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Preface

This dissertation has been prepared at Odense Steel Shipyard Ltd. and the In-

stitute of Mathematical Modelling, Technical University of Denmark, in partial

ful�lment of the requirements for the degree of industrial Ph.D. in engineer-

ing. The project was carried out in the period January 1997 through December

1999.

The project is the result of a cooperation with Erhvervsforskerudvalget,

Akademiet for de Tekniske Videnskaber, ATV, and has been funded by Er-

hvervsfremme Styrelsen. The project number is EF660. An analysis of the

commercial aspects of the project and the innovative process has been pub-

lished in the report "Teknologiledelse og Teknologiskabelse - ATV Erhvervsrap-

port".

The title of the project is

Object Measurement

The dissertation describes the problems associated with implementation

of vision technology in large-scale industrial applications. The discussion em-

braces the subjects: camera hardware, camera models, projective geometry,

calibration, feature detection, and applications. The theory is supported by

examples from vision installations at Odense Steel Shipyard. The dissertation

is based on internal reports and published papers prepared during the project.

Odense, December 1999

Claus Gramkow
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Summary

The subject of this dissertation is object measurement in the industry by use

of computer vision.

In the �rst part of the dissertation, the project is de�ned in an industrial

frame. The reader is introduced to Odense Steel Shipyard and its current level

of automation. The presentation gives an impression of the potential of vision

technology in shipbuilding.

The next chapter describes di�erent important properties of industrial vi-

sion cameras. The presentation is based on practical experience obtained dur-

ing the Ph.D. project.

The geometry that de�nes the link between the observed world and the

projected image is the subject of the two next chapters. The �rst chapter

gives a short introduction to projective algebra, which is extremely useful for

modelling the image projection and the relation between more images of the

same object viewed from di�erent positions. It provides a basis for under-

standing many of the results later in the dissertation. In the second chapter a

variety of di�erent camera models are described. The relation between di�er-

ent models is explained and a guide is given to the interpretation of the model

parameters.

The following chapter deals with the problem of camera calibration. Di�er-

ent issues related to residual analysis are discussed and a calibration example is

shown. The presentation is based on a software program that has been devel-

oped during the project. It is shown that the used cameras can be calibrated

down to 1=20 pixel.

An accurate description of the geometry is only relevant if features can be

detected accurately in the images. This is the subject of the next chapter,

where reference mark detection and straight edge detection are treated in two

separate sections. The detection of reference marks is based on a parametric
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model, and it is shown that marks in synthetic images can be detected with an

accuracy of 1=100 pixel. Two new methods for straight edge detection are pre-

sented. They aim at using all the image information in a global optimization.

The paper \From Hough Transform to Radon Transform using Interpolation

Kernels", which is included in a later chapter, is introduced. The new meth-

ods are compared with more conventional approaches on a number of synthetic

images. It is shown that local edge detection by Gaussian convolution with a

subsequent regression through the edge pixels is superior to the other methods

in accuracy as well as in speed.

The next chapter introduces the paper \On Averaging Rotations" that was

presented at the 11'th Scandinavian Conference on Image Analysis, SCIA'99,

in Greenland. The paper makes a theoretical comparison of two normally used

linear averages to a recently proposed method that considers the structure of

the non-linear manifold of rotations. The conclusion is that the behaviour of

the three di�erent methods is very similar.

The following four chapters describe the practical results of the project.

The �rst chapter gives a short introduction to a report entitled "Reconstruc-

tion and Matching of OSS Mock-Up". This report describes a preliminary

attempt to apply a method of Euclidean reconstruction from a sequence of

images on a ship block. The other three chapters describe vision installations

that have been made at Odense Steel Shipyard. The �rst installation uses vi-

sion for check-in and quality control on a plasma cutting station. The second

installation was designed for check-in on the quay. Finally, the third instal-

lation does check-in and quality control on a laser station. It is shown that

measurements can be made with an accuracy of 1mm at a distance of 10m

under favourable conditions. When the camera is only 1{2m from the object

the accuracy is better than 1=3mm. It is also shown that it is very diÆcult

to obtain ideal conditions and that the vision measurements are very sensitive

in the large-scale installations. Only the installation on the laser cutter is

currently used in production.

Finally, a chapter gives some concluding remarks about the results of the

project.
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Resum�e

Denne afhandling omhandler brugen af computer vision til objektopm�aling i

industrien.

Den f�rste del af afhandlingen placerer projektet i en industriel ramme.

L�seren bliver introduceret til Odense Staalskibsv�rft og v�rftets nuv�rende

automationsniveau. Fremstillingen giver et indtryk af potentialet for vision-

teknologi i skibsbygning.

Det f�lgende kapitel beskriver forskellige vigtige egenskaber ved industrielle

visionkameraer. Beskrivelsen er baseret p�a praktiske erfaringer opn�aet i l�bet

af projektet.

Geometrien, der de�nerer b�andet mellem den betragtede verden og det

projicerede billede, bliver beskrevet i de to f�lgende kapitler. Det f�rste kapi-

tel giver en kort introduktion til projektiv geometri, som er et utroligt nyttigt

v�rkt�j til modellering af den perspektiviske projektion og de geometriske

b�and, der eksisterer imellem ere billeder af det samme objekt betragtet fra

forskellige synsvinkler. Dette afsnit giver det matematiske grundlag for mange

af resultaterne senere i afhandlingen. Det andet kapitel pr�senterer en r�kke

forskellige kameramodeller. Forbindelsen mellem disse modeller bliver forkla-

ret, og der gennemg�as en detaljeret fortolkning af modelparametrene.

Det f�lgende kapitel omhandler kamerakalibrering. Forskellige forhold om-

kring residualanalyse bliver diskuteret, og der gennemg�as et kalibreringsek-

sempel. Fremstillingen er baseret p�a et kalibreringsprogram, som er udviklet i

forbindelse med projektet. Det bliver vist, at de anvendte kameraer kan blive

kalibreret ned til 1=20 pixel.

En pr�cis beskrivelse af kamerageometrien er kun anvendelig, hvis objekter

kan blive detekteret i billederne med h�j n�jagtighed. Dette er netop emnet

i det f�lgende kapitel, hvor referencem�rkedetektion og detektion af retlinede

kanter bliver beskrevet i to separate afsnit. Referencem�rkedetektionen er
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baseret p�a en parametrisk model af m�rket i billedet, og det bliver vist at

et m�rke i et syntetisk billede kan lokaliseres med en n�jagtighed omkring

1=100 pixel. To nye metoder til detektion af retlinede kanter bliver beskrevet.

Metoderne sigter mod at anvende al tilg�ngelig billedinformation samtidigt

i en global optimering. Artiklen \From Hough Transform to Radon Trans-

form using Interpolation Kernels", som er inkluderet bagest i afhandlingen,

bliver introduceret. De to nye metoder bliver sammenlignet med nogle mere

almindelige algoritmer p�a en r�kke syntetiske billeder. Det bliver vist, at lokal

kantdetektion med Gaussisk foldning og en efterf�lgende regression igennem

kantpixels er de andre metoder overlegen med hensyn til s�avel n�jagtighed som

hastighed.

Det n�ste kapitel giver en introduktion til artiklen \On Averaging Ro-

tations", som blev pr�senteret p�a den ellevte Scandinavian Conference on

Image Analysis, SCIA'99, p�a Gr�nland. Artiklen sammenligner to almindeligt

anvendte line�re gennemsnit af rotationer med en nyligt publiceret metode,

som tager hensyn til strukturen af den ikke-line�re manifold, der beskriver de

tilladte rotationer. Konklusionen er, at de tre metoder producerer meget ens

resultater.

De f�lgende �re kapitler beskriver de praktiske resultater som er opn�aet i

projektforl�bet. Det f�rste kapitel giver en kort introduktion til en rapport der

b�rer titlen "Reconstruction and Matching of OSS Mock-Up". Denne rapport

beskriver et indledende fors�g p�a et fremstille en Euklidisk rekonstruktion af en

skibsblok ud fra en sekvens af billeder. De andre tre kapitler beskriver vision-

systemer som er installeret p�a Odense Staalskibsv�rft. Den f�rste installation

benytter vision til check-in og kvalitetskontrol p�a en plasmask�restation. Den

anden installation opm�aler st�alpladerne, der ankommer til v�rftet, med det

form�al at lave automatisk opslag i en database og efterf�lgende opm�rkning.

Den sidste installation bliver benyttet til check-in og kvalitetskontrol p�a en

lasersk�restation. Det bliver vist, at opm�alinger kan gennemf�res med en

n�jagtighed p�a 1mm over en afstand p�a 10m under optimale forhold. N�ar ka-

meraet be�nder sig 1{2m fra objektet kan der opn�as en n�jagtighed p�a under

1=3mm. Resultaterne viser ogs�a at det er meget sv�rt at opn�a tilstr�kkeligt

gode m�aleforhold og at visionopm�alingsn�jagtigheden er meget f�lsom ved in-

stallationer i stor skala. Det er kun installationen p�a lasersk�restationen der

p�a nuv�rende tidspunkt benyttes i produktionen.

Afhandlingen bliver rundet af med nogle konkluderende bem�rkninger om
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de opn�aede resultater.
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Chapter 1

Introduction

The European shipyards have lost signi�cant market shares to the yards in

the Far East during the past few decades. Especially the yards in Japan and

Korea are expanding rapidly and they are very competitive bene�ting from

low production costs. To survive on the market, the European yards need to

improve their productivity.

Odense Steel Shipyard (OSS) has therefore made great e�orts to improve

the eÆciency of the production in the past 15 years. The increased produc-

tivity is based on the introduction of Computer Aided Design (CAD) and

Computer Aided Manufacturing (CAM). In fact, the ships that are built at

OSS are entirely modelled in CAD systems. Besides the immediate advantages

in the design phase, the modelling of the ships creates the basis for extensive

automation in the production. Thus, OSS has been able to introduce robot

welding and cutting in a large scale in the production.

The numeric representation of each ship can also be used as a means to

increase the productivity through improved time scheduling and better logis-

tics. Especially if an updated CAD model is maintained based on a continuous

monitoring of the ship parts after each process in the production. The infor-

mation that is acquired from the actual process can be fed forward to allow a

compensation on adjacent parts or simply a re-scheduling of tasks, or it can

used in a feedback to reveal tools that are damaged or need calibration. The

CAD model that is augmented with information from the physical product is

denoted the Product State Model (PSM).

The objective of the current project is to implement vision technology in

shipbuilding to provide information for the PSM and to take advantage of
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the non-invasive properties of vision cameras as sensors for the manufacturing

tools. The challenge in the applications at the shipyard compared to typical

vision applications in the industry is the very large scale, which calls for special

demands on calibration, robustness, and illumination. For instance, the vision

measurements at the yard must be based on full three-dimensional models of

the geometry of the installation. Compared to the use of vision technology

seen at other large-scale industries, the present work di�ers in the requirement

that markers or reectors cannot be placed on the object to be measured.

1.1 Outline of the Dissertation

The dissertation is organized in such a way that the �rst chapters deal with

background and theory while the last chapters present various practical pro-

jects.

Chapter 2 de�nes the project in relation to the technological developments

and strategies at the shipyard. The presentation will give the reader an im-

pression of the potential of vision technology in the shipbuilding production

line.

Di�erent properties of camera hardware are described in chapter 3 with

special emphasis on the characteristics that determine the accuracy of a vision

system. Problems that are often encountered are quanti�ed with examples

based on the cameras used in the project. The di�erent camera con�gurations

that are used in the applications later in the dissertation are presented.

The following three chapters are concerned with the geometry related to

image acquisition and the placement of the cameras in a vision installation.

Chapter 4 gives a general introduction to the subject of projective geometry

and de�nes the homogeneous representations for points, lines, and planes in

projective space. Points at in�nity and maps between projective spaces are

also de�ned. Furthermore, the chapter introduces some helpful tools to per-

form calculations in homogeneous coordinates. Chapter 5 describes di�erent

linear and non-linear camera models. The linear camera models in two and

three dimensions are described with sections on estimation, interpretation, and

factorization. The complete camera model used in the project is obtained by

adding a model of the non-linear lens based on radial and decentering distor-

tion. It is shown how the inverse of the distortion can be calculated. Finally,
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chapter 6 deals with the problem of camera calibration. The quality of the

calibration is evaluated by di�erent approaches and it is argued that the cali-

bration residual is in itself an insuÆcient quality measure. The example in the

chapter is based on a calibration software that was developed in the course of

the project.

Calibration as well as measurement is based on features detected in the

images. Feature detection is the subject of chapter 7. The �rst section de-

scribes reference mark detection, which is based on �tting a parametric model.

It is shown that the dispersion of the parameters can be obtained from the

estimation, and that it gives a satisfactory approximation to the empirical dis-

persion. The e�ect of trend in the illumination and the size of the reference

marks are described and quanti�ed. The second section describes straight edge

detection. Two new methods are presented, that are based on a simultaneous

use of all available information. The �rst method is based on smoothing the

Hough space, that is obtained from a grey level Hough transformation of the

image. The theory is described in a paper included in the back of the disser-

tation. The second method is based on a normalized Gaussian convolution of

the projected image. Those two methods are compared with conventional edge

detection techniques. It is concluded that Gaussian convolution with subse-

quent line �tting is superior to the other methods in terms of both accuracy

and speed.

The two following chapters describe work that has been done in the project,

but does not relate directly to the installations at the yard. Chapter 8 gives

a short introduction to a paper on averaging rotations and chapter 9 shows

the preliminary results that was obtained on the problem of Euclidean recon-

struction of a mock-up from the shipyard.

Chapters 10, 11, and 12 present the installations that have been imple-

mented on the shipyard in the course of the project in terms of physical di-

mensions, obtained results, and encountered problems. It is shown that steel

plates can be measured with an accuracy of 1mm at a distance of 10m un-

der favourable conditions. At a range of 1{2m the accuracy is as high as

0:1{0:3mm.

Finally, some concluding remarks to the work in the dissertation are added

in chapter 13.

The dissertation contains three papers and two appendices included in the

back. The papers are included as chapters 14-16. Appendix A describes the
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solutions to two point matching problems in the plane, that were used in the

presentation of the results in the applications above. Di�erent issues on the

analysis of variance are treated in appendix B.

1.2 Notation

The notation used in the dissertation will to some degree be dependent on the

context and will be introduced in the appropriate sections. It is however based

on a few simple guidelines.

Matrices and vectors are denoted by bold face letters with matrices in

capitals, e.g. A, and vectors generally in lower case, e.g. b. Scalars and the

scalar entities of vectors and matrices are denoted by normal case italic letters,

e.g. aij and bi.

Image coordinates are denoted u = (u; v) and the image intensity is called

i(u; v). Coordinates in the three-dimensional camera frame are denoted x =

(x; y; z) and coordinates in the object frame are denoted by capital letters,

X = (X;Y; Z), to make a distinction from the camera coordinates.

P is used to represent the linear calibration matrix. When it is a 3 � 4

matrix, the �rst 3 � 3 matrix is denoted M. The upper triangular matrix of

intrinsic camera parameters is called K. The rotation and the translation of

the camera are denoted (R;x0).

Homogeneous coordinates are represented by capital letters with no respect

to their coordinate system. That is, L is a line in the plane and P is a plane

in three-dimensional space. It should be clear from the context when P is a

plane and when it is the calibration matrix.
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Chapter 2

An Industrial Project

This dissertation is the outcome of an industrial Ph.D. project, i.e. the work

has been co-funded and hosted by an industrial company. As such the present

work has been carried out within an employment at Odense Steel Shipyard

Ltd. The close industrial contact gives some immediate advantages in terms

of de�ning the project, production environment accessibility, funding of ex-

periments, and assessment of cost saves. The disadvantage, compared to a

conventional purely academic Ph.D. project, is the resources required to im-

plement installations that reach a state where they can be handed over to the

production department. At the same time, however, this task gives invaluable

insight and experience. The problems that are faced include interfacing to

other software components at the Yard, getting access to production facilities,

taking into account all sorts of exceptions in the production environment, and

making the product fail-safe.

The dependency on the running production and on other people at the

yard has sometimes prevented the desired data collection, or limited the ex-

tent of testing of the developed installations. The statistics reported in this

dissertation should, however, give a clear picture of the developed methods

and software.

This chapter will �rst give an introduction to OSS. Subsequently, the indus-

trial problems that have been addressed during the project will be introduced

to give some background for the following theoretical chapters. Some potential

areas for computer vision at the shipyard, which have not been addressed, will

also be listed. The problems will be viewed in relation to existing solutions

on the market. Finally, a section will cover the very interesting EC funded
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projects that I have been involved in during the project.

2.1 Odense Steel Shipyard

OSS is part of the A. P. Moller group, which was founded in 1904. The original

yard was founded in Odense in 1917/18. In 1959 the new yard was built in

Lind� and this yard gradually replaced the yard in Odense.

Since the beginning OSS has delivered more than 300 ships to customers

all over the world. Recently, OSS has delivered a series of the world's largest

and most technologically advanced 6.600 TEU container ships to A.P. Moller,

see �gure 2.1.

Figure 2.1: Regina Maersk. 6.000 TEU container ship delivered to A.P. Moller.

The shipbuilding industry is characterized by very tough competition.

There is an aggressive struggle for market shares, and the world prices are

heavily inuenced by di�erent kinds of subsidies. It has been said that the

world market su�ers from up to 30% overcapacity. To match the competition

from the Far East, OSS has put a lot of e�ort into developing a highly tech-

nological production line. This way OSS has become one of the most modern

yards in Europe, and is one of the few surviving yards in Denmark.
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The largest technological advancement in the past 10{15 years has been

the introduction of robots in the production. A large number of robots are

now used for welding pro�les and large assemblies resulting in an increased

productivity of 3{6 times compared to manual welding. Figure 2.2 shows the

biggest robot installation on the shipyard. The robot consists of twelve vertical

axes placed two-by-two on six independent gantrys. Each axis is equipped with

a �ve degrees of freedom industrial robot. All positions within a volume of

32m� 22m� 6m can be reached with a precision of 1mm.

Figure 2.2: Large industrial robot at Odense Steel Shipyard.

There are di�erent additional ways to improve the productivity on the

yard. OSS has focused on the following key areas

� Improved data management (cell control, monitoring, adaptive produc-

tion etc.)

