k

Table 4.1: Corresponding values of k and £(k) in the CGLS algorithm for the problem
in Fig. 4.4.
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in [11], where it is concluded that the desired behavior occurs under the following

conditions.

e The singular values should decay gradually to zero.
e The decay should not be too gentle.

e The quantities |ulb|, i.e., the SVD coefficients of the right-hand side, should
decay faster than the singular values.

All three conditions are usually satisfied in connection with discretizations of
ill-posed problems — but on the other hand there is no perfect guarantee to obtain
the desired features of the filter factors. Things are complicated even further in the
presence of finite-precision arithmetic.

An analysis of the MINRES algorithm (an iterative algorithm related to CGLS) is
presented by Kilmer and Stewart in [14], where it is demonstrated that for discretiza-
tions of ill-posed problems, this algorithm will capture all the SVD components as-
sociated with the large singular values before it starts to include the remaining SVD
components. It is also shown that the number of captured SVD components in the
kth step of this method is often much larger than k.
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5. DECONVOLUTION IN ONE DIMENSION

We now return to the main theme of this note, namely, deconvolution problems,
and we show how the above general algorithms specialize — an various ways — for
this particular class of regularization problems. The key observation here is that for
convolution problems, where the kernel satisfies

K(s,t) = h(s—1),

the corresponding matrix A derived from a quadrature rule discretization, with
elements a;; = w; h(s; —t;), can be written in the form

A=HW, (5.1)

where W = diag(wy,...,w,) is a diagonal matrix consisting of the quadrature
weights, and the elements of the matrix H are “samples” of h, i.e.,

hij=h(s; —t;), i,j=1,...,n. (5.2)

At this stage we will assume that the quadrature points s; and the collocation points
t; are identical and chosen equidistantly spaced (recall out assumption that both
integration intervals are from 0 to 1), i.e., s; = t; = a4+ Fi,i = 1,...,n. In this
case the elements of the matrix H satisty

hij = h(si — 1;) = h(Sive — Lje) = Pitejie

for all relevant 4, j, and £. This special structure of the coefficient matrix can be
used to derive very efficient algorithms. We shall first explore the structure of H,
and then turn to the regularization algorithms.
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5.1. Toeplitz Matrices and their SVD

A Toeplitz matriz T is a matrix whose elements depend only on the difference 7 — j
between the indices, i.e., T can be written as

o tq1 loo oo 11y
(31 to L4 o 1oy
T = L2 S T I - e (5.3)
tn1 tno ln3z -+ 1o

Notice that an nxn Toeplitz matrix is characterized by only 2n—1 different elements
(or merely n elements if 7' is symmetric), and it is this feature that makes it possible
to derive efficient algorithms for Toeplitz matrices. Obviously, the matrix H in Eq.
(5.2) is a Toeplitz matrix when the quadrature and collocation points are identical
and equidistantly spaced.

Toeplitz matrices 1" are persymmetric, i.e., they are symmetric across the an-
tidiagonal. Hence, in addition to the relation ¢;; = ¢, 4; ¢ = t,_; for all relevant
i, j, and £, their elements satisfy the relation ¢;; = ¢,_;41n—s41. This can also be
expressed as the fact that the Toeplitz matrix with its columns in reverse order is
symmetric. Let J denote the exchange matrix

1
J:
1

which, when multiplied from the right to T’, reverses the order of the columns of 7.
Thus we have T'J = (T'J)T = JT7 and hence (because J? = [ & J ! = J) the
persymmetry of T can be expressed as T'= JT7.J. One of the implications of this
property is that the inverse of T is also persymmetric, since T°1 = (JT7J) ! =
JH T YTt =Jg(rHTJ.

The persymmetry of 1" can be used to derive certain symmetry relations between
the singular vectors of T'. From the symmetry of the matrix 7" J, it follows from

(3.1) that
TT=) wivh (vw)" < T =2 wivk (v Jw)",
j=1 7=l

where the quantities y; = +1 are chosen to make 7;\; positive. The rightmost
equation above is identical to the SVD of T', and we recognize u; = w; and v; =
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v, Jw; = v;Ju;. Hence, the elements of the left and right singular vectors are related
by

Vij = Y, Un—it1,5, ,7=1,...,n.
Le., except perhaps for a sign change, the vector v; is identical to u; with its elements
in reverse order.

If T' is symmetric such that u; = 7,v;, where the quantities 7, = £1 are gener-
ally different from the 7, then additional symmetries occur because uy; = 7,05 =
¥ (Vjtn—i115) = V;7;Un—i11,4, and similarly for the right singular vectors. We can
summarize these symmetry relations as follows:

izl = [tniy1i] = |vi] = [on-s11,4l, 1,j=1,...,n.

In other words, the left and right singular vectors are identical except perhaps for
a sign change, and the sequence of elements in each vector is symmetric around the
middle elements except perhaps for a sign change. We illustrate this by means of a
small example:

01 2
T=(101],
2 10
628 707 —.325 628 —.707  .325
U= .460 0 .838 |, V=1 460 0 —.838
628 —.707 —.325 628 707 .325
Here, Uy = J?J,l = U = J”Ul, U9 = —JU,Q = —Ug = JUQ, and Uz = JU,3 = —Us =

—Jwvs. The singular values of T" are o1 = 2.73, 09 = 2, and g3 = .732.

5.2. Circulant Matrices and Convolution

Circulant matrices form a special class of Toeplitz matrices in which the bottom
element of a column “wraps around” as the column is repeated to the right in a
down-shifted version. Hence, an n X n circulant matriz C has the form

Co Cpn-1 Cp—2 "+ C
c1 Co Cp-1 *° Cg

C = Co 1 Co e C3 ,
Ch—1 Cpn—2 Cp—3 -+ Co

i.e., C has n different elements satisfying the relation ¢;; = ¢(—jymoan. Among other
things, circulant matrices can be used to express the convolution of two periodic
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signals in matrix form. recall that if f and h are two n-periodic signals, then
the convolution of f and h is a new n-periodic signal g with elements given by
gi = E?Zl fihi—j. Thus, if I is the first column of C}, then g is obviously given by

g=0Cnl. (5.4)

Note that we can interchange the roles of f and h without changing ¢, hence there
is nothing special about the circulant matrix being made up of h.

An amazing fact about circulant matrices is that all circulant matrices of order
n have the same eigenvectors, and the eigenvalues are given by the DFT of the first
column of C'. In order to derive this result, we use the fact that the DF'T of an n-
vector f can be written as f = DFT(f) = F), f, where the elements of the complex
symmetric matrix F), are given by

(Fn)ij = (exp(—2mi/n))® DD

where 7 is the imaginary unit. The inverse of F}, is given by F,! = n lconj(F,)
— notice the complex conjugation — showing that the IDFT can be written as f =
IDFT(f) = E,;'f = n'conj(F,)f. We now insert these two relations into the

expression (1.1) for g to obtain

g = IDFT(DFT(h).*DFT(f))
= S NE h).x(F, f))
— F,Y(diag(F, h) F, f)
= [ 'diag(F,h) F, f.

Via the definition of F}, and the expression
F ldiag(F,h) F, = n 'conj(F,) diag(F,h) F,

it is easy to show that this matrix is circulant. Hence, the expression for ¢ is identical
to the expression in (5.4) if we choose Cy, = F 'diag(F, h) F,,, and since there are
only n free elements in Cj, as well as in F), 'diag(F), h) F,, this relation is unique. This
shows that diag(F},h) is a similarity transform of Cj, which preserves eigenvalues,
and hence the elements of the vector F,,h must be the eigenvalues of (. Moreover,
the columns of the matrix n~/2F), are orthonormal eigenvectors of C,.

At this stage we emphasize that all DF'Ts and IDFTs should be computed by
means of the FFT algorithm. If n is a power of two, then a complex FFT requires
5n log,n flops, and if data are real then the FI'T' can be implemented in such a
way that only half as many flops are required. These numbers actually ignore the
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overhead in computing the complex exponentials; in Matlab the total amount of
flops is 2.5n logyn + 5n + O(1) for real data. Notice that the interchanges of the
elements that is usually part of an FFT algorithm is not necessary in the above
application and can therefore be switched off, thus saving computational overhead
(although this is not possible in Matlab).

5.3. Matrix-Vector Multiplication by FFT

In connection with iterative algorithms, it is important to know that matrix-vector
multiplication with a Toeplitz matrix can be performed in O(n log,n) flops — as
opposed to 2n? flops for a general matrix-vector multiplication. We derive the
algorithm here, and more details can be found in [18].

The key idea is to embed the n x n Toeplitz matrix 1" in a larger p X p circulant
matrix C, and use the FFT algorithm to implement the fast matrix-vector multipli-
cation with C. Specifically, using the notation of FEq. (5.3), the first column of C is
constructed such that

C(l s 1) = (t(),tl, ce ,tnfl, 0, ce ,O,tlfn, ce ,tfl)T.
The middle part of this vector consists of p — 2n 4 1 zeros, and p should be chosen
to be the smallest possible power of 2 satisfying p > 2n in order to speed up the

FFT computations. For example, if T is the nonsymmetric 3 X 3 matrix

3 -2 -1
T=12 3 =2
1 2 3
then p = 8 and (' takes the form
3 -2 -1 1 2
2 3 -2 -1 1
1 2 3 -2 -1
1 2 3 -2 -1
¢= 1 2 3 -2 -1
1 2 3 -2 -1
—1 1 2 3 =2
-2 —1 1 2 3

where we recognize T as the leading 3 X 3 principal submatrix of C.
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10 .
——  Full matrix

—— FFT-alg.

— n,= 40
n, i 20

— n,= 10

10° - ”b:5

10°F

Hops

Figure 5.1: Flop counts for the FE'T-based Toeplitz matrix-vector multiplication
algorithm, compared to flop counts for ordinary matrix-vector multiplication with
full and banded matrices.

In order to multiply a vector x with T we first pad this vector with p — n zeros

()

and when we multiply z with C', we obtain the new vector

zzcz:<T~$>.
29

Due to the zeros in z, the first n components of Z are identical to the desired matrix-
vector product T'z. If data are real and the DET of C(:, 1) has been precomputed,
then the matrix-vector multiplication C'Z can be computed very efficiently by means
of essentially two FE'T's (one real and one complex) in only about 7.5 p log, p flops.
Since p is bounded above by 4n we obtain the approximate upper bound 307 log, n
for the flop count involved in one matrix-vector multiplication, and if n is a power
of 2 (such that p = 2n) then the approximate bound reduces to 15n log, n flops.