� Improved machine control (open modular controllers)

� Improved equipment (multiple axes, exible and modular robots)

� Quality assurance

� Increased production ow



8 Chapter 2. An Industrial Project

In order to improve in these areas, OSS has introduced CAD systems in all

phases of the production. The fact that shipbuilding is a one-of-a-kind pro-

duction, makes the integrated design and manufacturing even more important.

Optimal design can cause tremendous savings through improved logistics, o�-

line programming etc. Figure 2.3 shows the information ow at OSS. The ship

is designed in CAD in the upper left-hand corner. The design is optimized

with regard to the welding robots. From the design the robot movements are

planned and programmed using simulation tools. On the shop oor the infor-

mation is available for control and monitoring. It is the ambition to attach

updated information to the CAD model after each step in the manufactur-

ing, such as the 'true' dimensions of the part or process parameters. Owing

to heat injection during welding or release of residual stresses during cutting,

most manufactured parts are somewhat di�erent from their ideal CAD model.

Logging these deviations makes it possible to compensate or re-schedule in

subsequent processes. Very large savings are expected from this closed infor-

mation loop. The extended CAD model is denoted the Product State Model

(PSM).

2.2 Vision Applications

The short introduction to OSS should give a better understanding of the per-

spectives of vision technology in shipbuilding. In an introductory manner, this

section will describe some of the installations that have been worked upon dur-

ing the Ph.D. project. Other potential areas for the use of vision technology

will also be mentioned.

2.2.1 Check-In and Quality Control on Plasma Cutter

The majority of the steel plates that are cut at OSS are cut with plasma

cutters. The plates measure up to 4 meters by 18 meters. They are positioned

in the cutting berth where they are marked and cut. Normally, two of the edges

are laid in a �xed position. Great savings are anticipated if the dimension of

the plates could be veri�ed before cutting to ensure that all cuts are placed

within the plate. Similarly, a thorough measurement after cutting could reveal

deviations from the expected shape caused by the release of residual stresses

in the plate or by a damaged tool. In either case the proper precautions
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Figure 2.3: The information ow in integrated CAD-based ship building. OSS

graphic.
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should save resources. The yard contains 18 such cutting stations giving the

installation a very big economic potential. This project is described in more

detail in chapter 10.

2.2.2 Check-In of Steel Plates on the Quay

All steel plates that arrive at the yard are ordered for a speci�c position in

the �nal ship. The yard is therefore looking for a system to automatically

check the plates into the database on arrival, and to perform a measurement

to verify that each plate meet the speci�cations. The information will be used

to mark the plates and can eventually be the basis for a totally automatic

store control. This installation is conceptually very similar to the installation

above. The project is described in chapter 11.

2.2.3 Check-In and Quality Control on Laser Cutter

The yard has recently installed a laser cutter mounted on an extremely ac-

curate gantry system (�0:1mm). Laser cutting is expected to be far more

precise than plasma cutting, partly because laser cutting and welding is asso-

ciated with much less heat injection. The objectives of this vision installation

are similar to those of the plasma cutter installation. Plates are not placed

in �xed positions, however, and the check-in is therefore a bit more advanced.

The two projects mentioned in section 2.2.1 and 2.2.2 above ran into some

diÆculties that primarily were caused by the very large scale. In those two

installations the cameras were mounted in the ceiling and on a very tall beam,

respectively. To avoid similar problems on the laser cutter installation the

measurements are instead based on one or more cameras mounted on the

gantry. This set-up gives a much better image resolution, better lighting con-

trol, and in the case of stereo vision easier arrangement of cameras in terms of

a reasonable base-line. The laser cutter installation is described in chapter 12.

2.2.4 Potential Areas for Vision Technology

The three projects described above have been worked upon actively in the

Ph.D. project. The research, however, is viable in a number of other potential

installations at the yard as well. The most obvious use is naturally check-in

and quality control of steel plates at other sites at the yard, e.g. by the milling
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machines. But the research also extends to very di�erent applications. Some

of those are described in the following.

The welding performed by the robot installation in �gure 2.2 is based

on very advanced o�-line programming. The planning optimizes the welding

speed while taking into account the lay-out of the individual robots and the

problem of collision avoidance. Due to this dependency on the robot con�gu-

ration, the programs are not easily transposed if the assembly is not positioned

as in the planning stage. To avoid this problem the assemblies are positioned

very accurately in the work area. Currently, manual measurement devices are

used for this purpose, giving a very time-consuming overhead. With multiple

vision cameras over-looking the work area, it should be possible to perform

an automatic position measurement on the assembly. It might be possible,

furthermore, to extend this design with quality control measurements after

welding.

A similar vision system could be of interest in the smaller work cells, where

several smaller assemblies are welded at the same time. In this case the vision

system would be able to localize as well as identify, from a small set, the

individual assemblies in the work area. Again, the outcome would be a faster

initialization of the actual value adding process. The vision group at the yard

has already developed some software for the work cell B13, but the project

has now been given a lower priority.

Vision technology could also present an alternative to the touch sensors

currently used on the robots. Before welding, the robots determine the begin-

ning of the weld seam by performing a series of movements. This is done by

touching the three planes that de�ne the joint where the seam begins. Mount-

ing a calibrated camera on the robot, it is possible to localize the joint in the

image, and move the robot directly to the beginning of the seam. To be of any

interest the vision system should be superior to the current approach, which

takes approximately 15secs. Possibly, such a system could be extended to give

feed-back control during welding as well. However, the engineering problem of

seeing and welding at the same time should not be underestimated.

Those were only a few of the potential areas for vision at the shipyard.

There are of course other possible applications that may be summarized under

the headlines: tool calibration, on-line sensing, check-in, and quality assurance.
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2.3 Solutions on the Market

The problems mentioned above have, to my knowledge, not been solved by

the vision companies on the market. Most companies focus on a niche with

a great market potential and little research. Typically, vision systems are

developed for assembly lines in moderate scales, with unproblematic lighting

conditions, and large homogeneity. However, some solutions have been devel-

oped by companies that specialize in photogrammetry. For instance, Imetric

SA from Switzerland has been active in the Esprit reactive long term research

(LTR) project CUMULI, where accurate measurement at shipyards has been

addressed. Similarly, the German company AICON has developed large scale

accurate measurement systems for shipyards. Unfortunately, all these solu-

tions are based on markers on the measured object. This gives a considerable

advantage in terms of accuracy, but also a serious drawback in terms of man-

power and time.

2.4 EC Funded Projects

During the project I have been fortunate to participate in three EC funded

vision projects. This has given an outstanding access to European computer

vision research and the opportunity to develop a personal network throughout

the European countries. Furthermore, these contacts have given feed-back to

the present project. The projects are described in the following.

2.4.1 VIGOR

VIGOR is a three year Esprit reactive long term research (LTR) project that

began in February 1998. The partners are the University of Cambridge, Eng-

land, the Hebrew University of Jerusalem, Israel, INRIA Rhône-Alpes, France,

IITB, Karlsruhe, Germany, Sinters SA, France, and Odense Steel Shipyard.

The objective of the project is to develop uncalibrated visually guided robots,

meaning that the robot control is based only on visual input. The key idea

is to teach the vision system the con�guration of visual features at the target

position and then servo the robot until this con�guration is achieved. OSS is

one of the end users of the project and will be in charge of the demonstrator

at the yard.
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2.4.2 RobVision

RobVision is a two year Esprit project with INFA, Wien, Austria, Portech,

England, Aalborg University, Denmark, DIST, Genova, Italy, and Odense Steel

Shipyard. The aim of the project is to integrate CAD model data with visual

features to perform robust navigation in industrial environments. The demon-

strator will be based on a climbing robot already developed at Portech. This

robot will enter a ship block, position itself relative to a target position speci-

�ed in the CAD model, and return to a safe position. OSS is the end user of

the project and is responsible for the demonstrator at the yard.

2.4.3 QualiGlobe

QualiGlobe is a Brite-EuRam project. The partners are Det Norske Veri-

tas, Norway, Fincantieri, Italy, Institut f�ur Schwei�technische Fertigungsver-

fahren, RWTH-Aachen, Germany, Migatronic, Denmark, Robotiker, Spain,

and Odense Steel Shipyard. The subject of the project is fabrication based on

the state of the product quality. The project is closely related to the product

state model (PSM) project at the shipyard. Although OSS again is the end

user, the vision group at OSS has been responsible for the vision software in

the project. The work is described in chapter 12.
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Chapter 3

Vision Cameras

Before entering the theoretical aspects of the project, it is worthwhile to in-

clude a few remarks about image acquisition. It is not without problems to

obtain high quality images in an industrial environment like OSS. Vision in-

stallations at the shipyard di�er from the typical vision solutions, as to the

very large scale there has to be dealt with, which makes it very diÆcult to

control the light. Very often the surroundings introduce varying illumination

of the scene, electrical noise, and limitations to the placement of the camera.

In addition, many cameras on the market are not suited for photogrammet-

ric measurements. Some of the problems that have been encountered in the

project are described in the following sections.

3.1 Optimal Grey Values

During the project, vision systems have been installed indoors as well as out-

doors. In the latter case the system was required to be operational both night

and day. This variation of light places a great demand on a camera. As a

guideline oÆce lighting produces about 750 lux whereas sunshine is as much as

80; 000 lux. This variation appears to be more modest to the human eye owing

to its amazing ability to accommodate. A camera is linear, however, and the

accommodation must be achieved through the shutter time. The camera must

therefore have an electronically controlled shutter, and the available settings

should range over 3{4 factors. There are other means of controlling the inten-

sity distribution of the image. Some cameras are equipped with an auto-iris,

that adjust the aperture automatically. The aperture setting, however, tends
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to a�ect the internal parameters of the camera, thus making the calibration

invalid. Other cameras are equipped with either automatic gain or electroni-

cally controlled gain. The drawback of this feature is a lower signal-to-noise

ratio. It is therefore strongly recommended to optimize the grey values of the

image through the shutter time.

Once the image is acquired it is important to verify that the image does

not have any underow or overow near the features that are to be measured.

Overow or saturation occurs when too many photons have hit the CCD chip.

Typically, this causes a leakage of electrons to the neighboring pixels, which is

seen as a smearing of the image. Naturally, the a�ected pixels cannot be used

for measurements. In fact, leakage is sometimes seen before actual saturation

occurs, and it is therefore wise to avoid very high pixel values in the image.

Underow or black level cut-o� is a similar problem in the dark end of the

spectrum. It is related to the quantizing of the video signal. The potential on

the CCD chip that is mapped to pixel value zero in the image is controlled by

the o�set setting on the camera. The o�set value should be chosen so that all

pixel values are greater than zero to ensure a proper quantizing of the small

potentials.

Saturation as well as black level cut-o� introduces non-linearities in the

image intensities. If a signal with these artifacts is used for position measure-

ment, the results will be biased. Figure 3.1 shows an edge in an image that

has been acquired with three di�erent camera settings. The left column shows

the same region of the image and the right column shows an intensity pro�le

across the edge, sampled from one row in the image. The rows show a good

quality image, an image with saturation, and an image with black level cut-o�,

respectively. To illustrate the e�ect of the artifacts, the edge location has been

determined by the maximum of the Gaussian derivative, cf. chapter 7. Note,

how the detection is biased towards the darker side in the saturation example

and towards the lighter side in the case of black level cut-o�. The absolute

position of the edge should not be compared between images, as the camera

may have moved. In general the edge detector tends to locate the edge midway

on the transition from light to dark. If part of the signal has been truncated,

the detection will be biased in the opposite direction.

To avoid the problems discussed in this section, an iterative scheme has

been used to acquire images on the installations at the shipyard.

Another issue concerning the light intensities of the image is the choice of



3.1 Optimal Grey Values 17

0

50

100

150

200

250

60 62 64 66 68 70 72 74 76 78

i
n
t
e
n
s
i
t
y

u index

Normal Edge Profile

image intensity
interpolated intensity

edge location

0

50

100

150

200

250

60 62 64 66 68 70 72 74 76 78

i
n
t
e
n
s
i
t
y

u index

White Level Saturation Profile

image intensity
interpolated intensity

edge location

0

50

100

150

200

250

60 62 64 66 68 70 72 74 76 78

i
n
t
e
n
s
i
t
y

u index

Black Level Cut-Off Profile

image intensity
interpolated intensity

edge location

Figure 3.1: The left column shows the same edge acquired with three di�erent

camera settings and the right column shows the intensity pro�le across the

edge, sampled from one row in the image.
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lighting. In a particular installation neon tubes where used. The shutter of

the camera is so fast, however, that the crests and troughs of the light could

be seen from one image to the other. To avoid this problem, high frequency

neon light was used instead.

3.2 The Video Signal

The quality of the video signal is another cause for concern. Two circumstances

make this a key issue in an industrial environment. First, the camera typically

will be placed far away from the frame-grabber and the computer. Therefore

cables often have to be as long as 25{30 meters. This distance is suÆcient

to reduce the quality of the signal. Second, the environment is characterized

by a lot of electrical noise. This problem is aggravated when the video cable

typically must be laid along with many other cables.

It is diÆcult to quantify the e�ect of those problems in the image. Even

though they are not always visible, they can easily a�ect the accuracy of a

vision measurement. If the noise is severe it may corrupt the synchronization

of the signal, causing a displacement of the �elds or lines of the image. This is

known as �eld or line jitter. If the �eld pulse is corrupted, the two entire half-

�elds are misaligned whereas bad line synchronization causes the individual

lines to be misaligned. Figure 3.2 shows an example of �eld jitter. Note,

how every second line is shifted 1{2 pixels. The same behaviour could be

experienced with a non-steady camera, e.g. a camera held by hand. In the

present case the camera was �xed on a tripod. Obviously, the image is not

suited for accurate measurements.

Pixel jitter may also occur [48]. This is caused by inaccuracies in the pixel

clock of the camera or the frame-grabber. As a result the pixel is digitized late

or early in the analog signal resulting in an inaccurate pixel representation.

The quality of the synchronization can be improved by using a HD/VD

camera with separate signals for the horizontal and vertical synchronization.

Separate signals are less sensitive to noise than the composite signal where the

synchronization is mixed with the image signal.

The video signal may be unsuited for measurement for other reasons as well.

Many o�-the-shelf cameras are not meant for computer vision. Most of these

cameras have built-in features to produce an image that satis�es the human
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Figure 3.2: Field jitter. The two half-�elds are misaligned.

eye. An obvious example is cameras designed for surveillance. Two typical

features are gamma correction and edge enhancement. Gamma correction is

de�ned by a non-linear adjustment of the intensities in the image. It is de�ned

by

i(u; v) := imax

 
i(u; v)

imax

!

; (3.1)

where i(u; v) is the intensity value of a given pixel and imax is the maximal

grey value, i.e. typically 255. For  < 1 the dark end of the spectrum is

stretched to produce a better contrast while the contrast in the light end of

the spectrum is reduced. This pleases the human eye, which is less sensitive

to variations in dark grey levels.

Figure 3.3 shows the edge detection error introduced by gamma correction.

The left plot displays the edge pro�le for three typical values of : 0:6, 1:0,

and 0:6�1. The edge determined by the maximum Gaussian derivative is also

shown. The right plot shows how the edge detection varies as a function of

 around the location determined for  = 1:0. Note, how the location of the

edge changes as much as 0:2 pixel due to gamma correction.

Gamma correction can naturally be removed in software by inducing the

inverse mapping of equation 3.1, but it should rather be turned o� in hardware
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Figure 3.3: Left: the edge pro�le for three di�erent values of . Right: the

edge detection error as a function of  relative to  = 1:0.

to avoid the calculations and the round-o� errors.

The presence of gamma correction in the image may be revealed during

calibration. Figure 3.4 shows the calibration residuals in an image with and

without gamma correction. This camera had a built-in gamma correction of

 = 0:6. The corners of the rectangles are used for calibration and their

positions are estimated by detection of the edges. The systematic bias in the

edge detection results in systematic calibration residuals.

Figure 3.4: Left: calibration residuals with gamma correction. Right: calibra-

tion residuals with gamma correction removed. Residuals are shown exagger-

ated.

Edge enhancement is another feature that pleases the human eye. It is

implemented as an ampli�cation of the higher frequencies in the video sig-

nal. The result is a small overshoot of the intensities near an edge. Actually,

the human eye does itself produce such a response to a change in the light
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intensity. Normally, edge enhancement is added to the analog signal in hard-

ware. Consequently, it only appears in the horizontal direction of the image

as the image is transmitted line by line. Figure 3.5 shows an example. The

edge enhancement can be seen as shadows in the horizontal direction of the

image. The left plot shows the intensity pro�le across the reference mark in

the vertical direction and the right plot shows the intensities in the horizontal

direction.
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Figure 3.5: Edge enhancement in an image. Left: the intensity pro�le across

the reference mark in the vertical direction. Right: the intensity pro�le in the

horizontal direction.

Dedicated analog vision cameras without these features exist on the market.

But another very attracting alternative to the analog cameras is the new digital
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cameras. These cameras quantize the potential on the CCD chip and transmit

a digital video signal directly. For comparison the analog cameras make an

analog signal from the discrete read-out on the CCD chip. This signal is then

transmitted and A/D converted in the frame-grabber. The result is an extra

D/A and A/D conversion.

According to the camera speci�cation, very long cables are critical for digi-

tal cameras. Nevertheless, we have successfully transmitted images over 25{30

meters. Compared to the noise in images from analog cameras the noise in

digital images is very easy to identify. It is typically seen as salt and pepper

noise.

Still, digital cameras are more expensive than analog cameras, but the

growing demand is beginning to show in the price.

The last feature to mention concerning the video signal is the ability to

trigger the camera. This is particularly interesting on stereo heads or in appli-

cations where ashed light is used. Not all cameras possess an external trigger

for simultaneous image acquisition.

3.3 Photogrammetric Quality

The lens system and the resolution of the camera are naturally also very im-

portant when the camera is used for photogrammetry. Most cameras are

equipped with standard lenses, not produced with photogrammetric measure-

ments in mind. The optical distortion of the lenses is typically rather non-

linear making the calibration more diÆcult. It is therefore recommended to

use professional lenses, where the images can be recti�ed more successfully.

This discussion is of course aimed at high spatial accuracy in the entire image.

A wider range of lenses is acceptable if the camera is used for visual servoing

in a feedback loop, or if only the center region of the image is used.

To avoid drifting in the optical properties of the lens as a result of temper-

ature variations, a heating element can be placed adjacent to the lens.

The resolution of the image is determined by the CCD chip in the camera.

Standard cameras produce images digitized in approximately 600 rows and

800 columns. High resolution cameras with 1300 � 1000 pixels are becoming

more common and they are sold at reasonable prices. Even higher resolutions

as 2k � 2k and 4k � 4k are also available, but those cameras are still very
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Brand Type D/A Resolution Price
1) Basler A113(p) D 1296� 1030 < kr. 27,000
2) JAI M10 A 768� 576 < kr. 9,000
3) JAI M50 A 768� 576 < kr. 3,400
4) Burle TC350A A 720� 540 < kr. 3,000

Lens Price
1) Nikon F-mount < kr. 15,000

2;3;4) Std. C-mount < kr. 1,000

Brand Type D/A Price
1) ITI MVC 150/40 D < kr. 20,000

2;3) DataTranslation DT152-A A < kr. 10,000
4) Sun ? A < kr. 5,000

Table 3.1: Cameras con�gurations used in the present project. The numbers

to the left specify which components were used together. Con�guration 4 was

only used very early in the project. D/A means digital or analog.

expensive.

Table 3.1 shows the camera, lens, and frame-grabber combinations that

have been used in the present work. Con�guration 4 was only used in the

beginning of the project. The prices are rough estimates (7 kr. � 1 euro � 1 $).
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Chapter 4

Projective Geometry

The �rst chapters have concentrated on the practical aspects of the project.

The theoretical foundation of the work will be introduced in the following

chapters, that will focus on projective geometry and camera models.

4.1 Introduction

Projective geometry has attracted much interest in the image analysis com-

munity over the past one or two decades. It is out of the scope of this dis-

sertation to give a strict mathematical introduction to the subject, but the

following sections will give some very important results that form the basis

for the understanding of the geometry in the rest of the present work. Pro-

jective geometry de�nes the laws of collinear mappings between vector spaces

which includes the perspective projections. This is useful for describing the

imaging process, where the three-dimensional object space is mapped into the

two-dimensional image space, but is, however, only a special case of the the-

ory. In its general form it explains many important dependencies between the

world and its linear projections. For instance, two images of the same scene

are subject to a series of mathematical constraints. In fact, every pixel in one

image is constrained to a line in the other image. This relationship between

two images is governed by a matrix called the fundamental matrix. Similar

constraints can be formulated for three and four images through the trifocal

and the quadrifocal tensors. The study of these constraints and their singu-

larities gives an important understanding of critical con�gurations of cameras

and object points, in terms of reconstruction and measurement.
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4.2 Literature

The very brief introduction to projective analysis in this chapter is based on the

results and observations in a large number of papers and lecture notes on the

subject. In this section I will only list a few of these. The interest in projective

geometry emerged from the observation that the projection of a point in two

di�erent images is geometrically constrained. We observe 2� 2 = 4 image

coordinates, but the object point is located in three-dimensional space, and

can therefore only span three dimensions. Observing the point in one image

therefore constrains the projection in the other image to a curve, that proves

to be a line owing to the linearity of projective algebra. Whether the cameras

are calibrated or not or have equal or di�erent intrinsic parameters makes no

di�erence. These constraints were described by Faugeras et al. [18, 16]. The

problem of estimating the parameters of the constraint has been addressed by

Hartley and Gupta [25], Lawn and Cipolla [43], Luong et al. [46], and Zhang et

al. [79]. The latter paper describes a very robust method for estimating this

epipolar geometry. Hartley [22] addresses the problem of proper minimization

subject to geometric constraints.

A great deal of the research has focused on the use of uncalibrated cameras

for recovering the structure of the observed world. In this set-up there is no

distance measure in the object space. How to perform proper triangulation

under these circumstances was addressed by Hartley and Sturm [23].

Recent papers have dealt with the study of the geometry and algebra of line

correspondences and the extension to three and more cameras, cf. Faugeras

and Mourrain [17], Triggs [70], and Quan [63]. It turns out that no constraints

exist that involve more than four cameras simultaneously.

The problem of auto-calibration has also attracted a lot of interest. Di�er-

ent combinations of the number of cameras, the number of points, and their

con�guration have been investigated, and the associated singularities have

been described. A few examples are Zisserman et al. [80], Hartley [24], and

Triggs [71]. The latter paper gives a nice overview of di�erent ways to repre-

sent constraints, and accounts for the number of degrees of freedom in each

representation.

For a �rst introduction to the subject I should refer toMohr and Triggs [51]

and Gros et al. [19]. The former gives a mathematical introduction while

the latter discusses the advantages of the projective representations. The
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dissertation by �Astr�om [2] also gives a thorough overview of the algebra. Most

of the observations reported in this chapter are discussed in these papers.

4.3 Homogeneous Coordinates

Calculations in projective geometry are based on homogeneous coordinates.

Given an n-dimensional Euclidean coordinate x, the (n + 1)-dimensional ho-

mogeneous coordinate X is obtained by adding an extra coordinate equal to

one. Typically, the homogenizing coordinate is appended at the end of the

vector

x 7! X =

2
4 x

1

3
5 (4.1)

Two points in homogeneous space, X1 and X2, are said to be equal if they are

equal up to scale and we write

X1 � X2 , X1 = �X2; (4.2)

where � is the scale di�erence. To get from the homogeneous coordinate to

the Euclidean coordinate we simply normalize with respect to, and remove,

the homogenizing coordinate

X 7! x =
1

Xn+1

2
6664
X1

...

Xn

3
7775 (4.3)

We see that the extra coordinate homogenizes an inhomogeneous equation

Ax = b , [A �b]X = 0; (4.4)

where A is a matrix and b is a vector. The introduction of homogeneous

coordinates makes it possible to express collinearity linearly. That is, the line

between two points is spanned by linear combinations of their homogeneous

coordinates. Homogeneous coordinates are, in fact, similar to barycentric co-

ordinates, with the only di�erence that the coordinate constraint is maintained

in the homogenizing coordinate

X = a1X1 + a2X2;

+
x = a1

a1+a2
x1 +

a2
a1+a2

x2

+
x = a01x1 + a02x2; a01 + a02 = 1

(4.5)
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where the a's are scalars and x represent the points on the line through x1

and x2. Obviously, three and more points can be used to span planes and

hyper-planes.

4.4 Duality

The duality between points and lines in the plane is easily formulated in ho-

mogeneous coordinates. Let L = [l1 l2 l3] be the parameters of a line. The line

equation is then

l1x1 + l2x2 + l3 = 0

m
LX = 0

; (4.6)

where row vectors are used for lines and planes. The same duality extends to

points and planes in n-dimensional space. The duality implies that the linear

combination expressed in equation 4.5 has an equivalent for lines. The linear

combinations of two lines L1 and L2, in fact, express all the lines L through

their intersection. If we let X be the point of intersection, we have

L1X = L2X = 0 ^ L = a1L1 + a2L2

+
LX = 0;

(4.7)

where the a's are scalar coeÆcients. The spanned set of lines is called a pencil

of lines. Similarly, two planes span a pencil of planes with a common line of

intersection.

4.5 Point, Line, and Plane at In�nity

Until now, we have only considered the case where the homogenizing coor-

dinate is di�erent from zero. What makes projective geometry so powerful,

however, is that a homogenizing coordinate equal to zero can be used to rep-

resent points at in�nity in a well-de�ned manner. If we let the homogenizing

coordinate of a point tend to zero we see that the Euclidean coordinate will

tend to in�nity. In fact, the homogeneous representation gives a well-behaved

de�nition of the points at in�nity. The direction to the point is given by the
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�rst n entries of the homogeneous coordinate. As a matter of fact, we can also

de�ne the line at in�nity as the line containing all the points at in�nity

X =

2
4 x

0

3
5 ^ LX = 0

+
L �

h
0 1

i
(4.8)

Note, that the normal vector of the line at in�nity is unde�ned. The plane at

in�nity is de�ned in the same manner in n-dimensional space.

Let us see what happens to equation 4.5 if X2 is a point at in�nity

X = a1X1 + a2X2;

+
x = x1 +

a2
a1
x2;

(4.9)

i.e. we simply obtain the usual point and vector parametrization of the line.

Linear combinations with the line at in�nity give rise to a set of parallel lines,

since the line at in�nity cannot contribute to a change of the normal vector.

The same applies to the plane at in�nity.

We see that the points, lines, and planes at in�nity do not behave di�erently

from other points, lines, and planes. This is an important characteristic of the

projective space. It allows us to formulate a camera model where points at

in�nity, like the horizon, map to perfectly normal image points, and where

normal points in the object space, sitting on the focal plane, map to image

points at in�nity. A consequence of this uniformity is that there is no notion

of distance in the projective space.

4.6 Simple Algebra

The algebra of points, lines, and planes is particularly simple in the homo-

geneous formulation. Since we will need to determine intersections of planes

and do similar geometry in the following chapters, this section will show a few

methods and examples.

Assume that we need to determine the intersection of two planes P1 and

P2, i.e. we search for the points X that satisfy

P1X = P2X = 0 (4.10)
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A very simple solution to this problem is to form the matrix

P12 =

2
4 P1

P2

3
5 ; (4.11)

which is a 2 � 4 matrix with the plane coordinates as rows. Assuming the

planes are di�erent, this matrix has rank 2. In other words the dimension of

the null-space is 4 � 2 = 2. The null-space is easily found by singular value

decomposition (SVD). Let us denote the two vectors that span the null-space

by X1 and X2, i.e.

P12

h
X1 X2

i
= 0 (4.12)

Consequently, we have

X = a1X1 + a2X2; (4.13)

which is valid even if one of the points is at in�nity. Using the same approach,

we can �nd the intersection of three planes as the one-dimensional null-space

of a 3 � 4 matrix, or even three points that span a plane from the three-

dimensional null-space of a 1� 4 matrix.

Singular value decomposition also works in the case of lines and points.

However, the problem can be solved directly in three dimensions by use of the

cross product of vectors '�'. Assume that we want the intersection X of two

lines L1 and L2. We have

L1X = 0 ^ L2X = 0

+
X � L1 � L2

(4.14)

From duality we can also derive the line L that passes through two points X1

and X2

L � X1 �X2 (4.15)

Successive application of these rules is useful for �nding the intersection X of

the diagonals in a quadrilateral de�ned by four points X1, X2, X3, and X4

X � (X1 �X3)� (X2 �X4) (4.16)

4.7 Collineations

A linear mapping by a square full rank (n + 1) � (n + 1) matrix of a projec-

tive space into another is called a collineation. The map naturally preserves
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collinearity. The matrix is homogeneous, i.e. scale invariant, and therefore

has (n+ 1)2 � 1 = n(n+ 2) degrees of freedom. That is, we need n+ 2 points

to de�ne a collineation, as each point represents n degrees of freedom. Hence,

four points de�ne a collineation in the plane. For comparison, an aÆne map

is de�ned by only three points, while a Euclidean map needs only one point

and a direction. In fact, the Euclidean and aÆne maps are embedded in the

set of collineations. An aÆne map (A; t) can be written as the collineation2
4 A t

0T 1

3
5 (4.17)

We see that the aÆne maps are exactly the collineations that preserve the plane

at in�nity. The n degrees of freedom di�erence between the aÆne maps and

the collineations are explained by this constraint. The subspace of Euclidean

maps is characterized by n(n+1)=2 more constraints from the orthogonality of

the rotation matrix. Another way to state this is that Euclidean collineations

preserve the absolute conic, which is a complex conic on the plane at in�nity.

This is a very useful formulation in the study of the nature of projective space,

but it will not be used further in this dissertation.

Chapter 5 will present the 2D-to-2D camera matrix, which is an example

of a collineation.

4.8 The Cross-Ratio

Even though the general collineation has more degrees of freedom than the

aÆne map, it still preserves a lot of the structure in the mapped space. We

have already seen that collineations preserve collinearity. Besides that, a mea-

sure called the cross-ratio of four points, is invariant to the projective transfor-

mations. Assume that we have four points on a line Xi = (xi; 1), i = 1; 2; 3; 4.

The distances between the points are de�ned by dij = jxi�xjj. The cross-ratio
of the four points is calculated as

c(X1;X2;X3;X4) =
d13d24

d14d23
(4.18)

and is invariant to projective transformations. The proof follows from straight-

forward calculations. If one of the points is at in�nity, say X4, we can take

the limit of the fraction to obtain

c(X1;X2;X3;X4) =
d13

d23
(4.19)
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It is interesting to notice that if this point stays at in�nity under the transfor-

mation, the map is e�ectively aÆne and 4.19 simply express the usual aÆne

invariant.

The cross-ratio is a useful tool to �nd corresponding points between two dif-

ferent projective representations. Given three points on a line, one can always

calculate the forth point by using the invariant cross-ratio. Another appli-

cation is shape recognition, where the cross-ratio can be used to distinguish

di�erent shapes.

Owing to duality the cross-ratio is naturally also de�ned for lines.
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Chapter 5

Camera Models

In order to be able to use a camera as a measuring device, it is necessary to

model the relationship between the observed world and the projected image.

Depending on the required accuracy this model can be more or less advanced.

In some vision applications, the camera repeatedly measures one distance on

the same type of object and in the same position. In this case the camera

can be modelled by a single scale factor, mapping from metric coordinates to

pixel coordinates. This simple model can be extended to aÆne and polynomial

models, that are able to account for more variability. These models are non-

physical in the sense that their parameters have no interpretation in terms of

camera orientation, focal length, image center etc. As a drawback they do not

tend to generalize to the entire image and they sometimes behave strangely

between calibration points.

Instead, a physical model, that can be calibrated very accurately to the

entire image, is preferred. This type of model is typically adopted by pho-

togrammetrists and vision researchers. The parameters can be chosen more

carefully in the physical model, and their interpretation is very useful. The

model most widely used is introduced in the following sections. It is a linear

model in projective space and its parameters are easily interpreted when the

results in the previous chapter are used.

In the �nal section of this chapter, the model will be extended with some

non-linear correction terms that account for the image distortion caused by

the camera optics. The model in its total form is obtained from Heikkil�a and

Silv�en [26]. Basically the same model is used by Kraus [42], Melen [49], Weng

et al. [76], Tsai [72], Li and Lavest [45], Willson and Shafer [77], Nomura et
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al. [53], and Horn [31].

5.1 Linear Model from 3D to 2D

This section will describe the pin-hole camera model, that maps points in a

three-dimensional object coordinate system to points in the two-dimensional

image plane. This is a linear model with a physical interpretation of the

parameters. The model is typically not suÆciently detailed for very accurate

photogrammetry, but it forms the conventional basis for more comprehensive

camera models.

5.1.1 From World Point to Image Point

Physical camera models are divided into extrinsic and intrinsic camera param-

eters. The extrinsic parameters describe the position and orientation, called

the pose, of the camera in relation to the observed world. In a multi-camera

installation they also describe the relationship between the cameras. The

intrinsic parameters model the projection of points in the three-dimensional

camera coordinate system into the two-dimensional image plane.

Let us �rst describe the external part. The extrinsic parameters cause

a coordinate change from a coordinate system centered in object space to a

coordinate system centered in the camera. Let us denote the object space

coordinates by capital letters, X = (X;Y; Z), and camera space coordinates

by small letters, x = (x; y; z). The coordinates of the origin of the object space

coordinate systemOX in camera space are denoted x0. Similarly, we denote the

camera space originOx byXc in the object coordinate system. The orientation

of the camera relative to the object coordinate system is represented by a

rotation matrixR. The three-dimensional Euclidean transformation of a point

Xi can now be written

xi = RXi + x0 (5.1)

Note, that the equation holds for X0 = 0. We see immediately that

Xc = �RTx0 (5.2)

It is important to realize that R does not rotate the geometric vector but only

performs a coordinate change from one system to another. This is emphasized
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Geometric Object Space Camera Space

OXOx �RTx0 �x0
OxOX RTx0 x0

ex R1� (1; 0; 0)T

ey R2� (0; 1; 0)T

ez R3� (0; 0; 1)T

eX (1; 0; 0)T R�1

eY (0; 1; 0)T R�2

eZ (0; 0; 1)T R�3

OxPi RTxi xi

OXPi Xi RXi

Table 5.1: Coordinate Representations. Pi is a point in space.

by equation 5.2 where Xc and -x0 are indeed the same geometric vector, only

described in di�erent coordinate systems. Table 5.1 shows how the di�erent

geometric vectors are represented in the two coordinate systems.

Often, R is represented in a more compact form by three subsequent rota-

tions around the coordinate axes. This way the three degrees of freedom are

represented by the primary angle ! around the x-axis, the secondary angle

' around the y-axis, and �nally the tertiary angle � around the z-axis. The

factorization is written as

R = R�R'R! (5.3)

=

2
664
cos � � sin� 0

sin� cos � 0

0 0 1

3
775
2
664

cos' 0 sin'

0 1 0

� sin' 0 cos'

3
775
2
664
1 0 0

0 cos! � sin!

0 sin! cos!

3
775 (5.4)

Note, that the matrix product is sensitive to the order of the rotations. The

elements of R become

r12 = sin! sin' cos �� cos! sin� r11 = cos' cos �

r22 = sin! sin' sin�+ cos! cos � r21 = cos' sin�

r13 = cos! sin' cos �+ sin! sin� r31 = � sin'

r23 = cos! sin' sin�� sin! cos � r32 = sin! cos'

r33 = cos! cos'

(5.5)

Once the object points are described in the camera's coordinate system,

the actual projection can be performed. The pin-hole model assumes a central
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principal point (u0,v0)

image point (ui,vi)

object point (Xi,Yi,Zi)
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'

�

Figure 5.1: Sketch of the camera-world relationship with speci�cation of the

extrinsic and intrinsic camera parameters.

projection of the object points. That means that a point is projected in a

straight line through the focal center, being the origin of the camera coordinate

system, onto the image plane. The image plane is parallel to the xy-plane,

which is called the focal plane. The distance between the focal plane and the

image plane is the focal length of the camera and is denoted f . The z-axis,

which is perpendicular to the image plane and passes through the focal center

is called the principal axis.