Note that if T’ is real and symmetric, then the vector C(:,1) is “real even” and
DFT(C(:,1)) is a real vector — but the complexity of the Toeplitz-based matrix-
vector multiplication algorithms stays the same.

to obtaln
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Whether the FFT-based matrix-vector multiplication actually pays off depends
on the elements of the Toeplitz matrix 1": if T" is a banded matrix with bandwidth
ny, (or if the elements outside this band are so small that they can be considered as
zeros), then the matrix-vector multiplication requires 2n;n flops. If n is a power
of two, then the break-even value of n, for which the two approaches require about
the same work, is n = 2%/7% — ie., for a fixed bandwidth n, the ordinary banded
matrix-vector multiply is faster than the FFT-based approach for n > 2™/7%_ Figure
5.1 illustrates this point.

5.4. Direct Algorithms for Toeplitz Matrices

We have shown in the previous section that iterative regularization algorithms can
be implemented very efficiently for convolution problems with Toeplitz matrices.
As we shall see in this section, the same is true for direct methods implementing
Tikhonov’s method. Since the diagonal weight matrix W in (5.1) can always be
“absorbed” into the solution vector xz, we can assume without loss of generality that
the coeflicient matrix A is a Toeplitz matrix.

We consider first the special case where the coefficient matrix A is triangular and
Toeplitz, and L is a p X n Toeplitz matrix with dimensions p < n and with zeros
below the main diagonal. Triangular Toeplitz matrices arise, e.g., in connection
with Volterra-type deconvolution problems (1.4), and I is almost always a banded
Toeplitz matrix when the integral equation is discretized with equidistant abscissas.
We shall here consider the case where A is upper triangular; problems with a lower
triangular coefficient matrix can easily be brought into this form. The coefficient
matrix in the least squares formulation of Tikhonov regularization then takes the
following from (shown here for n = 6 and p = 4, and ignoring the possible band
structure of L):
ap Ao Az a4 Qs dag

ap Ao Qagz Qa4 as

a; Gy az ay4
ay ay ag

A B a) ag
AL aq

ll l2 l3 l4 l5 l6

We shall now demonstrate how to transform this matrix into upper triangular
form by means of n Givens transformations. First, we apply a Givens rotation to
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rows 1 and n + 1 in order to annihilate the element [;; this rotation changes all the
elements in the two rows, and we denote the new elements with a prime, e.g., the
(1,1)-element becomes aj. The same rotation is applied (implicitly) to the row pairs
(7,n+j) for j =2,...,p, and due to the Toeplitz structure of A and L the new rows
are just shifted versions of rows 1 and n 4+ 1. Thus, we obtain the first intermediate

matrix
7 7 7 7
Ay Gy a3 Ay A5 Gg
7 7 7
Ay Gy Gz Ay G5

7 7 7 7
Ay Gy A3 a4y

ap Ay ag

7 7

a, a

r_ 1 G
M = p
ay

b B L s
b B L I
b B I

by I

We now apply the same procedure to the submatrix M’'(2:n + p,2:n) to obtain the
second intermediate matrix M”, where a double prime denotes an element that is
changed in the second step:

7 7 7 7 7 7
ay Ay Az Ay A5 Gg
1 1 1 1 1

ay Gy a4z a4 Gy

1 1 1 1
ay Gy Az a4y

i Iz I

ap Qg ag
1 1
al a
M// — 1 /2/
ay

yonouwo
1 1 i

l3 l4 l5

1 1

l3 l4

Obviously, we can repeat this process on the submatrix M”(3:n+p,3:n), and so on,
until we end up with an upper triangular matrix after n steps. The total amount of
work is approximately 8 n?, and the storage requirement is dominated by the need
to store n?/2 elements of the final triangular matrix. This algorithm is due to Eldén
6],

Next we consider the more general case where A is a general m x n Toeplitz
matrix, and we present an algorithm due to Bojanczyk, Brent, and de Hoog [3]
(with improvements by Park and Eldén [15]) for computing the triangular matrix R
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in the QR factorization

(1) -ox

The algorithm can be augmented to treat general I matrices. To get started, we
partition the coefficient matrix in the following ways

ag u’ A
A v A T Gy
<)\]>: AT T AT o |7
0 M o7 A

where A is the leading/trailing (m — 1) x (n — 1) submatrix of A, 1 is the identity
matrix of order n — 1, and the four vectors u, v, u, and v are chosen to fill out A
correctly. We also partition the n X n upper triangular matrix /2 accordingly in the

T -
_f T 2 (R z
e (5 5 ) - (0 )

By comparing the submatrices in the equation

() () -

we are lead to the following relations for the three nonzero blocks of R:

following two ways

2 = ad+vlv 4+ N
2T = (agu’ + UTA\)/TH
RI'R, = RIR,+uu’ —o0" — 227,

Notice that A enters only explicitly in the formula for ;.

We can use the first two relations to immediately compute the first row of R,
namely, (ry;, z7). The third relation shows that the submatrix R, is related to
R; via a sequence of three rank-one modifications. Hence, if we knew R, then we
could compute R, by means of well-established numerical techniques for up- and
downdating, see, e.g., §12.5 in [8].

The heart of the algorithm is to recognize that we already know the first row of
Ry, which is identical to R(1,1:n — 1), and with this information we can compute
the first row of R,. First we determined a Givens rotation (G; which, when applied
to the first row of R; and u”, annihilates the first element of u, i.e.,

o (4)-( )
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where u/(1) = 0. Note that ]3% is identical to R; except for its first row. Next we

determine a second Givens rotation (A}l which, when applied to 97 and 2%, annihilates

the first element of z, i.e.,
N oo
Gl < ZT > - < (Z/)T > )

where z/(1) = 0. Finally we determine a stabilized hyperbolic rotation H; which,
when applied to the first row of R, and 7, annihilates the first element of 7, i.e.,

w(#)=(e )

where ¥/(1) = 0. We have now finished the computation of the first row of R; and
thus the second row of the desired triangular matrix R.

To proceed, we continue the up- and downdating process on the second row of
R}. First we use two Givens rotations G and (G5 to annihilate the second element
of ¥/ by means of the second row of R}, and to annihilate the second element of 2’
by means of v', respectively:

G<<f>>:<<f>> é<8>2<<m>>

Then we use a stabilized hyperbolic rotation Hs to annihilate the second element of
v' by means of the second row of R}

At this stage, we have computed the first three rows of the desired matrix R, and
it is clear that this process can be repeated until all of R has been computed. The
algorithm requires mn + 6n? flops. Information about @ is not explicitly available,
so we must computed the Tikhonov solution via the semi-normal equations

RTRz, = A"b.

This requires additional (m + 2n)n flops, which can be reduced if the FFT is used
to compute ATb.

We emphasize that both algorithms must be started over if a regularized solution
with a new value of A is desired. The same is true if we use Levinson’s algorithm

(cf. §4.7.3 in [8]) to solve the system (4.4) in Franklin’s method.
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Figure 5.2: The approximate solution ¥ is embedded in the vector Z, and the exact
solution z is superimposed. Notice the large oscillations (“ringing”).

5.5. Periodic vs. Nonperiodic Deconvolution Problems

In the periodic deconvolution problem (1.1), the matrix A is already a circulant
matrix, and if regularization is not needed then the solution is given by FEq. (1.2). If
regularization is needed, then we can easily modify this formula to include Franklin’s
version of regularization (4.4). Since A = WAWT with W = n~V2F, and A =
diag(DFT(h)), it is easy to see that the regularized solution can be computed as

/ = IDFT (DFT(g)./(DFT(h) + ). (5.5)

In deconvolution problems where A is not a circulant matrix, i.e., where the
signal h is not periodic with period n, Eq. (5.5) is occasionally still used to compute
a solution in order to achieve the computational speed of the FFT algorithm, at the
cost of a degradation of the computed solution.

Inspired by the FE'T-based technique to compute the Toeplitz matrix-vector
product fast, a typical approach is to imbed A into a larger circulant matrix C' as
described above, pad the right-hand side b with additional p — n zeros to make it
conform with C, and then compute the vector Z = C~!b, where b is the augmented
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version of b. Then as the approximate solution x we use those elements of Z that
correspond to the locations of the b-element in b. We note that if a cyclic shift
is applied to b then the same cyclic shift applies to T, and thus the approximate
solution z is independent on the locations of the zeros in b.

Unfortunately, this approach is not guaranteed to yield a good approximation to
the desired solution. To see this. we introduce the notation

_ (T Cup . [z ~ (b
laar) =) =)

and it is easy to show that the inverse of C' is given by

071_ T-1 0 T71012571021T71 —T’lCmS’l
N 0 0 —SilcmTil St ’

where the Schur complement S is given by S = Cyy — Oy T 1C4y. Hence, it follows
that the approximation Z can be expressed as

r=ux + T7101257102137

showing that there is no guarantee that = resembles the exact solution .

The error component T 1C15S 1Cy 1z often appears as artificial oscillations,
called “ringing,” at both ends of the approximate solution z. We illustrate this
with a numerical example with n = 64, a Gaussian kernel chosen such that a;; =
exp(—(i — 7)%/2), and a piecewise constant solution z. The right-hand side b = Ax
is padded with 32 zeros on top and 32 zeros below, and the computed vector Z of
length 2n = 128 is shown in Fig. 5.2 with the exact solution x superimposed at the
correct position. Notice the large, undesired ringing.

Alternatively, if the underlying signal h is peaked at index 0 and decaying to
zero away from this index, thus making A as effectively banded matrix, then one
could replace h with a periodic signal of the same length, i.e., with the sequence
hi,ha, ... hnjo, hpjoii, hnjo, ... g, ho. This correspond to replacing the Toeplitz
matrix A with a circulant matrix of the same order whose first column — in Matlab
notation — is given by [A(1:n/2,1); A(n/2 + 1: —=1:2)]. The solution to this mod-
ified problem has exactly the same difficulties with ringing as the solution in the
previously described approach.
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6. DECONVOLUTION IN TwoO DIMENSIONS

In this chapter we discuss certain numerical aspects of 2-D convolution problems.
Such problems arise, e.g., in image processing, and the dimensions of these problems
quickly get large — for example, 1024 x 1024 images are now common in astronomy
as well as other areas.