If we denote by ~ui = (~ui; ~vi) the two-dimensional metric image coordinate

of the projected point xi, the collinearity of the central projection gives

�

2
664
~ui

~vi

f

3
775 =

2
664
xi

yi

zi

3
775 ; � 2 R (5.6)

m 2
4 ~ui

~vi

3
5 = f

zi

2
4 xi

yi

3
5 (5.7)

The principle of the projection is sketched in �gure 5.1.

Now pixels in the image are referred to by their row and column indices and
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not by their metric coordinates. We therefore introduce the pixel coordinates

ui and parametrize the conversion as2
4 ui

vi

3
5 =

2
4 Dusu �

0 Dv

3
5
2
4 ~ui

~vi

3
5+

2
4 u0

v0

3
5 (5.8)

Du and Dv are two unit change factors, that map meters to pixels. They

are assumed to be known from the camera's speci�cations and should not

be estimated. The aspect ratio su models a possible deviation in the ratio

between Du and Dv. The exact values of Du and Dv are not important as

they are totally correlated with su and f . Actually, some models ignore these

factors and express the scale and aspect ratio by two focal lengths in pixel

units, fu = Dusuf and fv = Dvf . The origin of the metric image coordinate

system has, in pixel units, been denoted u0 = (u0; v0). The �nal parameter,

�, accounts for the skewness of the CCD chip. It is safe to assume that � = 0,

and the skewness factor has been ignored in this project.

5.1.2 Homogeneous Formulation

To see how this camera model relates to the results in the previous chapter,

we rewrite equations 5.1-5.8 in homogeneous coordinates. First, the Euclidean

transformation becomes 2
4 xi

1

3
5 =

2
4 R x0

0T 1

3
5
2
4 Xi

1

3
5 (5.9)

Next step is the central projection with focal length f in equation 5.7

2
4 ~ui

1

3
5 �

2
664
f 0 0 0

0 f 0 0

0 0 1 0

3
775
2
4 xi

1

3
5 (5.10)

Finally, the metric image coordinates are mapped to pixel coordinates as in

equation 5.8 2
4 ui

1

3
5 �

2
664
Dusu � u0

0 Dv v0

0 0 1

3
775
2
4 ~ui

1

3
5 (5.11)

All this can be concatenated into one single 3 � 4 homogeneous calibration

matrix P called the direct linear transformation (DLT)2
4 ui

1

3
5 � P

2
4 Xi

1

3
5 (5.12)
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where

P =

2
664
Dusu � u0

0 Dv v0

0 0 1

3
775
2
664
f 0 0 0

0 f 0 0

0 0 1 0

3
775
2
4 R x0

0T 1

3
5 (5.13)

=

2
664
Dusuf �f u0

0 Dvf v0

0 0 1

3
775
h
R x0

i
(5.14)

= K
h
R x0

i
(5.15)

=
h
KR Kx0

i
(5.16)

where the homogeneous triangular matrix K contains all the internal param-

eters. Note, that if K is known, all the individual intrinsic parameters can be

calculated.

5.1.3 Interpretation of the 3� 4 Camera Matrix

When working with the 3� 4 calibration matrix, it is very useful to be able to

interpret the meaning of the di�erent entries of the matrix without doing the

factorization sketched in the previous section. As it turns out the matrix itself

is actually very informative. The simple observations, given in the following,

are easily used to verify the validity of the matrix in relation to the known

physical set-up of an installation.

Let us denote the i'th row of P by Pi�. If we �rst examine which object

space points X that map to the image line u = 0 we have

u = 0 , P1�

2
4 X

1

3
5 = 0 (5.17)

That is, P1� is exactly the plane de�ned by u = 0 and the focal center. The

plane coeÆcients are represented in object space coordinates and the normal

vector is de�ned by the �rst three entries. Similarly, P2� de�nes the plane that

maps to v = 0. Finally, all points in the plane P3� map to in�nity in the image

plane. To have this property, P3� must be a plane that is parallel to the image

plane and intersects the focal center. This is exactly the focal plane. Therefore

the vector consisting of the �rst three entries of P3� de�ne the direction of the

principal axis. The point at in�nity on the principal axis is de�ned by this
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vector supplied with a homogenizing coordinate equal to zero, and the image

of this point is exactly the principal point (u0; v0).

Taking the dot product with the i'th row does not give the metric distance

to the plane Pi� as the planes have not been normalized with respect to the

normal vector. But even so, we can still interpret e.g. the u-coordinate as the

weighted ratio between the distance to P1� and the distance to the focal plane

P3�.

In the same fashion we can interpret the columns P�j of the calibration

matrix. The �rst column P�1 is the homogeneous coordinate of the image of

the point at in�nity on the X-axis, X = (1; 0; 0; 0). Similarly, P�2 and P�3

are the images of the vanishing points on the Y -axis and Z-axis, respectively.

Finally, P�4 is the image of the origin of the object space coordinates. Using

the results in the previous chapter, we can represent the projection of e.g. the

entire X-axis by the image line parameters P�1 �P�4.

With these observations in mind the geometric e�ect of the intrinsic pa-

rameters can be described. Changing u0 causes a linear mixing of the plane

de�ned by u = 0 and the focal plane, so that the former is rotated around its

intersection with the latter. The value of v0 has the same e�ect on the plane

de�ned by v = 0. The skewness parameter � causes a mixing of the �rst two

rows of P so that the plane de�ned by u = 0 is rotated around its intersection

with the plane de�ned by v = 0. Finally, the focal length f and the aspect ra-

tio su de�ne the distance measure associated with these two planes in relation

to the focal plane.

The following interpretation is obtained from �Astr�om [2]. If we are pre-

sented with an arbitrary full rank calibration matrix, it must have a null-space

of dimension one that we can call C. This is actually a homogeneous point

with the property that all points X on a line through C map to the same

image point

P[C+ �X] � PX; (5.18)

where X is also homogeneous. C is the homogeneous coordinate of the focal

center. In the general case, the planes de�ned by the rows of P intersect in a

�nite point, C = (Xc; 1), and we �nd

Xc = �[P�1P�2P�3]
�1P�4 (5.19)

Note, how this result agrees with equations 5.16 and 5.2. A special case occurs

if C is a point at in�nity, C = (Xk; 0), in which case P describes a parallel



40 Chapter 5. Camera Models

projection in the direction Xk. A typical example is the aÆne camera model,

where, in addition, the focal plane is also the plane at in�nity. When the

projection has only a very weak perspective e�ect, this model can be more

robustly estimated than the full perspective model.

5.1.4 Direct Estimation

The conventional linear method to estimate the parameters of P will be de-

scribed shortly in this section. The next chapter will show the more accurate

approach used in the current project. The linear method is included here as

it gives a good starting guess for the more advanced methods, and as it shows

why this method degrades as the perspective e�ect increases.

The estimation is based on a rearrangement of the projection equations

u =
(XT ; 1) � (P11; P12; P13; P14)

(XT ; 1) � (P31; P32; P33; P34)
(5.20)

v =
(XT ; 1) � (P21; P22; P23; P24)

(XT ; 1) � (P31; P32; P33; P34)
(5.21)

If we multiply by the denominator and rearrange, we obtain the error term of

the direct linear method

�u;direct = (XT ; 1) � (P11; P12; P13; P14)� u(XT ; 1) � (P31; P32; P33; P34) (5.22)

with an equivalent expression for �v;direct. Given n corresponding object points

and image points, X1; : : : ;Xn and u1; : : : ;un, we can set up a linear set of

equations

2
6666666664

XT
1 1 0T 0 �u1XT

1 �u1
0T 0 XT

1 1 �v1XT
1 �v1

...
...

...
...

...
...

XT
n 1 0T 0 �unXT

n �un
0T 0 XT

n 1 �vnXT
n �vn

3
7777777775

2
6666666664

P11

P12

...

P33

P34

3
7777777775
=

2
6666666664

�u1;direct

�v1;direct
...

�un;direct

�vn;direct

3
7777777775

(5.23)

where the residuals can be minimized by the least squares method. The P 's

should be constrained to avoid the solution P = 0. The easiest way is to apply

the singular value decomposition. The solution is the vector corresponding to

the smallest singular value.
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The least squares method is, however, only statistically justi�ed if the noise

is modelled more carefully. In the case of calibration, the noise stems from the

detection of the calibration points in the image. We should therefore rather

minimize

�u;image =
(XT ; 1) � (P11; P12; P13; P14)

(XT ; 1) � (P31; P32; P33; P34)
� u (5.24)

with an equivalent expression for �v;image. Unfortunately, this minimization re-

quires iterative methods. We see that the di�erence between the two residuals

is

�direct = �image(X
T ; 1) � (P31; P32; P33; P34); (5.25)

where the correction term is exactly the point's distance to the focal plane.

The direct method therefore has its best performance when the points have

a comparable distance to the focal plane, or in other words the depth of the

object is small compared to the distance to the camera. The relation also

shows that the algorithm can be iterated with a re-weighting based on the

points' distances to the focal plane.

5.1.5 Separation of the Camera Matrix

Once the linear calibration matrix has been estimated, it is of interest to

extract the values of the intrinsic and extrinsic parameters. This is straight-

forward, when applying the observations in the previous sections. We see from

equation 5.16 that the �rst 3� 3 matrix of P factors into the rotation and the

intrinsic parameters. The factorization is seen to be a variant of a QR fac-

torization. Once K is calculated, we can obtain x0 through back-substitution

with the last column of P. In this section the �rst 3�3 matrix of P is denoted

M.

To show how the QR factorization relates to the observations in the pre-

vious sections, I will sketch two algorithms.

Gram-Schmidt Orthogonalization

It was already stated that the third row of P contains the parameters of the

focal plane, and that the normal vector points in the direction of the principal

axis, being the z-axis of the camera. We therefore immediately have

R3� =
M3�

jM3�j (5.26)
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The second row of P is the plane de�ned by v = 0. As the skewness parameter

works on u and not on v, this plane cuts the focal plane in the x-axis of

the camera. The normal vector is therefore in the yz-plane of the camera

coordinate system. Removing the z part, we get

R2� =
M2� � (M2� �R3�)R3�

jM2� � (M2� �R3�)R3�j (5.27)

We could proceed and remove the contribution of R2� and R3� from M1�, but

it is easier just to take the cross product

R1� = R2� �R3� (5.28)

The steps taken to obtain the factorization are recognized as the Gram-Schmidt

orthogonalization of a non-orthogonal basis. It is seen that the rotation matrix

is obtained from M doing only a few calculations. The intrinsic parameters

are now given by

K =MRT (5.29)

Givens' Method

If we would like the rotation to be factorized into primary, secondary, and

tertiary rotations, Givens' method is more appropriate. This method is based

on cancellation of the sub-diagonal elements of a matrix by a series of primitive

one-dimensional rotations. In the present case, we can use R!, R', and R�

as Givens' matrices

K =MRT
!R

T
'R

T
� (5.30)

Now it is only a matter of choosing !, ', and �, such thatK becomes an upper

triangular matrix. We begin by determining R! so that m0
32 becomes zero

M0 = MRT
! (5.31)
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We see that ! = 6 (m33;m32), as R! is transposed. Next, we rotate to make

m00
31 zero, while preserving the zero obtained by the �rst rotation

M00 = M0RT
' (5.33)
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This gives ' = 6 (m33;�m31). Finally, R� is determined to cancel the �nal

sub-diagonal non-zero element

K = M00RT
� (5.35)
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where � = 6 (m22;m21). Note, that we develop the individual rotation matrices

to be direct rotations, i.e. det(R!) = det(R') = det(R�) = 1. We see that

Givens' method is very well suited for the factorization into three rotations

around the three coordinate axes.

5.1.6 Constrained Back-Projection

It is often of interest to perform back-projection, i.e. to �nd an object point

that corresponds to a given image point. A single solution is only de�ned if

we constrain the back-projection to e.g. a plane in object space. If we denote

the homogeneous image point u, and constrain the back-projected point X to

the plane Px, we have

u � PX PxX = 0 (5.37)

The solution can be found by collecting the two constraints in a single equation2
4 u

0

3
5 =

2
4 P

Px

3
5X; (5.38)

where solving for X and normalizing give the Euclidean coordinates. Note,

that the problem is well-posed if Px is not spanned by the rows of the camera

matrix P, which means that Px cannot intersect the focal center.

5.2 Linear Model from 2D to 2D

Sometimes the observed object space is two-dimensional. This is for instance

the case when the camera looks at at objects lying on a at table. In this



44 Chapter 5. Camera Models

situation we use a 3 � 3 direct linear transformation to map back and forth

between the object space and the image space. Since this camera matrix

is a collineation, it de�nes a one-to-one map between the two spaces. It is

not possible unambiguously to derive the pose or the intrinsic parameters of

the camera from the two-dimensional DLT. In the present project the 3 � 3

camera matrix has been used to map image points back onto a plane in three-

dimensional space. In this case the 3 � 3 matrix is derived directly from the

three-dimensional camera model. This is shown in the next section.

5.2.1 From 3� 4 to 3� 3 Camera Matrix

A two-dimensional coordinate system can be de�ned in the three-dimensional

space by an origin and two basis vectors (V0;Vx;Vy). Given the two-di-

mensional coordinates of a point in this plane (X 0; Y 0) we can calculate the

three-dimensional coordinates

X = V0 +X 0Vx + Y 0Vy (5.39)

To �nd the coordinate relationship between the plane in object space and the

image plane, we write the projection equations in homogeneous coordinates

2
4 u

1

3
5 � P

2
4 X

1

3
5 (5.40)

= P

2
4 Vx Vy V0

0 0 1

3
5
2
4 X0

1

3
5 (5.41)

= P0

2
4 X0

1

3
5 (5.42)

P0 is now a 3�3 camera matrix working between the plane in object space and

the image plane. Algebraically, the matrix has full rank if the null-space of P

is not in the range of the V-matrix above. Projectively, this means that the

object space plane cannot pass through the focal center of the camera matrix,

in which case the entire plane maps to a line in the image. In a structured

industrial application, we can assure that this never happens.

Often, we consider the points in the usual coordinate system with a �xed
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Geometric World Space Camera Space 2D Plane

OXV0 V0 RV0 *

OxV0 V0 +RTx0 RV0 + x0 *

eX0 Vx RVx (1; 0)T

eY 0 Vy RVy (0; 1)T

Table 5.2: Coordinate Representations.

value of e.g. Z = Z0. This gives

P0 = P

2
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1 0 0

0 1 0

0 0 Z0

0 0 1

3
777775 (5.43)

=
h
P�1 P�2 Z0P�3 +P�4

i
(5.44)

This reduction is useful when solving the inverse problem of �nding X0 from

u.

Sometimes, it is more informative �rst to remove the e�ect of the intrinsic

parameters from u, and then set up a metric vector equation to determine

X0. In that case, the representations in table 5.1, page 35, and table 5.2 are

helpful in setting up a consistent equation in either object space or camera

space coordinates.

5.2.2 Interpretation of the 3� 3 Camera Matrix

The interpretation of the 3 � 3 camera matrix follows the same reasoning as

was used in section 5.1.3. It is therefore only described briey.

The �rst row of the matrix de�nes the line that maps to the image line

u = 0. Similarly, the second row is the line that maps to v = 0, and the third

row is the line that maps to the line at in�nity. Note, in equation 5.41, that

if Vx and Vy are perpendicular to the principal axis, meaning that the object

space plane is parallel to the image plane, the third row will be (0; 0; 1) and

the map is aÆne.

The �rst column describes the image of the vanishing point on the X0-axis,

the second column is the vanishing point on the Y0-axis, and �nally the third

column is the image of the origin of the object plane. This is indeed also what

is stated in equation 5.41.
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As in section 5.1.3 the cross products of the columns can be interpreted.

For instance, the line de�ned by X 0 = 0 has the image coordinates P0
�2 �P0

�3.

Note, that the cross products of the columns play the role of the rows in the

inverse collineation P0�1. This is only natural as the three cross products

de�ne the cofactor matrix, which is indeed the homogeneous inverse.

5.2.3 Direct Estimation

The 3� 3 matrix can of course also be estimated directly from observed data.

We build up a system of equations like 5.23, where the observed object space

points are two-dimensional, such that the system matrix becomes 2n� 8. At

least four points are needed. The problem is again solved by singular value

decomposition.

5.3 Non-linear Lens Distortion

As stated earlier, the linear camera model is not suÆciently accurate for pho-

togrammetric measurements. This is primarily due to non-linear image distor-

tions caused by the camera optics. It is therefore necessary to include a few

extra terms in the camera model to compensate for these e�ects.

5.3.1 Radial Distortion and Decentering

Typically, the non-linear correction is limited to the radial and tangential

distortion of the lens. The terms used in this presentation are obtained from

Heikkil�a and Silv�en [26]. The same model with several extensions can be found

in Melen [49].

The �rst term models the pure radial distortion, which represents most

of the non-linearities in normal lenses. The same model as is applied here

is presented in most papers on non-linear lens calibration. See the literature

in the beginning of the chapter. The second term describes a decentering

distortion, which has both a radial and a tangential component. It is caused

by non-collinearity of the centers of curvature of the lens surfaces [26].

Radial distortion is sometimes also called pin-cushion or barrel distortion

with reference to the deformation of the image. It models by far most of the

distortion caused by a typical lens. The coordinate corrections are modelled
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by the expression 2
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where k1 and k2 are the coeÆcients for radial distortion and ri =
q
~u2i + ~v2i .

More terms can be added in the polynomial, but the expression above typically

gives satisfactory results.

The decentering distortion is modelled by2
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with coeÆcients p1 and p2.

The e�ect of these two types of non-linear distortion is depicted in �g-

ure 5.2. The two images on the left show the positive and negative radial

distortion, respectively, and the image on the right shows an example of posi-

tive tangential distortion. The e�ect has, of course, been exaggerated in these

images.

Figure 5.2: The modelled non-linear lens distortion. Left: pin-cushion (+)

and barrel (-) radial distortion. Right: decentering (+) distortion. The signs

refer to the dominating parameter.

Since these correction terms model distortions in the lens, they should be

applied after the projection, but before the coordinates are converted from

metric units to pixels. We therefore introduce

~ui := ~ui + Æ~u
(r)
i + Æ~u

(t)
i (5.47)

right before equation 5.8.

Note, that the introduction of the correction terms makes the camera model

non-linear. This causes the algebra to be less simple, and projections and back-

projections become computationally more expensive. One can therefore choose
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to perform an image recti�cation before doing any image analysis. This might

also be necessary if the image processing e.g. relies on the straightness of

projected lines or the elliptic shape of projected circles. If the image analysis

algorithms give no motivation to rectify the image, one should be aware that

many pixels, that will never be accessed, are recti�ed.

Even though equation 5.47 maps from undistorted coordinates to distorted

coordinates, it is the relevant expression to use when rectifying an image. The

recti�cation proceeds as follows. For each undistorted coordinate we calculate

the corresponding distorted coordinate. At this non-integer pixel location we

perform a bilinear or bicubic interpolation in the image to obtain the new

intensity. The choice of interpolation depends on the application. Typically,

I have used Catmull-Rom cubic interpolation described by Mitchell and Ne-

travali [50] and Dodgson [14]. In their parametrization this corresponds to

(B;C) = (0; 0:5). Figure 5.3 shows an example of recti�cation. The image to

the left is recti�ed using the parameters estimated in the next chapter, and the

result is shown in the middle. The right-hand image is the di�erence between

the two left images. The largest displacement in the image is approximately

60 pixels.

Figure 5.3: Image recti�cation. Left: an image acquired with a JAI camera

with an 8mm lens. Middle: the recti�ed image. Right: subtraction of the two

left images.

5.3.2 Inversion

If recti�cation is not applied, a method is required to un-distort coordinates to

perform back-projection. In this case we need the real inverse. One approach

that has been proposed is also to model the inverse as equation 5.45 and 5.46.

The parameters are then estimated from a large number of generated cor-

respondences. In this way, the inverse is calculated o�-line. The drawback
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is that the residuals in the estimation add to the overall uncertainty of the

camera system.

I have implemented a more direct solution based on the Newton-Raphson

method. The rationale for this approach is that the distortion function has

a very low curvature such that it is extremely well approximated by its �rst

order expansion. Let us denote the distortion function in 5.47 by

d(u) = u+ Æu(r) + Æu(t) (5.48)

If we are given a distorted coordinate u(d) and want to calculate the undistorted

coordinate u = d�1(u(d)) it is equivalent to solving the equation

e(u) = u(d) � d(u) (5.49)

= 0 (5.50)

with respect to u. It is therefore possible to determine the inverse through

a number of steps in the Newton-Raphson method. If we let the subscript

denote the iteration number, we have

un+1 = un � (
@

@u
e(un))

�1e(un) (5.51)

= un + (
@

@u
d(un))

�1(u(d) � d(un)) (5.52)

A natural starting guess is

u0 = u(d) (5.53)

The 2�2 partial derivative of the distortion function can be directly calculated
from equation 5.45 and 5.46. Remember that r is a function of u and v
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To test the method's performance on average, every pixel in an image was

distorted with this approach. It was decided to stop the Newton-Raphson
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Method 1 iter. 2 iter. 3 iter. 4 iter. Function Calls

(5.52) 15% 85% 0% 0% 185%

(5.55) 15% 52% 31% 2% 220%

Table 5.3: Computational cost of the inverse distortion calculation. The num-

bers are based on an inverse recti�cation of all the pixels in �gure 5.3 and

describe the fraction of pixels that need one, two, three, or four iterations

to converge. The right column shows the number of calls to the distortion

function compared to the number of calls required for a recti�cation.

iterations when ju(d) � uj < 10�2. The algorithm was tested on the image in

�gure 5.3, where the largest pixel displacement was approximately 60 pixels.

The result was that the algorithm required 2 iterations on average. There are

two reasons for this fast convergence. First, many pixels near the center of

the image are almost not distorted, and therefore require only one iteration.

Second, as stated above, the curvature of the distortion function is very small.

Note, that the Hessian matrix 5.54 is very close to the identity I. We can in

fact use this approximation to speed up the calculations. Equation 5.52 then

reduces to

un+1 = un + u(d) � d(un) (5.55)

This method was also tested. The result of the two di�erent approaches is

summarized in table 5.3. The table shows the percentage of pixels that required

one, two, three, and four iterations. No pixels required any more iterations.

The last column shows the number of calls to the distortion function. Both

algorithms use approximately twice as many calls as the direct distortion. Note

however, that the simpli�ed version does not need to calculate the Hessian.

The two algorithms were equally fast in a non-optimized implementation. The

test-run shows that if there are no immediate image processing or visualization

reasons to rectify the image, and if only a fraction of the points need to be

back-projected, it should be considered to apply the inverse function presented

in this section.
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Chapter 6

Calibration

6.1 Introduction

The previous chapter discussed the algebraic relationship between points in

the scene and their image coordinates. The result was a camera model with

six extrinsic parameters (x0; y0; z0; !; �; �) representing the pose of the camera

and eight intrinsic parameters describing the projection into the image. Four

of these are the usual linear parameters, focal length f , aspect ratio su, and

image center (u0; v0), where the skewness parameter � is assumed to have no

e�ect, � = 0. The remaining four intrinsic parameters (k1; k2; p1; p2) model

radially symmetric and decentering image distortion caused by the optics. All

these parameters need to be estimated with high accuracy before the camera

can be used for photogrammetry. Furthermore, it is desirable to know the

uncertainty of the parameter estimates in order to be able to evaluate the

quality of the vision measurements.

The standard approach to calibration is to acquire images of a known

calibration object, thereby obtaining corresponding sets of object points and

image points. Typically, the object points are modelled to be un-corrupted by

noise, while the image points are assumed to have been detected with some

uncertainty. All the camera parameters can be estimated from a single image

if the points on the calibration object are not coplanar. If they are coplanar,

more than one image is required.

The camera calibration is only valid as long as the lens settings are not

changed. A consequence of this constraint is that the focus and the aperture

of the camera must remain set for the application during calibration. At
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the shipyard, the camera is typically calibrated for large scale applications,

so that only objects at some distance from the camera appear sharp in the

image. Consequently, the calibration object must also be large to be of any use.

To avoid spending too much time on maintaining a large three-dimensional

calibration object, it has been decided to base the calibrations at the yard on

a planar object. Figure 6.1 shows 51 images of the calibration plate, which

measures 1400mm�2000mm. The printed circular marks have been manually

glued onto temperature insensitive graph paper, that is itself glued onto a

wooden plate. The entire plate has been coated with a plastic �lm.

This chapter will present the computer program that has been developed

to estimate the camera parameters from these images. The calibration quality

will be evaluated with features in this program, and di�erent pitfalls in the

interpretation of the results will be discussed.

6.2 Literature

The calibration discussed in this chapter is based feature extraction, pose

estimation, and camera model �tting. The camera models and di�erent ap-

proaches to calibration are addressed by the authors cited on page 33. The

feature extraction part is discussed in chapter 7. Section 6.3.3 on page 57 in

this chapter contains some pointers to di�erent pose estimation methods. It

seems that the most common and useful guideline concerning accurate calibra-

tion is to perform a careful choice of noise model and optimize all parameters

in a bundle adjustment, cf. Kraus [42] and Kanatani [37].

6.3 Calibration Software

Much e�ort has been put into camera calibration and its interpretation in this

dissertation. The reason is that calibration demands a lot of time resources,

and errors in this phase a�ect all future measurements with the camera. It is

therefore worthwhile to invest some time in thorough analysis of the calibration

procedure, to be able to answer questions like: How many images are needed?

From which angles and distances should the images be acquired? What is the

uncertainty in the parameters? And how does it e�ect the projection?

As stated above, the calibrations at the yard are based on a planar cal-
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Figure 6.1: Calibration Images. The plate contains 60 coplanar calibration

points and measures approximately 1400mm� 2000mm.
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ibration object. As can be seen in �gure 6.1, the object contains p = 60

calibration features, each with two coordinates. Since the 8 intrinsic camera

parameters are common to all the images, only 6 additional extrinsic parame-

ters are needed for each image included in the calibration. With v images, the

problem is therefore over-constrained by 2pv � 6v � 8 equations.

Some calibrationmethods rely on an automatic extraction of the calibration

points in the image. An initial value for the parameters can then be obtained

by use of the method in section 5.1.4, page 40. It is, however, unreasonable to

proceed with the calibration without checking the quality of the acquired im-

ages, and it is likely that an automatic approach will establish some erroneous

correspondences between image points and calibration points. Furthermore,

the automatic feature extraction is liable to fail, as it has to model large scale

di�erences and perspective e�ects owing to the unknown camera pose. The

time spent in detecting such problems at a later stage easily exceeds the extra

time required to operate a semi-automatic program. Bearing these considera-

tions in mind, I have based the software on manual initialization. The images

are loaded along with a CAD model of the calibration object. The user is

then able to drag four points on the model to their respective positions in the

image. As the user moves these handles, the pose is updated on-line, and the

user can follow the parameter values in a dialog. The calibration procedure is

1. Load image(s)

2. Load model, cf. section 6.3.1 and �gure 6.2

3. Load initial camera parameters, cf. section 6.3.2 and �gure 6.3

4. Position handles, cf. section 6.3.3 and �gure 6.2

5. Check point distribution, cf. section 6.4.3 and �gure 6.5

6. Detect calibration features, cf. section 6.3.4 and �gure 6.4

7. Check detection, cf. section 6.3.4 and �gure 6.4

8. Fit camera parameters, cf. section 6.3.5 and �gure 6.3

9. If parameters changed goto 6

10. Check residuals, cf. section 6.4.5 and �gure 6.7

11. Check parameter dispersion, cf. section 6.4.4 and �gure 6.6

12. Save camera parameters

The following sections will describe the di�erent steps in the list above, with

emphasis on the interpretation of the results.
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6.3.1 Calibration Object Model

The calibration is based on a model of the calibration object. This model is

loaded into the program and projected onto the image. By interaction the user

can then adjust the position of the model in the image, and thereby indirectly

initialize the extrinsic camera parameters, cf. section 6.3.3. Figure 6.2 shows

an overlay of the model of the calibration object on the upper left-hand image

in �gure 6.1. The calibration features in this particular model consist of three

concentric circles alternating in color between black and white. The type and

dimension of the calibration feature is speci�ed in the model �le. This �le also

contains two basis vectors that span the plane of the feature. A typical entry

in the �le looks like this:

C3 6.0 30.0 60.0 67.0 -820.0 570.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

The �rst �eld, C3, speci�es the type of the feature, in this case being three

concentric circles. A single circle has also been used in some applications. The

next four entries specify the three radii in millimeters, and a radius limiting

the region of interest. The last nine entries are the position of the feature in

the calibration object coordinate system, and the two vectors that span the

plane of the feature. The orientation of the feature is used to back-project the

image to an isotropic coordinate system, cf. chapter 7. It is also possible to

de�ne a model with features on di�erent planes, such that the program can

do a three-dimensional calibration from a single image.

6.3.2 Camera Parameters

The initial camera parameters can be read from a �le or be entered manually.

Figure 6.3 shows the parameter dialog with typical initial values. These are

used to project the model into the image. If the parameters deviate a lot

from the optimal values, the projected features may be very dissimilar from

the actual image. This will cause the feature detection in the �rst iteration to

be biased and will decrease the quality of the �tted camera parameters. The

initial guess therefore determines the goodness of the �t in the �rst iteration.

However, the improvement of the parameters in the �rst iteration, typically

leads to a very satisfactory feature detection in the second iteration. Never-

theless, it is always worthwhile to enter the nominal focal length of the lens.

If the user wants to interpret the values of the parameters physically, it is also
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Figure 6.2: Software interface with manual initialization of the pose. The red

handles can be moved around in the CAD model, and the green handles can

be moved in the image.
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necessary to specify the dimension of the CCD chip. All other parameters are

automatically assigned a reasonable default value. The default value for the

principal point is taken as the center of the loaded image(s). When a camera

is re-calibrated or similar cameras are calibrated it can save time to initialize

the calibration with a previously estimated set of values.

Figure 6.3 also shows a check-box in front of every �eld. By un-checking a

�eld, the user can prevent the corresponding parameter from being estimated.

The signi�cance of the various parameters can be evaluated by �tting di�erent

models. Note, that un-checking all the non-linear lens distortion parameters

leaves us with the pure linear model.

Figure 6.3: The camera parameters dialog with initial values. The user can

check the parameters to be estimated.

6.3.3 Pose From Handles

There are two reasons why calibration feature detection can be very time-

consuming. First, we have no knowledge of where in the image to perform the

search. Second, the appearance of the feature varies a lot in terms of shape
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and size depending on the pose of the camera. Thereby the size of the search

space is increased. Both problems are overcome by the speci�cation of an

initial pose. In the software program the pose is calculated from the image

position of four handles, that are attached to the CAD model. These handles

can be moved around by the operator.

Figure 6.2 shows how the handles are used to drag the model in place. The

upper left-hand image shows the handles in the initial positions. In the top

right and bottom left images the user is dragging the green handles to their

corresponding positions in the image. The bottom right image shows that the

handles can also be moved around on the CAD model, if desired.

As the user adjusts the handles, the pose is calculated on-line and can

be followed in the parameter dialog. The values of the intrinsic camera pa-

rameters are all used when calculating the pose. In fact, the pose could be

determined from only three points, but then there is the risk of having four

di�erent solutions, cf. Haralick et al. [20]. This ambiguity is removed by

using four points. With four points the problem can be solved analytically,

cf. Horaud et al. [29], or by the iterative scheme proposed by Dementhon et

al. [11, 54], and re�ned by Horaud et al. [30, 8]. The latter schemes are based

on iterated aÆne approximations of the full perspective model, and can be ap-

plied to any number of points greater than four. Horaud et al. improved the

accuracy and convergence of the algorithm by replacing the weak perspective

model by the para-perspective model, which is a higher order approximation

to the perspective model. The papers also address the special case where the

calibration points are coplanar. The immediate advantage of these algorithms

is that they require no starting guess. The drawback is that they minimize

another error measure than the image residual. Therefore, I always apply a

non-linear technique to the output to obtain the true least squares solution.

In the present program I have implemented the algorithms by Dementhon et

al.

6.3.4 Calibration Feature Detection

The accuracy of the entire calibration depends on the quality of the feature

detection. The underlying theory of the detection is described in chapter 7.

This section will only show some results and demonstrate the value of doing

iterations on the detection and the estimation of camera parameters. The
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detection of features is based on �tting a parametric model to the image in-

tensities. The parameters model the position, the smoothing, the light and

dark phase, and possibly a light trend across the feature. Figure 6.4 shows the

situation in the �rst and second iteration of the calibration. In the left image

in the top row the operator has positioned the handles attached to the four

corner features. Thereby, the approximate position of all the other features is

also given. Note, that the non-linear lens distortion, which has not yet been

estimated, causes the shape of the model to di�er from the underlying image.

In the second row, the features have been modelled, and the models have been

projected into the image. In the bottom row the model has been subtracted

from the image to show the di�erence. Note, that the position has been fairly

well approximated for all features. However, since the shape is not modelled,

there is a signi�cant di�erence between the image and the model. The right

column shows the second iteration. Now, the intrinsic parameters have been

estimated and the pose is based on all the points. The projected model is seen

to be much more similar to the features in the image. The second and third

row show that the parametric �t has improved signi�cantly.

Even though the �t is based on least squares minimization, the correla-

tion score has also been calculated. The score for each feature can be seen in

the second row. Features that score higher than 0:8 are marked green and are

included in the estimation of the camera parameters. The residual in the para-

metric �t can be used to estimate a theoretical dispersion of the parameters of

the feature model. The theory is described in appendix B. Only the position

is interesting here for which reason I have conditioned the dispersion of the

position estimate on all the other parameters. The estimated dispersions of

the upper left-hand feature in �gure 6.4 is

D1(xc; yc) =

2
4 1:5e� 02 7:1e� 04

7:1e� 04 1:7e� 02

3
5 mm2 �

2
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3
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(6.1)
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3
5 pixel2;

(6.2)

where the subscripts refer to the iteration number, and where the position

parameters are denoted (xc; yc). The dispersion has been mapped to image

units by a pure scale factor 60mm=25 pixels. As can be seen, the uncertainty

in the position estimate is reduced signi�cantly by the improved estimate of
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the intrinsic parameters. In fact, the theoretical standard deviation of the

position estimate is as small as �detection = 0:01 pixel. The detection accuracy

is of course worse in the images where the features are smaller. The worst case

detections have a standard deviation about a tenth of a pixel.

6.3.5 Fitting Camera Parameters

It is important, when dealing with imperfect data, to model the noise where

it occurs, cf. Kanatani [36]. In camera calibration it is natural to model the

noise in the detection of the calibration features in the image. That is, it

is assumed that the CAD model of the calibration object precisely describes

the physical object, and that the camera model fully describes the projection

of the features to some 'true' image locations. Then we try to estimate the

camera parameters that minimize the distance between these 'true' positions

and the observed positions. The cost function is

F(a1; : : : ; av) =
vX

i=1

pX
j=1

juij;obs � uij(ai;Xp)j2; (6.3)

where the camera parameters ai have the intrinsic part in common.

The actual estimation of the camera parameters is based on the Levenberg-

Marquardt algorithm [61]. This algorithm uses a mixture of gradient descent

and quasi-Newton steps to arrive at the minimum. As the starting guess of the

optimization is very close to the optimal values, the update formula will very

soon be dominated by the quasi-Newton step. The convergence will therefore

be almost quadratic from an early point.

6.4 Calibration Example

The previous section described the di�erent steps in the calibration procedure.

This section will show an example of a calibration, which will serve as a good

basis for a few interesting discussions.

The example concerns the calibration of a JAI M50 camera, cf. table 3.1,

page 23, with an 8mm lens. Cameras with focal lengths in that range typically

have a considerable amount of non-linear lens distortion, as can be seen in

�gure 6.4. The calibration has been performed with a subset of the images in

�gure 6.1, namely the images in column 1, 3, and 5. Numbering the images
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Figure 6.4: Calibration mark detection. Left: �rst iteration. Right: second

iteration. Top: calibration mark shape predicted from handle positions and

detected positions, respectively. Middle: �tted models with correlation scores.