Although the underlying techniques and difficulties are essentially the same as
in the 1-D case, there are certain new techniques that come in very handy for
2-D problems. We start with a brief introduction to the world of 2-D convolution
problems, and then we introduce a very useful tool from linear algebra, the Kronecker
product. After that, we turn to the discretization and numerical treatment and
solution of 2-D problems.

6.1. 2-D Deconvolution Problems

The general 2-D version of a first-kind Fredholm integral equation takes the form

1 1
/0/0K(ﬂf,y,aﬁ’,y’)f(ﬂf’,y’)dﬂf’dy’=9($,y)- (6.1)

We shall limit our discussion here to the important case where the kernel K is a
convolution operator K(z,y,2',y') = h(x — 2',y — ') whose variables x — 2’ and
y — 1y separate, i.e., the kernel has the special form

K('j’.uyua:/uy/) = K('aj - a:’)w(y - y/)u

where k and w are functions. When we insert this product into the general form of
the integral equation, we notice that due to the separation of the variables in K,
the integration can be split into the two variables ' and /'

/o1 we - 2) </01 wy —y) [ y) dy’) da' = g(z,y). (6.2)

This Fredholm integral equation shares exactly the same analytical and numerical
difficulties as the 1-D version.
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We give an example of such a problem arising in confocal microscopy [2], a tech-
nique that provides improved resolution compared to conventional light microscopy.
If we assume that the object is uniformly illuminated, and that the collector lens is
simply an aperture of width d, then the 2-D object f is related to its image ¢g via a
1-D convolution equation whose kernel separates as in (6.2), with functions x and
w given by (xd2)

sin(mdz
k(z) =w(z) = —
Precisely the same 2-D integral equation arises in connection with extrapolation of
band-limited signals. 2-D convolution problems with separable kernels also arise in
connection with image restoration problems, and we return to this subject shortly.

6.2. Kronecker Products

The Kronecker product A @ A of two matrices A and A, of dimensions m x n and
m X T, respectively, is defined as a new matrix of dimensions mm X n7 given by

_ T A A - TymA
Aoa=| "5 7 i (6.3)
GmA TmA - TGamA

The Kronecker product can also be expressed in terms of the columns of A =
(a1,...,a,) and A= (ay,...,a5) as

Z@A: (61®a1,...,61®an,62®a1,...,6ﬁ®a1,...,Eﬁ®an). (64>

The Kronecker product is very useful when dealing with discretizations of 2-D prob-
lems, and it enjoys a number of properties that come in handy in this connection,
such as the relations

(Ao B)' = AT @ B” (6.5)

and

(A© B)(C @ D)= (AC)® (BD). (6.6)

Some norm relations for Kronecker products are
IA@ Bllp = [Allp |1Bllp,  p=1,2,00,F.

More details about Kronecker products can be found in [18].
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Along with the Kronecker product, we need the “vec” notation. If X is an m xn

matrix with column partitioning X = (x1,...,,), then we define the vector vec(X)
of length mn as
Iy
vec(X) = : : (6.7)
T

The Kronecker product and the “vec” notation are connected via the following
important relation, which we shall make extensive use of

(Z @ A) vee(X) = Vec(AXZT). (6.8)

One of the many amazing properties of the Kronecker product A ® A is that its
singular value decomposition is entirely made up of the SVDs of the two matrices A
and A (and the same is true for the eigenvalue decomposition). Specifically, if both
A and A are square, and if their SVDs are given by

A=USXVT  and A=TxV,

then it follows from (6.4) and (6.6) that

AoA = ToU)Eox) (Vo)

= D) @ ouy) (@) @ ov)"

i=1 j=1

which, except for the ordering of the singular values and vectors, constitutes the
SVD of A® A. We see that the n® singular values of A ® A consist of all the
products of the singular values of A and A, while the left and right singular vectors
of A® A consist of all the Kronecker products of the left and right singular vectors
of A and A. Hence, to work with the SVD of A ® A, one merely needs to compute
the two SVDs of A and A. As we shall see below, similar computations savings
always can be made when working with Kronecker products.

6.3. Discretization when Variables Separate

After the above venture into the world of Kronecker products, we now turn our
attention to the 2-D convolution problems in (6.2). To discretize this 2-D decon-
volution problem, we use (for simplicity) the midpoint quadrature rule. First we
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apply this rule to the “inner” integral at the quadrature points v, £ =1,...,n, thus
arriving at the function ¢:

| wtv=s) s )iy 2wty =) T ) = o1’ )

{=1

Next we apply the midpoint quadrature rule to the “outer” integral at the quadrature
points zi, k = 1,...,n, thus arriving at the function ¢:

| rle =) olal ) del 220y e = ) et 0) = (o),

k=1

Then we use collocation to obtain a system of linear equations, and we use as many
collocation points as quadrature points to make the system square,

¢($iayj):9($i,yj), ,7=1,...,n.

Notice that we have used the same number of quadrature and collocation points in
each variable — this is not required, but makes our exposition simpler.