Bottom: di�erence between �t and image.
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Parameter 1st Iteration 2nd Iteration

Focal length f [mm] 7.93 7.95

Principal point u0 [pix] 388.17 389.61

Principal point v0 [pix] 290.99 290.18

Aspect ratio su 1.021 1.021

Radial distortion k1 -5.47e-03 -6.01e-03

Radial distortion k2 1.69e-05 4.55e-05

Tangential distortion p1 1.27e-04 9.59e-05

Tangential distortion p2 -3.56e-05 -1.16e-06

RMS Residual image 1 �1 [pix] 0.20 0.10

RMS Residual all images � [pix] 0.14 0.09

Table 6.1: Estimated camera parameters for a JAI M50 camera with an 8mm

lens.

from left to right, these are called the odd images. This series contains 26

di�erent views. Table 6.1 shows the estimated parameters after �rst and second

iteration. More iterations will not change the parameters signi�cantly. First,

we verify that the estimated parameters seem reasonable. The focal length

is very close to the nominal value, the principal point is within a few pixels

from the image center (384; 288), and the aspect ratio is very close to 1:0. The

non-linear lens distortion coeÆcients are rather small, and the dominating

terms only change a little from the �rst to the second iteration. Second, we

examine the calibration residual. The residual after the second iteration is

� = 0:09 pixel. The calibration residual is often interpreted as the uncertainty

of the camera model, i.e. the expected inaccuracy when using the camera.

A more sophisticated interpretation of this measure will be attempted in the

following sections.

6.4.1 Goodness Of Fit

Two di�erent situations can be imagined when �tting the parameters in a

model. If the scale of the observation noise is known, the terms in equation 6.3

can be normalized by their variance. Since the terms are also expected to have

zero mean, we have a �2-distributed cost function. We can therefore perform

a goodness of �t test of the cost function in a �2-distribution. If, on the

other hand, the scale of the observation noise is not known, we can estimate
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the general noise level from the value of the cost function. This is how the

residuals were estimated in table 6.1. However, we actually have estimates of

the noise level from the feature detection, cf. equation 6.2. The estimated

residual is seen to be 10 times greater than the standard deviation of the

position estimate. Therefore, the model would have failed a goodness of �t

test on any reasonable signi�cance level. This indicates that our presumptions

have been violated. Either the camera model is not able to describe the true

physical projection from object space to image space, or the CAD model is

itself corrupted by noise. The sum of contributions can be written

�2 = �2cad + �2model + �2detection (6.4)

where the �rst two terms on the right-hand side are the CAD model inac-

curacy and the unknown camera model error. To investigate if the residual

could be explained by the CAD model, we re-scale the residual to metric units

� � 0:23mm. The scaling factor is valid for the average distance to the cali-

bration object. The calibration object was built manually from printed paper,

remember, so it is very plausible, that most of this residual is explained by

an inaccurate CAD model. It has been attempted to estimate a better CAD

model from the images, by back-projecting the detected feature locations in all

images to a �xed depth Z = 0 to construct an average CAD model. Calibra-

tion with this model did not improve the calibration residual. This could be

due to the fact, that the di�erent poses have compensated for the discrepancy

between the image and the projected CAD model in di�erent ways. It could

also be due to the features not being really coplanar. To reveal this would

require a bundle adjustment with all camera parameters and CAD data at the

same time. This has not been attempted.

6.4.2 Veri�cation On Test Data

Another way to analyze the quality of a �t is to test it against a set of data,

that was not used in the optimization. This is a very important test, as it

proves the model's ability to generalize. Especially, it can reveal if too many

parameters are included in the model. In the calibration case, we have not

yet used any of the even images in �gure 6.1. We can perform a calibration

with these images without estimating any of the intrinsic camera parameters.

However, we do have to estimate the pose for every image. The overall residual
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becomes �even = 0:10 pixel. Note, that this value is very close to the calibration

residual, which suggests that the model is not over-�tted.

6.4.3 Spatial Calibration Feature Distribution

A small calibration residual does not itself prove a good calibration. It is also

important that the calibration generalizes to the entire image �eld. Normally,

it is stated that the calibration is only valid within the convex hull of the

calibration points. It is therefore desirable that the calibration points are dis-

tributed evenly in the entire image to ensure that the camera model performs

equally well in all pixel positions. To verify this, the calibration program can

show the position of all features in one single image. Figure 6.5 shows such

an image, where each yellow spot indicates a feature in some image. It is seen

that the points span the image very well.

Figure 6.5: Calibration point distribution. The validity of the calibration

depends on the local density of calibration points. The calibration should only

be used within the convex hull of the points.

6.4.4 Parameter Dispersion

As stated earlier, the calibration residual is often interpreted as a lower bound

on the quality of the camera model. This is only true in the sense that the

residual is a measure of the detection accuracy, which will be unchanged for

future measurements. However, it neglects the fact that more images cause
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better calibrations. Assuming a perfect camera model, a perfect CAD model,

and a fair noise distribution, we are theoretically able to estimate the parame-

ters of the camera to any precision regardless of the noise level. This fact is not

reected in the calibration residual, which is limited by the detection accuracy.

It is more fair to study the theoretical dispersion of the camera parameters.

This can be estimated from the calibration matrix and the Jacobian of the

camera function, cf. appendix B.

Let us �rst see which information can be obtained from the dispersion

matrix. Table 6.2 shows the dispersion of the camera parameters when the

model is �tted only from the �rst image in �gure 6.1. Despite the known

singularities, a single image has been used in this example to limit the size

of the dispersion matrix. This also gives us a chance to verify the strong

correlations that arise from a single image of coplanar data. The correlations

in the table are very much as expected. If we imagine an incrementation of

the focal length, the image points will move towards the center of the image.

Since the calibration points primarily project to the upper left-hand side of

the image, we will see a similar behaviour by incrementing either x0, y0, or z0.

This is reected in the correlation between those four variables. Further, we

see that these parameters anti-correlate with the coordinates of the principal

point. This is also what should be expected from the camera model. It is also

interesting to observe the magnitude of the variances in the dispersion matrix.

For instance, the standard deviation of u0 is approximately 20 pixels and the

standard deviation of z0 is 100mm.

To obtain a more true picture of the accuracy in the calibration, it is nec-

essary to remove some of these correlations. This is, of course, the objective of

using more images. It can, however, also be modelled from the example above,

by e.g. conditioning the intrinsic parameters on the extrinsic parameters, cf.

appendix B. Table 6.3 shows the conditional dispersion of the intrinsic pa-

rameters. The variances have now been reduced signi�cantly, and the intrinsic

parameters are much less correlated with each other. Note, however, that the

radial distortion parameters still correlate quite strongly with the focal length.

This indicates, that the calibration images should be chosen to span the per-

spective distortion and the lens distortion independently. This is done by

acquiring images from di�erent angles to yield data with di�erent amounts of

perspective distortion and other images where the calibration features spread

nicely in the image �eld to span the variation modelled by the lens distortion
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f u0 v0 su k1 k2 p1 p2

f 1.6e-06 2.4e-05 3.7e-06 -4.8e-10 -5.2e-08 2.1e-09 -2.5e-09 -1.6e-08

u0 2.4e-05 1.3e-03 1.1e-04 6.2e-06 -5.2e-07 2.4e-08 -1.2e-07 3.4e-07

v0 3.7e-06 1.1e-04 2.5e-04 -4.1e-07 -2.3e-07 4.8e-09 -1.6e-07 -2.0e-07

su -4.8e-10 6.2e-06 -4.1e-07 1.1e-07 1.1e-08 -1.2e-10 3.9e-10 2.0e-08

k1 -5.2e-08 -5.2e-07 -2.3e-07 1.1e-08 4.0e-09 -1.1e-10 3.3e-10 3.5e-09

k2 2.1e-09 2.4e-08 4.8e-09 -1.2e-10 -1.1e-10 4.1e-12 -7.1e-12 -5.8e-11

p1 -2.5e-09 -1.2e-07 -1.6e-07 3.9e-10 3.3e-10 -7.1e-12 1.6e-10 3.1e-10

p2 -1.6e-08 3.4e-07 -2.0e-07 2.0e-08 3.5e-09 -5.8e-11 3.1e-10 4.8e-09

f u0 v0 su k1 k2 p1 p2

f 1.00 0.53 0.18 -0.00 -0.66 0.82 -0.16 -0.18

u0 0.53 1.00 0.19 0.53 -0.23 0.34 -0.26 0.14

v0 0.18 0.19 1.00 -0.08 -0.23 0.15 -0.77 -0.18

su -0.00 0.53 -0.08 1.00 0.54 -0.18 0.09 0.87

k1 -0.66 -0.23 -0.23 0.54 1.00 -0.86 0.42 0.80

k2 0.82 0.34 0.15 -0.18 -0.86 1.00 -0.28 -0.41

p1 -0.16 -0.26 -0.77 0.09 0.42 -0.28 1.00 0.35

p2 -0.18 0.14 -0.18 0.87 0.80 -0.41 0.35 1.00

Table 6.3: Conditional dispersion of the intrinsic camera parameters, when

only estimated from the �rst image in �gure 6.1. Top: covariance matrix.

Bottom: correlation matrix.

parameters. The extrinsic parameters can also be conditioned on the intrinsic

parameters. The result is shown in table 6.4. The position of the calibration

object relative to the camera is now determined within 0:1{0:2mm, which can

be taken as a measure of the expected pose accuracy. Note, that x0 as expected

is very correlated with the rotation around the y-axis '.

Now, the conditioning example above, of course, is untrue to the data,

since neither the extrinsic nor the intrinsic parameters can be assumed known.

Furthermore, some of the variances observed in tables 6.2-6.4 are hard to in-

terpret. What is, for instance, the signi�cance of a given standard deviation

on the focal length, a tangential distortion parameter, or an angle, in terms

of measurement accuracy? And at which rate do these standard deviations

decrease as the number of images is increased? To answer these questions, the

total dispersion matrix, containing the covariance of the intrinsic parameters

and all the poses, has been mapped into the image. The result is a dispersion

matrix in u and v for each pixel in the image. This gives a visual impres-

sion of the accuracy of the camera model, and represents the uncertainties in

a domain where they can be interpreted directly. Figure 6.6 shows various

examples of the camera parameter dispersion mapped into the image. The

ellipses represent one standard deviation, and have been exaggerated 1000

times. The numbers are the non-exaggerated standard deviation in the point

�uv =
q
�2u + �2v . The �rst row shows the dispersion resulting from the cali-
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x0 y0 z0 ! ' �

x0 2.5e-03 5.1e-04 -6.5e-03 3.5e-09 2.3e-06 -1.1e-07

y0 5.1e-04 7.1e-04 -1.7e-03 4.4e-07 6.3e-07 1.3e-07

z0 -6.5e-03 -1.7e-03 2.3e-02 1.9e-06 -8.1e-06 2.6e-07

! 3.5e-09 4.4e-07 1.9e-06 1.5e-08 2.0e-11 4.6e-09

' 2.3e-06 6.3e-07 -8.1e-06 2.0e-11 7.2e-09 2.1e-10

� -1.1e-07 1.3e-07 2.6e-07 4.6e-09 2.1e-10 3.5e-09

x0 y0 z0 ! ' �

x0 1.00 0.38 -0.87 0.00 0.54 -0.04

y0 0.38 1.00 -0.41 0.14 0.28 0.08

z0 -0.87 -0.41 1.00 0.10 -0.63 0.03

! 0.00 0.14 0.10 1.00 0.00 0.63

' 0.54 0.28 -0.63 0.00 1.00 0.04

� -0.04 0.08 0.03 0.63 0.04 1.00

Table 6.4: Conditional dispersion of the extrinsic camera parameters, when

only estimated from the �rst image in �gure 6.1. Top: covariance matrix.

Bottom: correlation matrix.

bration from the odd images after the �rst and second iteration. The stan-

dard deviation is seen to decrease by a third after the �rst iteration. This

is expected, since the calibration residual decreases by that amount and the

con�guration remains unchanged. Naturally, the standard deviation is only a

measure of the calibration accuracy if the presumptions hold, i.e. the CAD

model is perfect and the feature detection noise is independent Gaussian. It

is, however, still remarkable, that the camera can predict the projection of a

point with such a small standard deviation under these presumptions. Note,

how the uncertainty increases towards the border of the image �eld.

The uncertainty ellipses in the image can also give some information on the

distribution of the calibration points in the images. The images in the second

row and the �rst image in the third row in �gure 6.6 show the dispersions

caused by using only images 1{3, images 1{2, and image 1 in the calibration,

respectively. Both image 1 and 2 have all the calibration points in the left-

hand side of the image, but the points in image 1 are closer to the upper edge

of the image. Image 3 has points in the right-hand side of the image. Note,

how the uncertainty increases massively in the right-hand side of the image

�eld as image 3 is excluded from the calibration. Omitting image 2, makes

only a smaller di�erence, but some increase in the uncertainty is observed in

the lower part of the image �eld.

The method can also be used to demonstrate the problem of overparame-

trization. The lower right image in �gure 6.6 shows the result of a calibration

based on image 1, where the tangential distortion has not been estimated. Re-
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member, that the lower left image shows the same example where all param-

eters are estimated. Including the tangential distortion makes the calibration

residual decrease from 0:11 to 0:06. Judging only from the calibration residual,

this is a much better calibration. Looking instead at the image dispersion, it is

seen that the standard deviation in the worst case increases by a factor of four.

At the same time the best improvement is less than 70%. This emphasizes

that, while improving the calibration residual, the ability to generalize from a

model deteriorates as the number of parameters is increased - at least if the

data does not span the added parameters.

6.4.5 Residual Analysis

It is also important to study the individual image residuals in the �tting of the

camera parameters. They show the spatial error between the detected features

and the optimally projected CAD model. The previous chapter gave an exam-

ple, where the systematic behaviour of these residuals revealed a bias in the

feature detection. Hence, the residual plot can be used to verify the validity of

the noise model. Figure 6.7 shows three plots. The left plot contains the resid-

uals in the �rst image after the �rst iteration in the calibration from the odd

images. The right and bottom plots correspond to the second iteration, where

the latter contains the residuals of all images simultaneously. The vectors

are exaggerated by a factor 100, and the numbers show the non-exaggerated

magnitude of the vector. Ideally, the plot with the residuals from all images

should reveal if the the camera model is not suÆciently parametrized. How-

ever, it should be remembered that each image has six degrees of freedom in

the pose to make the residuals sum to zero. This will tend to decrease the

local correlation of the residuals.

Looking at the right plot, there actually seems to be some correlation be-

tween residuals. The direction of the error in the top row of features tend to

follow a systematic pattern. Similar correlation can be seen in other parts of

the image as well. A test statistic can better quantify the amount of correla-

tion. The test can either be performed on a single image, or on all residuals

simultaneously. The latter test is performed here to bene�t from the larger

amount of data, even though, as mentioned above, the pose estimations are

expected to produce local anti-correlation and thereby reduce the quality of

the test. Hotelling's T 2 test will be used. It is described in appendix B. The
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Figure 6.6: The camera parameter uncertainty projected into the image plane.

From the top, left to right: odd images after 1st iteration, odd images after

2nd iteration, images 1{3, images 1{2, image 1, and image 1 without tangential

distortion.
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Figure 6.7: Calibration residuals with vectors exaggerated 100 times. Top:

image 1 after 1st iteration. Middle: image 1 after 2nd iteration. Bottom: all

images after 2nd iteration. In each image an area has been blown up.
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Figure 6.8: Hotelling's T 2 test for locally correlated residuals. Top: the number

of residuals in the test and the probability of the test statistic being greater

than or equal to the observed value. Bottom: threshold of the upper image at

signi�cance level � = 5%.
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test calculates the Mahalanobis distance from zero to the local mean, using

the local empirical dispersion matrix. The test statistic is calculated in 15�21

rectangles and is based on all the residuals within a radius of 40 pixels. The

upper image in �gure 6.8 shows the probability of a test statistic being greater

than or equal to the observed value. Each rectangle also shows a number spec-

ifying how many residuals were used to calculate the statistic. The grey level

is equal to the probability, so that one can threshold in the image to see the

rejection rate for di�erent signi�cance levels. The cyan areas contain too few

points to perform the test. All in all the image contains 276 tests.

As argued in the appendix, the signi�cance level should reect the number

of performed tests. It is not reasonable to expect no rejections of the null-

hypothesis on a signi�cance level of � = 5% when doing 276 tests. One can

then either calculate the appropriate signi�cance level, �276 = 1� 0:951=276 =

2e� 04, or compare the number of rejections for � = 5% to the expected rate.

With respect to the �rst test it is immediately seen, that no probability in

the test comes near 2e � 04, meaning that this test does not reject the null-

hypothesis, that the local residual mean is zero. The latter test is preferred

here as it also gives some information on the neighborhood sensitivity to the

test. The bottom image in �gure 6.8 shows a threshold at a signi�cance level

of � = 5%. It is seen that the null-hypothesis is rejected in 20 out of 276

tests. If the mean was indeed zero, we would expect a rejection rate close

to the signi�cance level, i.e. 14 rejections. The standard deviation would be

0:05 � 0:95 � 276 = 13. The observed number of rejections is therefore within

one standard deviation of the mean. In a calibration with the even images the

result was 34 rejections in 273 tests, which is somewhat closer to a rejection of

the null-hypothesis. Even though none of the tests rejects the null-hypothesis,

it is noted that they give large test statistics. Especially because the pose

estimates are expected to favour the null-hypothesis and because there seems

to be some correlation in the right image in �gure 6.7.

In relation to the discussion in section 6.4.1, it is interesting if there is some

pattern in the residuals. If the calibration residual is mainly determined by the

manual placement of the calibration circles, the residuals would be expected to

be stochastic in the (x; y)-plane. The exception is the situation, where one or

a few outliers cause a strong correlation of all the other residuals, which seems

not to be the case here. It is therefore more likely that the calibration residual

is caused by something else. Two possibilities are imaginable. Either the
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calibration object is slightly curved, so that the observed residuals are caused

by parallax, or the lens distortion is more complex than what can be captured

by the radial and decentering parameters. I believe that either possibility is

equally probable. In relation to the former, the pose reveals that the plate is

angled 35 deg. with respect to the image plane in image 1. That is, a parallax

of 0:2mm can be caused by a misplacement of the calibration feature of only

0:3mm in the Z-direction. The latter possibility also seems likely, since the

calibration in the example is based on a high distortion 8mm lens. In fact,

the magnitude of the distortion function is as large as 60 pixels, which is two

orders of magnitude greater than the calibration residual.

6.5 Selection of Images

The calibration in the example above was performed on 26 images with 25

additional images in the test set. It is very time-consuming to acquire that

many images. The camera is moved around on a tripod, and the camera

and light settings sometimes need to be changed when moving from one view

angle to another. It is therefore desirable to limit the number of images to

an acceptable minimum. The tools discussed in this chapter give a basis for

the selection of calibration images, in terms of their number and their nature.

It is not possible to give explicit guidelines, since the choice depends on the

needed accuracy and the speci�c camera. Generally, the images should span

the variability in the camera model to limit the correlation among the intrinsic

parameters. Otherwise, there is a chance that the correlated parameters are

optimal for the calibration images, but give poor results with future images.

This is why we have acquired the images from di�erent angles and di�erent

distances. As stated earlier, it is also important that the calibration features

are distributed evenly in the image �eld. This ensures that the optimized

parameters are valid in all but the border of the image �eld. When calibrating

the Basler cameras with low distortion lenses, we typically use about 15 images.

6.6 Calibration Constancy

When calibrating a camera, it is of course also of interest how long the cali-

bration will remain valid. At the yard, we �x the focus and aperture settings
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with tape before we begin calibration. Furthermore, heated camera houses are

used in the outdoor installations to limit the e�ect of temperature changes.

No thorough tests have been performed to verify the constancy of the cali-

brations, but the parameters have been seen to perform well over six-month

periods. There is no reason to believe that the calibrations should not be valid

for even longer periods.

In most of the applications at the yard we perform an on-site pose calcu-

lation for every image, as the cameras are mounted on large structures that

move as a result of variations in temperature and mechanical loads. Since the

perspective e�ect is typically small in these images, the pose calculation can

actually compensate for many small variations in the intrinsic parameters, cf.

table 6.2. The parameter variations that are most diÆcult to compensate by

the pose parameters are aspect ratio and non-linear lens distortions. However,

these parameters are also the least likely to change over time. Consequently,

the on-site calibration induced by the pose calculation, helps to prolong the

validity of the camera model.

6.7 Conclusion

This chapter has presented a calibration method based on coplanar calibration

data. More importantly, the calibration has been analyzed by use of a number

of di�erent tools. It has been shown that the image residuals or the total

calibration residual are not suÆcient measures to validate a calibration. The

parameter dispersion and its projection into the image �eld gave additional

information on the camera model uncertainty, and provided a tool to choose the

number of parameters and the combination of images. A test calibration was

performed resulting in a calibration residual of a tenth of a pixel. The majority

of the residual is expected to originate either from the severe distortion in the

lens or from an imperfect CAD model of the calibration object. Nevertheless,

the calibration residual is by far small enough for the required accuracy in the

future measurements with the camera.

The academic and industrial partners in the Esprit project RobVision

have agreed to use the developed calibration software in the project.
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Chapter 7

Feature Extraction

7.1 Introduction

The previous chapters have dealt with the understanding and the modelling

of the geometric relationship between the observed world and the image pro-

jection. These results will naturally be used to derive information about the

world from detected image features. This chapter will present the theories and

methods that have been used for feature detection in the present project.

The �rst section will address the problem of accurately estimating the

position of reference marks in the image. Reference marks are designed to be

estimated with high precision in the image and are used for internal as well

as for external calibration of the camera. The second section will discuss the

problems of edge detection, which is used for the actual measurements in the

scene.

7.2 Circular Features

Reference marks are placed in the scene to establish a link between the camera

coordinate system and the local coordinates in the work cell. This way the

measurements can be fed back to e.g. the manipulating tool. Another use is

in the �eld of calibration, which was shown in the previous chapter.

Besides a possible limit on the size of the reference marks, they can be

designed freely. It is therefore attempted to make the marks easy to estimate

with a high accuracy. At the shipyard we have chosen to use binary circu-

lar marks, i.e. black and white marks with one or more concentric circles.
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Rectangles or some other design could equally well have been chosen, but the

isotropy of the circular marks make them easy to work with.

The position of a mark in an image can be estimated in various ways. For

instance, the image can be correlated with a template that represents the mark.

The problem is that the size and shape of the marks vary a lot as a function of

the point of view, and that a di�erence between the image and the template

will produce a bias in the position estimate. It is therefore necessary either to

parametrize the template or to transform the image to make the appearance of

all marks similar. The latter is possible because the approximate pose is always

known in a stationary industrial installation. Using this a priori knowledge

is very appealing as it increases the robustness of the estimation. However,

neither solution is well suited for correlation. Parametrizing the template im-

plies a very large search space that makes correlation very slow. Transforming

the image deforms the raster, which also makes correlation diÆcult. Another

method that does not su�er these problems, is to �t a parametric model to the

data. This approach will work on the transformed image, and the parameters

in the model give quantitative information about the estimation accuracy. I

have therefore chosen this solution. Various parametric models have been de-

scribed in the literature, cf. Rohr [64], Valkenburg et al. [74] and Blaszka and

Deriche [4]. The latter paper presents an edge model that I have modi�ed for

the present application. The model is described in the next section.

7.2.1 Model

As stated above, the model is based on the assumption that the reference mark

is isotropic with known size. This situation is obtained by back-projecting all

the pixels to a metric coordinate system using the approximate pose of the

camera and the known object space location and orientation of the reference

mark. The involved equations are described in section 5.2.1, page 44. The

size and shape of the mark does therefore not need to be modelled. The

parameters that we do need to estimate are the center coordinates xc, the

image intensities of the black and white phases (ib; iw), and a value � that

models the image smoothing. The model presented here contain one white

disc on a black background, but it is easily extended to several concentric

circles. The image intensity i(x) at position x is modelled as

i(x) = i(r) (7.1)
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= (iw � ib)�(r) + ib; (7.2)

�(r) =

8<
: 1� 1

4
e�(r�r0)(2� �(r � r0)) r � r0

1
4
e��(r�r0)(2 + �(r � r0)) r > r0

(7.3)

r = jx� xcj; (7.4)

where r0 is the radius of the white disc. The radial edge 7.3 follows the model

described by Blaszka and Deriche [4]. The edge is approximately modelled as

a Gaussian step edge and the model has a simple derivative

@

@r
�(r) = �1

4
�e��jr�r0j(1 + �jr � r0j) (7.5)

The value of � can be chosen to give the approximation the same energy as

the Gaussian

� =
5

2�
p
�

(7.6)

This relationship gives some intuition about the magnitude of �.

The derivatives of the model can be calculated in closed form and the

model is easily �tted to the data. The Levenberg-Marquardt algorithm is

used to minimize the least squares error in the �t. The initial values for the

parameters can be chosen very robustly. A good guess for the maximum and

minimum intensities can be obtained directly from the data, the center is

approximately known from the approximate pose, and the image smoothing

typically corresponds to � � 1:0. Once an estimate of the position of the center

is obtained, it can be projected back into the image to yield the estimate in

image coordinates. The procedure can naturally be repeated, if the new pose

is very di�erent from the approximate pose, but this is seldom the case.

There is one objection that can be made against this approach. The

smoothing induced by the camera system is typically uniform in the image.

When the image is mapped to a metric coordinate system, the smoothing

will no longer be isotropic. This is not considered in the model above. It

should not, however, seriously a�ect the estimation since every mark is �tted

individually and locally the anisotropy is only modest.

7.2.2 Trend in Illumination

In certain applications it was noticed that the reference marks were unevenly

illuminated. This was typically the case during calibration, where a temporary
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light source was pointed towards the calibration object. This produces a strong

illumination of the center of the image that falls o� towards the borders. If

this kind of illumination causes a bias in the estimation, the bias will probably

have the same nature as the lens distortion. Consequently, the bias will be

absorbed in the camera model without any warning in the calibration residual

and the model will produce systematic errors in future measurements.

The e�ect of varying illumination has therefore been investigated. Twenty

synthetic images have been constructed with di�erent amounts of trend in the

illumination across the reference mark, cf. �gure 7.1. The trend has been

modelled by a multiplicative factor inspired by empiric data. This implies a

higher reectance from lighter surfaces. The model in equations 7.1-7.4 is then

extended with

iill:(x) = (1 + � � (x� xc))) i(x); (7.7)

where � is a vector in the direction of the trend. The images in �gure 7.1 all

have a trend with 6 � = ��=6. As the v-axis points downwards, the direction
of the trend is from bottom-left to top-right. The magnitude of the trend is

j�j = 0:0000; 0:0003; : : : ; 0:0057. The sizes of the images are 160 � 160, so

that jx � xcj < 120. The radius of the reference marks is 50 pixels and the

black and white intensity levels are 50 and 200, respectively. The images have

been smoothed with a Gaussian of width 2:0. The reference marks in the

images have been detected without estimation of the trend. That is, the test

shows the bias introduced in the estimation by neglecting the trend in the

illumination. Figure 7.2 shows the displacement of the center caused by the

trend in illumination. The direction of the bias is shown in �gure 7.3 where

the theoretical direction of the trend is also plotted. It is obvious that the

detection is biased in the direction of the trend. In real images, the magnitude

of the trend in illumination has been estimated to be as large as j�j = 0:002.

7.2.3 Detection Example

This section will show an example of a circle detection that uses the model

above. As earlier seen the very �tting of the model yields information about

the parameter accuracy. Furthermore, the interpretation of the estimated

parameters gives a hint about the image quality. The reference mark to the

left in �gure 7.4 is detected in the present example. This mark is actually the

third mark from the right in the bottom row of the �fth image in �gure 6.1
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Figure 7.1: Twenty images with di�erent amounts of trend in the illumination

across the reference mark.
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Figure 7.2: The magnitude of the bias introduced by the trend in illumination.
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Figure 7.3: The direction of the bias introduced by the trend in illumination.

The direction of the actual trend is plotted as a dotted line.

on page 53. The radii of the three concentric circles are 6mm, 30mm, and

60mm. The projection of the largest circle has a radius of approximately

30 pixels. As suggested above, the model parameters are estimated in the

metric coordinate system, where the perspective e�ect and the lens distortions

are removed. The direction of the horizontal x-axis and the vertical y-axis

and the estimated center are indicated in the image by white lines. The �tted

model and the residual image are shown to the right in �gure 7.4. The residual

shows that the model does not produce a perfect �t on the edges, but it is

also seen that the error is well distributed around the mark. That is, a light

shadow, indicating that the image is lighter than the model, is always matched

with a light shadow on the opposite side of the mark. The same is true for the

dark shadows.

The estimated parameter values are shown in table 7.1. The center coordi-

nates of the mark are of course the most important parameters, but valuable

information can also be derived from the other parameters. The dark and light

phases of the mark have been estimated to have the intensities 10 and 143,

respectively. This shows that the projected mark does not su�er from black

level cut-o� or saturation, cf. chapter 3. The image smoothing is estimated to
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Figure 7.4: Example of circle detection. Left: original image with horizontal

x-axis and vertical y-axis. Middle: the �tted model. Right: the di�erence

between the model and the image, i.e. the �tting residual. The artifacts on

the outer radius of the mark are the line segments that were used to position

the mark on the graph paper.

be equivalent to a Gaussian smoothing with � = 1:3mm � 0:7 pixel. This is

within the expected range, and shows that the camera is well focused. Finally,

the magnitude of the trend in illumination is found to be small. Nevertheless,

the direction of the trend is in good agreement with the light variation in the

total image on page 53. The bottom row of the table shows the �tting residual,

which is 4% of the di�erence between black and white. The estimated center

is seen as the crossing of the axes in the original image in �gure 7.4, and the

result is in good agreement with the visual impression.

As in the calibration example, the dispersion of the estimated parameters

can be derived from the Jacobian of the model. The covariance and correlation

matrices for the parameters are shown in table 7.2. The way the model is

formulated, the parameters are not expected to be particularly correlated.

This is also seen in the correlation matrix. The largest correlations are found

between the center position and the �-vector, reecting the relationship that

was also shown in �gures 7.2 and 7.3. The position estimate is nicely un-

correlated with the other parameters, i.e. the intensity and smoothing factor

estimates have very little inuence on the position. Accordingly, the dispersion

of the center estimate conditioned on the rest of the parameters, which is not

presented here, is not very di�erent from the un-conditioned dispersion.

When you look at the magnitude of the di�erent variances it is seen that all

parameters are estimated rather accurately. The black and white phases are
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Parameter Estimated Value

xc [mm] 1.02

yc [mm] -2.23

uc [pix] 32.06

vc [pix] 31.50

ib [intensity] 9.63

iw [intensity] 143.49

� [mm�1] 1.06

�(eqn: 7:6) [mm] 1.33

�x -3.69e-05

�y 4.34e-04

Fitting Residual [intensity] 5.40

Table 7.1: Estimated circle model parameters.

estimated with a standard deviation of �0:2 intensity levels and the standard

deviation of the smoothing factor is a hundredth of a pixel. Most important,

the position estimate has a standard deviation of 0:02mm � 0:01 pixel. The

quality of the theoretically derived dispersion matrix compared to the actual

dispersion is shown in the next section, where a few design criteria are given

for reference marks.

7.2.4 Design

The obtainable accuracy in the estimation of a reference mark depends on

the design, i.e. the intensity, size, and shape of the mark. It is interesting

to investigate this dependency, as it allows us to optimize the design. The

discussion in this section will be limited to binary circular marks. The question

is how the accuracy depends on the number and size of the concentric circles.

In appendix B it is shown that the dispersion of the parameters in a �tted

parametric model can be estimated from the variance of the image noise. The

link between the two is the Jacobian of the parametric model. If we only

consider the accuracy of the position estimate x̂c and assume the image noise

to be independent and identical with variance �, we have

D(x̂c) = �2
 X

x

ri(x)ri(x)T
!�1

; (7.8)
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xc yc ib iw � �x �y

xc 1.6e-04 1.4e-07 -1.3e-05 5.9e-05 -6.1e-07 1.6e-07 -6.1e-10

yc 1.4e-07 1.6e-04 3.3e-05 -1.1e-04 2.0e-06 -5.2e-10 1.5e-07

ib -1.3e-05 3.3e-05 1.8e-02 -6.9e-03 4.9e-04 -1.3e-07 2.7e-07

iw 5.9e-05 -1.1e-04 -6.9e-03 3.8e-02 -8.7e-04 7.5e-07 -1.4e-06

� -6.1e-07 2.0e-06 4.9e-04 -8.7e-04 9.2e-05 -1.2e-08 2.6e-08

�x 1.6e-07 -5.2e-10 -1.3e-07 7.5e-07 -1.2e-08 1.5e-09 -2.2e-11

�y -6.1e-10 1.5e-07 2.7e-07 -1.4e-06 2.6e-08 -2.2e-11 1.5e-09

xc yc ib iw � �x �y

xc 1.00 0.00 -0.01 0.02 -0.01 0.32 -0.00

yc 0.00 1.00 0.02 -0.04 0.02 -0.00 0.31

ib -0.01 0.02 1.00 -0.26 0.37 -0.03 0.05

iw 0.02 -0.04 -0.26 1.00 -0.46 0.10 -0.19

� -0.01 0.02 0.37 -0.46 1.00 -0.03 0.07

�x 0.32 -0.00 -0.03 0.10 -0.03 1.00 -0.02

�y -0.00 0.31 0.05 -0.19 0.07 -0.02 1.00

Table 7.2: Dispersion of reference mark parameters for the mark in �gure 7.4.

Top: covariance matrix (values are given in millimeters, 1 pixel � 2mm).

Bottom: correlation matrix.
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where r is the gradient operator. The expression shows that reference marks

are better estimated in the direction where they have more edges. For instance,

an ellipse will be located with smaller variance in the direction of the shorter

axis. If we assume that the mark is approximately isotropic, i.e. the diagonal

elements of the matrix are equal in size, we can use tr(D�1) as a measure of

the certainty of the estimation. The certainty is then expressed as

tr(D�1) =
1

�2

X
x

jri(x)j2 (7.9)

We see that the certainty is proportional to the sum of squared gradients

in the model. In fact, the certainty is proportional to the edge length in the

binary case, where all gradients have the same magnitude. It is therefore clear,

that the reference mark should contain as much edge as possible. This also

implies that the concentric circles should be separated to such a degree that

the inevitable image smoothing does not weaken neighboring edges. Similarly,

the edge gradient should be as large as possible, i.e. the di�erence in intensity

between the black and white phases should be maximized. The result has

been tested on nine reference marks of di�erent sizes. Table 7.3 shows the

radii of three concentric circles for each of these marks. The table also shows

the total edge length. The actual reference marks are shown in �gure 7.5. The

position of each of the marks has been estimated and the theoretical dispersion

of the estimate has been calculated. The certainty measure in equation 7.9

has then been determined from the dispersion matrices and is plotted as a

function of the edge length in �gure 7.6. A linear regression on the data

gives a multiple correlation coeÆcient of R2 = 0:9866. Equation 7.9 shows

that the proportionality factor is linear in the additive image noise variance

and the squared di�erence between the black and white intensities. This result

agrees with�Astr�om's [2] analysis of one-dimensional edge detection. The linear

regression is of course particularly successful, because the theoretical dispersion

has been used instead of an empiric dispersion. For comparison, an empiric

dispersion has been calculated from �fteen images with di�erent realizations of

the additive noise. The empiric certainty is also shown in the �gure. It is seen

to be somewhat larger than the theoretical certainty. This might be a result

of aliasing e�ects in the synthetic images. Furthermore, a linear regression

will give a poor �t on the empirical data, but this is mainly because of the

sensitivity of the inverse to small numbers. Plotting instead the total variance,



7.3 Straight Edge Detection 87

Mark Radius 1 Radius 2 Radius 3 Total Circumference

1 4.5 10.5 16.5 197.9

2 8.5 14.5 20.5 273.3

3 12.5 18.5 24.5 348.7

4 16.5 22.5 28.5 424.1

5 20.5 26.5 32.5 499.5

6 24.5 30.5 36.5 574.9

7 28.5 34.5 40.5 650.3

8 32.5 38.5 44.5 725.7

9 36.5 42.5 48.5 801.1

Table 7.3: The radii of three concentric circles for each of nine reference marks.