We shall now derive the equations for the system of linear equations correspond-
ing to the above discretization scheme. First we need to introduce the four n x n
matrices A, A, I, and G with elements given by

A =n" Rz —2y),  Ap=n"lwly —y)
Fro = f(Th, v0), Gij = 9(24,9;),
where all indices are in the range 1,...,n. note that A and A consist of samples
of the functions k and w, respectively, while F' and G consist of samples of the
approximate function f and the right-hand side g, respectively. We can now define
an n X n matrix ® that corresponds to the “inner” integration, with elements given

by

n

q)kj = ¢<$;wyj) = nil Zw<yj - yé)f@j;wyé)u j,k‘ = 17 sy Ny

=1
and by studying the indices of the above expression it follows that ® can be written
as & = F ZT, where F' and A are defined above. Similarly, we can define an n x n

matrix ¥ that corresponds to the “outer” integration, with elements given by

n

qjij = ,L/}<ajluyj) = 7171 ZK;<$Z - ajés) ¢<aj;myj>7 Z?] = 17 ey Ty

k=1
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and this matrix can be written as ¥ = A ®, where A is also defined above. Collo-
cation then corresponds to the requirement that ¥ = (G, and in this way we have
arrived at the following linear relations between the solution and the right-hand side:

AFA =G — (Z 0% A) vec(F) = vec((). (6.9)

The rightmost equation is a system of n? linear equations in n? unknowns, and
corresponds to the linear system Ax = b in the 1-D case. This system is useful for
theoretical considerations, while the leftmost expression in (6.9) is more suited for
numerical computations.

6.4. Digital Image Reconstruction

Digital image restoration — in which a noisy, blurred image is restored on the basis
of a mathematical model of the blurring process' — is probably the most well-known
example of a 2-D deconvolution problem. A recent survey of this topic, including a
discussion of many practical aspects, can be found in [1]; here we limit out discussion
to those aspects of image restoration that are directly connected with numerical
inversion algorithms.

A digital gray-scale image is really an m x n matrix F' whose nonnegative entries
represent light intensity, and today’s digital images are usually recorded by means
of a CCD camera that records the number of photons hitting a 2-D array of sensors.
Hence, we can consider the image F' as a sampled version of a continuous 2-D
function f(2',y') representing the exact image, and this models fits with the above-
mentioned discretization scheme based on the midpoint quadrature rule. Digital
images are usually stored as integers using 8 or 10 bits, but in connection with our
deconvolution algorithms we can consider the matrix elements as real numbers.

The noise in a digital image typically consists of photon noise (usually with a
Poisson distribution) arising from the discrete nature of the light, plus amplifier
noise (usually colored Gaussian noise) from the electronic components that convert
the recorded light intensity into a digital signal.

There are many sources of blur, and some of the most important are discussed
here along with their point spread functions, i.e., the kernels K that model the blur-
ring of the underlying exact image f. We focus on spatially invariant point spread
functions whose kernels are separable and of convolution type, i.e., K(z,y,2',y') =
k(x—2")w(y—vy'). This means that the blurring is identical in all parts of the image,
and separates into pure horizontal and pure vertical components.

LOpposed to image enhancement where the image is manipulated on a heuristic basis.
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Motion blur arises when the camera moves while the image is recorded, or when
the object itself moves while the camera is steady. As long as the exposure time is
small, we can consider the motion of the camera or the object as linear, and if the
motion is horizontal then the corresponding point spread function takes the form

i _ / <
K('a”.?y;a”./;y/) = hL(a? — a’,’/) — { 2L ’a”. X ’ >~ L

0, else

(6.10)

where the parameter I characterizes the smearing of the image. Similarly, if the
motion is vertical then the point spread function is given by

L <L

K(@,y,2y)=hly—y) = { 0. s

else

where L plays the same role as before. The corresponding discretizations A @ A
of these two point spread functions are given by B, @ I and [ ® By, respectively,
where [ is the identity matrix and B, is a banded Toeplitz matrix of appropriate
dimensions with elements given by

e li—dl<¢

(Be)s = { & (6.11)

else

where the parameter £ depends on both I and the discretization.

Out-of-focus blur arises, of course, when the lens is out of focus, i.e. when the
focal point of the lens does not match with the light-sensitive CCD. The point spread
function for out-of-focus blur is

0, else

K(a:,y,a:’,y’) _ { #7 \/(aj - aj/)Q + (y - y/)Q <R (612>

where the parameter R characterizes the defocus. This function, however, does not
separate in the variables £ — 2’ and y — v/, and it is therefore customary to use an
alternative point spread function whose variables do separate, namely,

K('aju Y, $/,y/) = hIDL(aj - aj/) hR(y - y/)u

where the function hg is identical to the horizontal/vertical motion blur function
(6.10) with L replaced by R. The corresponding discretization of the latter point
spread function is given by A ® A = B, @ B,.

Atmospheric turbulence blur arises, e.g., in remote sensing and astronomical
imaging, and is due to long-term exposure through the atmosphere where turbulence
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Figure 6.1: The decay of the function 7,(¢) in the atmospheric turbulence blur

in the atmosphere gives rise to random variations in the refractive index. For many

practical purposes, the blurring can be modelled by a GGaussian point spread function

1 1 (z—2\> 1 y—vy\’
K ) = - =
(z,y,2,y) 27T056XP< 2< = > 2€XP< -
= ez —2)n.(y—9),

where the function 7, is given by

(6.13)

@ 1 1 <t>2
= exp| —= | — ,
Ny = =P |5 {5

by

and where & and o are two constants that characterize the blurring in the x and y
directions, respectively. If we introduce a Toeplitz matrix T, with elements given

1 1/i—j\"
TO’Z“: . b
( )J QWUGXP< 2< o >>

then the discretization of the atmospheric turbulence point spread function takes the
form A® A = T>®T,, where the two Toeplitz matrices should have the appropriate
dimensions. Depending on the dimensions and the value of ¢, the matrix T, may
be a full matrix or an effectively banded matrix. Figure 6.1 illustrates this point.
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Original image Atmospheric turbulence blur

Horizontal motion blur Out-of-focus blur
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+
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Figure 6.2: An exact image, and three blurred versions of the same image.

The above three blurring models are illustrated in FFig. 6.2 with an example
using a simple test image (which is generated by means of the function blur in
REGULARIZATION ToOLS). Notice the distinctly different nature of atmospheric
turbulence blur and out-of-focus blur.

We remark that in image processing, where the “signals” are always nonnegative,
it is common [1] to measure the power of an image by first subtracting the image’s
mean value from all pixels; i.e., if gy is the mean value of all the elements of F,

1 m n
Hp = %ZZfij?

=1 j=1
then the power of F'is given by
P(EY =Y (fii—pr) = |F - neZl
=1 j=1

in which = is an m X n matrix of all ones. Along this line, if Gpye = AF A" is the
“pure” blurred image and F is additive Gaussian noise with zero mean and standard
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deviation 0, then the blurred signal-to-noise ratio (BSNR) of the blurred noisy
image G = Gpue + F is given by

PG ure HG - /’LGpureEHl%‘

noise

(6.14)

Similarly, the improvement of the restored image Fi.s over the noisy blurred image

(7 is measured by the improvement in SNR (ISNR), defined by

F—-G|3
ISNR = 10 log,, H (6.15)
res|| |

6.5. Regularization with Kronecker Products

In this section we express the TSVD and Tikhonov solutions to the discretized 2-D
problem (6.9) in terms of Kronecker products, thus illustrating how all computations
with the large n? x n? matrix A @ A can be avoided.

We begin with the TSVD solution which is defined in terms of the SVD of A® A.
Let vec(Fy) denote the TSVD solution, and F, the corresponding 2-D version. Here,
k is the TSVD truncation parameter, i.e., the number of singular values of A ® A
to be included in the regularized solution. Then vec(Fy) is given by

(T; @ u;)vec(G) ,_
vec(Fy) = Z . (T; @ vy),
6\ J
where the summation is over the k largest quantities @; 0;. Using the relation (6.8)
we arrive at the expression

T,
F=y 4 G T (6.16)

J
0,0
k L

with the same summation as above. Note that we express the 2-D TSVD solution in
terms of rank-one matrices v; 7;. Equation (6.16) is very convenient for computing

2-D TSVD solutions in terms of the two SVDs of A and A.
Alternatively we can define a 2-D TSVD solution I} 7 by using two truncation

parameters k and k associated with the SVDs of A and A, respectively. This solution
is given by the expression

(6.17)



We remark in passing that if the 2-D integral equation collapses into a 1-D problem in
the variables # and 2/, then A =1, i.e., a 1 x 1 matrix with SVD @, = 7, = 7; = 1,
and (6.16) and (6.17) reduce to the standard expression (4.1) for the 1-D TSVD
solution.

Consider now the Tikhonov solution. The underlying formulations of Tikhonov
regularization are now

min{”(Z@A)vec(F)—vec( )HQ—I—)\2’V6C H }
and .
min { | AFA" = G+ N P},

and the associated least squares problem is

A A vec((7)
< Ve >Vec(F)— < 0
where I,,2 is the identity matrix of order n?. If vec(F)) denotes the Tikhonov solution,

where F) 1s the corresponding 2-D version, then vec(F)) can also be expressed in
terms of the SVD of A @ A. We recognize that the 2-D filter factors are given by

02 02

2—2_|_)\27

min ,

2

fij =

1,7=1,...n,

and the expression for the 2-D Tikhonov solution becomes

n

Py = Z S f G_”J o7 (6.18)

=1 j=1 7i0

Both algorithms described above require the computation of the SVD of the two
matrices A and A, and the algorithms are therefore of complexity O(n?). In the
computation of the 2-D Tikhonov solution, it is possible to replace one of the SVDs
(of either A or A) with a bidiagonalization of the matrix, as described in [7]; the
complexity of the algorithm is the same. At this moment, it is not clear whether
it is possible to derive an efficient 2-D Tikhonov regularization algorithm based on
two bidiagonalizations of A and A.

6.6. Kronecker Products in Iterative Methods

We can also apply the iterative methods to the discretized 2-D problem in (6.9).
For example, one step of Landweber’s method becomes

VeC(F(k)) = vec(F(kfl)) Tw (Z ® A)T (Vec(G) _ <Z® A) Vec(F(kfl)»
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and by means of (6.5) and (6.8) we can rewrite this formula in the following, more
convenient form

RED = qg— Ap®DZ
F® = pl) L ATREVA

where R*~1 is the residual matrix corresponding to the iteration matrix F*=1,
We see that the basic “building blocks” in this algorithm are the multiplications of
the iteration matrix F*~ Y and the residual matrix R*# 1 from the left and right
by A and A.

Similarly, we can rewrite the 2-D version of the CGLS algorithm in terms of the
matrices A and A. To do this, we use the fact that ||[vec(X)|s = | X||r, and the 2-D
CGLS algorithm takes the form

ap = |ATREVA|Z /||ADE VA2
F® = pe=1 4 o pE-D

R® = ROV _ o, ADEDAT

B = |ATR®A|Z /| ATRO VA2
DW= ATR(R)Z_l_ﬂkD(k*l)

with starting conditions F(® = initial image, R® = G — AF (O)ZT, and D© =
ATRO' A, The advantage of this formulation is that we work solely with the two-
dimensional arrays that represent the underlying 2-D functions.

6.7. 2-D FFTs and Convolution

When both A and A are Toeplitz matrices, we can use the techniques from the pre-
vious chapter to derive an FFT-based algorithm for computing the matrix product
A X A, where X is any matrix that conforms with the other two matrices.

Our discussion takes its basis in the 2-D convolution of two general 2-D periodic
discrete signals, represented by the two m X n matrices I' and H. Then the convo-
lution of F' and H is another 2-D periodic signal which is represented by the matrix
(G whose elements are given by

Gij = Z Z St hifk,jféu

k=1 (=1

where the two subscripts of h are taken modulo m and n, respectively.
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The matrix G can be computed in less than 2mn(m 4 n) flops by means of the
2-D FET. We use the same notation as in the previous chapter, in which we write
the DFT of an n-vector z as DFT(z) = F, z, where I}, is a complex symmetric
matrix. Then the 2-D FFT of an m X n matrix X is defined as follows

DFT2(X) = F, X F,. (6.19)

In this expression, we could add transposition to the symmetric matrix F;, in order
to make the expression appear like the previous 2-D expressions, but we shall refrain

from this. We also define the 2-D inverse DE'T as IDFTZ(X) = Frng Frjl. We can

now express GG as

G = FY(E.FF).*x(F,HF))E!
= IDFT2 (DFT2(F).*DFT2(H)).

The 2-D DFT DFT2(X) requires the computation of the ordinary DFT of each of
the n columns of X, followed by the computation of the ordinary DFT of each of the
m rows of the matrix F,, X. Ignoring that data are real (because the intermediate
results F}, X is complex), all the m+n DEFTs in a single 2-D DET can be computed
by means of the FF'T in n (5m log, m)+m (5n log, n) = 5mn (log, m+log, n) flops.
This is also the flop count for the 2-D inverse DFT. Hence, provided that DET2(H)
has been precomputed, G can be computed in 10mn (log, m + log, n) fops, which
simplifies to 20 n? log, n flops when m = n.

The special case of convolution that we focus on in this chapter is when the
kernel K in the integral equation (6.1) separates into a product of two functions as
in (6.2). In connection with discrete data, this corresponds to a situation where the
matrix H is a rank-one matrix given by the outer product of two vectors v and w
of length m and n, respectively, i.e.

H=vuw".
The corresponding expression for G in this case becomes
G=0C,FCL, (6.20)

where C, and C, are two circulant matrices defined by setting their first columns
equal to v and w, respectively. In this case, the 2-D DFT of H is particularly easy
to compute and represent, since

DFT2(H) = F,, HF, = Fpyvw' FX = (F,v) (F, w)" = DFT(v) DFT(w)”,
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i.e., we merely need to compute and store the DFTs of the two vectors v and w.
This leads to an efficient algorithm for computing the matrix product in (6.20):

G = IDFT2 (DFT2(F).* (DFT(v) DFT(w)")). (6.21)

Note that the element-wise matrix multiplication should be computed without form-
ing the out product of the two DFT's explicitly.

The above relations can now be used to efficiently compute the matrix product
AFA" when A and A are Toeplitz matrices. The key idea is again to imbed the
two Toeplitz matrices in two larger circulant matrices C and C as described in the
previous chapter, and similarly augment X with zero blocks such that the augmented

matrix
~ X 0
£=(5 o)

conforms with C' and C. Then the desired matrix product is the upper left submatrix

in
—T ~
Z=cxT' = AXA 2w )
Za1 Z2o

while the other three submatrices are discarded. The multiplications with C and C
could be computed by means of the fast algorithms from the previous chapter, by
first working on the columns of X and then on the rows of C' X, but we can avoid
the many DEFT-IDET pairs by instead using Eq. (6.21). The complete amount
of work in this approach is approximately 2 -5 - 2m2n (log,(2m) + log,(2n)) =~
40mn (log, m+log, n) flops — which should be compared with the 2mn(m+n) flops

in a standard matrix-matrix multiplication algorithm for computing A X A" And
if m = n then the two numbers are 80n?log, n and 4n®.
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