The right column shows the total edge length.

which is the trace of the dispersion matrix, we see very similar behavours for

the theoretical and empirical data, cf. �gure 7.7.

The conclusion is that the reference mark should contain as much edge

as possible, but separated so much that edges do not cancel in the projected

image. The analysis shows that a reference mark with e.g. three concentric

circles with radii 1, 2, and 3 is located with the same certainty as a mark with

one circle with radius 6, despite the fact that the area of the latter is four

times greater.

Figure 7.5: Di�erent size circles to test the relation between the total circum-

ference and the detection accuracy.

7.3 Straight Edge Detection

All the objects that are to be measured at the shipyard have linear edges or

can be modelled to be piece-wise linear. It is therefore important to be able

to measure straight edges in images with high accuracy. Many algorithms
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Figure 7.6: The detection certainty as a function of the total circumference.

The linear regression, tr(D�1) = 290:75 � Circumference, gives a multiple

correlation coeÆcient R2 = 0:9866.
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Figure 7.7: The total detection variance as a function of size.

already exist for this purpose. They can be divided into parametric and non-

parametric methods. The parametric methods are typically based on a model

of the image intensity variation across the edge. This model can then be

�tted to the data globally, as was seen in the reference mark example above.

The advantage of these methods is that all the image information is used

simultaneously to obtain a globally optimal edge estimate. The disadvantage

is that the observed data need to conform to the model globally in order for

the estimate to be unbiased. The non-parametric methods typically estimate

the local edge location from the magnitude of the image gradient. A global

estimate is then obtained subsequently by �tting a straight line to the edge

data using e.g. the Hough transform or regression techniques. The advantage

of this method is that the presumed model only needs to be valid locally.

For instance, the illumination and the background can vary along the edge.

Furthermore, the user only needs to specify a small number of parameters, such

as the size of the gradient �lter and a threshold value to discard outliers. The

disadvantage is that the local image structure, apart from the edge location

and perhaps the edge strength, is ignored in the �nal estimate. Consequently,
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a local edge that is corrupted by structured noise, might be discarded in the

global estimate or might even a�ect the estimate in a bad direction, even

though part of the local image structure supports the global estimate.

The edges that are used for measurement at the shipyard are characterized

by varying illumination and structured noise in the vicinity of the edge. The

noise in the foreground is typically burned edges or rust on the steel plates. In

the background it can be grids or spikes underneath the plates on the cutting

tables. Since this structured noise cannot be modelled, it is impossible to

apply conventional parametric models to these edges. On the other hand, it is

also problematic not to perform a global estimate, as the available local edge

information might be lost when using the non-parametric methods, because

of the strong inuence of the local noise. It has therefore been attempted to

design an edge detection method, that is non-parametric and optimize a global

measure. The di�erent methods that have been investigated are described

in section 7.3.2 below, and a comparison to more conventional methods is

performed in section 7.3.3. The next section will introduce some literature on

the subject of edge detection.

7.3.1 Literature

Edge detection has attracted much interest since the early days of computer

vision, owing to the informational content of edges in images. Much of the

early research focused on the problem of extracting some sort of structure

from totally unknown images. That is, the methods were designed to give a

strong, single, and robust response to edges without any a priori knowledge.

The pioneering work was the paper by Canny [6], where a Gaussian-like edge

detector was proved to satisfy a number of optimality criteria. Deriche [12] has

devised a fast recursive implementation of the Gaussian convolution to make

the approach eÆcient. The statistical properties of the edge detection has

been further analyzed by �Astr�om et al. [3, 2]. Their analysis covers both the

one-dimensional and the two-dimensional edge. Harris and Stephens [21] have

described a combined corner and edge detector, that is also based on the local

structure of the image, using linear scale-space operators. Devernay [13] has

addressed the practical problem of obtaining a high accuracy with the methods

based on linear convolution. His paper describes non-maxima suppression on

sub-pixel level. Other papers have introduced di�erent parametric models for
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edge detection. An example is the model by Blaszka and Deriche [4] used

in the beginning of this chapter. Methods for sub-pixel detection of corners

and edges with parametric models have also been treated by Rohr [64] and

Valkenburg et al. [74].

7.3.2 Methods

Di�erent methods have been used for edge detection throughout the project.

These methods are presented in this section with some comments on their

speed and accuracy. The performance on synthetic data is presented in a

comparison study in the next section. The di�erent algorithms that were used

have been named

1. Brute Force

2. Smoothed Hough Transform

3. Normalized Gaussian Convolution on the Projected Image

4. Edge Fitting with Linear Regression

5. Gaussian Convolution with Linear Regression

The algorithms are presented in the order in which they were implemented in

the project. The �rst two methods were extremely slow, but that is only oc-

casionally a problem at the yard. Typically, the throughput on an installation

is one or two plates per hour, such that there is plenty of time to process the

acquired images.

Brute Force

The brute force method is based on the magnitude of the image gradient. A

well-de�ned measure for the gradient of the discrete image i(u) is found by

Gaussian convolution [12]

rgi(u) = r(g(u; �) � i(u)) (7.10)

= rg(u; �) � i(u) (7.11)

where � is the width of the Gaussian function g(u; �). The brute force method

aims at �nding the line l in the image that covers the most gradient

l = argmax
l2L

Z
u2l

n� � rgi(u)du; (7.12)
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where n� = (cos �; sin �) is the normal vector to the line l and L is some set

of candidate lines. As in the case of the Hough transform, L is represented by

an array indexed by the normal parameters of the line (�; �), so that the line

is de�ned by

� = u cos � + v sin � (7.13)

= n� � u (7.14)

The approach is to sample and sum up the image gradients at some density

along all the candidate lines. The edge location is de�ned by the cell in the

array L, that gave the highest count. A super-resolution value for the max-

imum can be obtained by a parabolic �t in the array. This is, of course, a

very primitive and slow approach. It was only used in the very beginning

of the project. Nevertheless, the method is robust and �nds the edge with

a high precision if the image space and the line space is sampled suÆciently

dense. The accumulated array is not shown here as it is visually similar to the

smoothed Hough space presented in the next section.

Smoothed Hough Transform

The problem with the brute force approach is that each image pixel is sampled

a large number of times. This is particularly severe because the method seeks a

ridge in the gradient image, and therefore has to employ bicubic interpolations,

that are based on sixteen pixels for each sample. The computationally cheaper

bilinear interpolation cannot detect ridges with sub-pixel precision, because

the maximum image intensity will always be found on the image raster. The

remedy is to use the available pixels as starting point for the accumulation

instead. This is what the usual Hough transform does. It is, however, normally

based on a subset of the image pixels that have been detected to be local edge

candidates.

The paper "From Hough Transform to Radon Transform using Interpola-

tion Kernels" at the back of the dissertation shows how the grey-level Hough

transform, based on all image pixels, can be used to detect edges in images.

A typical problem concerning the Hough space is a severe aliasing caused by

the discrete raster of the input image. This aliasing, which is worse for a

super-resolution Hough space, makes the peak detection very diÆcult. The

paper shows how the e�ect of continuous interpolation in image space can be
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modelled in Hough space to remove the aliasing. The result is shown for near-

est neighbor, bilinear, and isotropic/anisotropic Gaussian interpolation. It is

also shown that the image derivative can be modelled in Hough space as a

one-dimensional �lter, opposed to the two-dimensional version that must be

used in image space.

The smoothed Hough space can actually be regarded as the Radon trans-

form of a continuously interpolated image. The theory therefore provides a

means to analyze one-dimensional orthogonal projections of images in high

resolution. The comparison study below will show that other edge detection

methods are superior in terms of speed and accuracy. Especially, in the pres-

ence of systematic noise, i.e. outliers, where the image structure is not really

one-dimensional. Nonetheless, the theory provides a good understanding of

the structure of the Hough space, and will most certainly be useful in other

applications.

Normalized Gaussian Convolution on Projection

The two methods described above are both rather slow, as lines or curves are

sampled densely in either image space or Hough space. Furthermore, the accu-

racy of the edge detection is limited by the chosen density of the accumulator

array. It was therefore attempted to �nd a function of the line parameters

that could be maximized by a normal iterated optimization method without

sampling the image pixels too many times. This function should preferably be

independent of the particular edge pro�le, i.e. it should not be a parametric

model of the edge. It was decided to see if the normalized Gaussian convolu-

tion could be used for this purpose. The theory of this interpolation approach

is described by Knutsson and Westin [41]. It is useful for interpolating irregu-

larly sampled data or data with missing samples. In the one-dimensional case

the interpolated value is calculated as

i(x) =

Pn
i=1 i(xi)g(x� xi; �)Pn

i=1 g(x� xi; �)
(7.15)

=
i(x) � g(x; �)
i0(x) � g(x; �) ; (7.16)

where i(xi), i = 1; : : : ; n, are the available data, g(x; �) is the Gaussian kernel

of width �, and i0(xi) is the function with value 1 in all the available sample po-

sitions. The advantage of the normalized convolution compared to the normal



94 Chapter 7. Feature Extraction

convolution is that the interpolation does not drop in the vicinity of missing

data. An example is shown in �gure 7.8. It is seen that the interpolated value

obtained by the normalized convolution is controlled by the closest available

datum. This is a necessary requirement if a non-linear optimization scheme

is used to detect an edge in the interpolated image. Otherwise, the optimizer

would tend to converge towards the edge between available and non-available

data instead of the edge inside the data.
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Figure 7.8: Normalized Gaussian convolution. The interpolations are based

on the imperfect data. The normal Gaussian convolution falls o�, while the

normalized convolution is controlled by the closest available datum.

The normalized Gaussian convolution can be used to interpolate the or-

thogonal projection ip(�; �) of the image described by the edge parameters �

and �. That is, the projected image value is estimated as

ip(�; �) =

Pn
i=1 i(ui)g(�� n� � ui; �)Pn

i=1 g(�� n� � ui; �) (7.17)

=
G(�; �) � I
G(�; �) � 1 (7.18)

To simplify the notation, the values of the image and the Gaussian function

have been gathered in the vectors G(�; �) and I, respectively. The vector 1
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consists of ones. Now, the edge position is assumed to be the projection with

the largest gradient with respect to �. That is, we seek to maximize

ip�(�; �) =
(G � 1)(G� � I)� (G� � 1)(G � I)

(G � 1)2 (7.19)

=
G� � I
G � 1 �

G� � 1
G � 1 � G � I

G � 1 (7.20)

It is emphasized that this method is based on an interpolation of the projected

data, and not on a projection of the interpolated data. This circumstance

makes it diÆcult to analyze the properties of the maximum analytically. The

empirical properties are analyzed in the comparative study below. In terms

of speed, the method is rather fast. The sums that need to be calculated in

equation 7.20 have many common terms and the optimization converges in

10{20 iterations.

Edge Fitting with Linear Regression

The global edge detection methods described above have been compared to

more conventional approaches, where a line is �tted to a number of locally

detected edges. To avoid image interpolation and to speed up the calculations,

the local edge detections are performed in the raster direction. That is, a one-

dimensional edge detection is performed in each column for edges with a small

slope. If the edge has a large slope, the edge detections are performed in

each row. The optimal edge position can then be found by normal regression

techniques, cf. section 7.3.2.

The �rst one-dimensional edge detector, that has been investigated, is

based on the same model that was used for circle detection in section 7.2.1

above. That is, the edge is modelled by an approximated Gaussian step func-

tion. The parameters of the step function is the position of the step uc, the

degree of smoothing �, and the image intensities ib and iw of the background

and the foreground. The illumination trend is not modelled here.

Gaussian Convolution with Linear Regression

The other one-dimensional edge detector that has been used is the normal

Gaussian edge detector. That is, the image is convolved with the derivative of

the Gaussian function, cf. equation 7.11. This is probably the most popular

edge detector in the vision community. The convolution has been performed
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on pixel resolution and the sub-pixel edge location has been determined by a

parabolic �t based on the pixel with the largest output and its two neighbors.

If the width of the Gaussian is � = 1, the �lter can safely be truncated to

[�3; 3], as gu(4; 1) < 1:0e� 05� gu(1; 1).

Regression and Outlier Detection

The results of the one-dimensional edge detections described above are used

in a normal regression to �nd the optimal edge location

vi = �+ �ui + �i (7.21)

The edge is parametrized by v if its orientation is vertical. It is well-known

that normal least squares estimation is sensitive to outliers. It is therefore

advisable to do some sort of outlier detection. The di�erent approaches that

have been tried are

1. Least Squares

2. Least Squares (� < �)

3. Least Squares (� < �, 50%)

4. Re-weighted Least Squares

The �rst one is the normal least squares �t with no outlier detection. The

second method is based on omitting the data that give rise to residuals �

that are greater than one standard deviation �. As the standard deviation

is a function of the least squares �t, the regression must be iterated a few

times. In the tests below the outlier detection was performed twice. The third

method is also based on omitting data that cause residuals greater than one

standard deviation. However, the standard deviation is calculated from the

50% of the data, that have the smallest residuals. This is done in only one

iteration. The �nal method implements one of the so-called M-estimators by

re-weighted least squares, cf. Zhang [78]. The chosen M-estimator is denoted

\Fair" and minimizes a function of the residuals that increases slower than the

square

�(�) = c2(
j�j
c
� log(1 +

j�j
c
)); (7.22)

where c = 1:3998 is a tuning constant. It is implemented by iterative calcula-

tion of the weights

w(�) =
1

1 + j�j

c

; (7.23)
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that are used in the least squares estimation.

7.3.3 Comparison

The edge detection approaches described above have been tested on four syn-

thetic images. The images are shown in �gure 7.9. All images have dimension

200� 200 and show an edge going from intensity level 50 to 150. The slope of

the edge is �1=10 in the coordinate system of the images, and the edge passes

through the point u = (150; 80). The edge is modelled as a Gaussian step edge

with the width � = 1. Images 1 and 3 have no additive noise, while images 2

and 4 have been corrupted by Gaussian noise with standard deviation 3. In

images 3 and 4, the edge has been broken to model outliers near the edge. The

two holes in the edge are each ten pixels long, such that the outliers represent

10% of the total length of the edge. The two outlier edges are 2 and 3 pixels

away from the global edge, respectively.

Figure 7.9: Synthetic images used to test di�erent edge detection algorithms.

From left to right: image 1, image 2, image 3, and image 4. Images 2 and 3 are

corrupted by additive Gaussian noise. In images 3 and 4 the edge is corrupted

by structured noise.

These edges are detected a hundred times with each of the methods de-

scribed above. The brute force method is not included in the test. The search

region is de�ned by an a priori knowledge of the edge position given by two

end points u1 = (50; 106) and u2 = (180; 92). However, the coordinates of the

two end points are perturbed by a uniform distribution in [�3; 3] in each test,

to model the uncertainty of the a priori knowledge. 20 pixels are sampled on

each side of the line between the two end points, i.e. the edge detections are

based on the data in a skew window of dimension 130� 40. A new realization

of the additive noise is used for each test. The width of the Gaussian has been
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set to � = 1 in the methods where a Gaussian smoothing or a Gaussian edge

detector is used.

To simplify the analysis, the result of each edge detection is evaluated as

the signed distance d from the point u = (150; 80), which is positioned on the

theoretical edge, to the detected edge (�̂; �̂)

d = �̂� n�̂ � (150; 80) (7.24)

The result of the test is summarized in tables 7.4 and 7.5. The tables show

the mean and standard deviation of d and the interval de�ned by the extreme

values.

First of all, the test shows that all methods are un-biased when there are no

outliers, while the normal least squares result is clearly biased in the presence

of outliers. The overall performance of the approaches based on the smoothed

Hough space and the normalized Gaussian convolution is unsatisfactory. Both

methods have unacceptable large extremum values, i.e. they are particularly

sensitive to certain noise realizations or starting guesses. However, their aver-

age performance is not really bad.

It is clear from the test that the approaches based on regression are to be

preferred. Even in the presence of additive noise, all the edge detections result

in distances within a few hundredths of a pixel. Their response to outliers

is a little di�erent. As noted before the normal least squares result is clearly

a�ected by the outliers. The method based on re-weighted least squares is a

little less sensitive, and methods 2 and 3 are the most robust in this test. This

was also expected, since the "Fair" weighting function does not completely cut

o� outliers, as the two other methods do. In practical use, the advantage of

the M-estimator is its continuous response to the data, i.e. it probably has

better convergence properties than methods 2 and 3, that implement a binary

weighting of the data. The choice in a given situation must be based on the

observed characteristics of the noise.

The methods based on convolution and on �tting a parametric model to

the edge seem to perform equally well. However, convolution is linear and

makes no strict assumptions about the edge pro�le other than symmetry. On

the other hand, the parametric model is designed for a particular edge pro�le,

and requires a non-linear method to �t the parameters. The assumptions

about the appearance of the edge are not crucial in an industrial application,

where the edges are typically close to being Gaussian step edges, but the �nite
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Method Image 1 (� = 0) Image 2 (� = 3)

Smoothed 0:0158� 0:0281 0:0154� 0:0290

Hough Space [�0:0218; 0:2235] [�0:0328; 0:2235]

Normalized 0:0129� 0:5936 0:0222� 0:5722

Gauss [�1:6376; 3:0443] [�1:6328; 3:2632]

Edge Fit �0:0002� 0:0008 �0:0012� 0:0071

Reg. (1) [�0:0018; 0:0015] [�0:0176; 0:0195]

Edge Fit �0:0017� 0:0010 �0:0002� 0:0110

Reg. (2) [�0:0038; 0:0003] [�0:0255; 0:0298]

Edge Fit �0:0010� 0:0007 �0:0013� 0:0084

Reg. (3) [�0:0028; 0:0004] [�0:0239; 0:0158]

Edge Fit �0:0002� 0:0008 �0:0010� 0:0071

Reg. (4) [�0:0019; 0:0015] [�0:0189; 0:0144]

Convolution 0:0012� 0:0011 0:0012� 0:0117

Reg. (1) [�0:0005; 0:0026] [�0:0291; 0:0216]

Convolution 0:0037� 0:0005 0:0013� 0:0147

Reg. (2) [0:0020; 0:0053] [�0:0322; 0:0277]

Convolution 0:0026� 0:0010 0:0023� 0:0139

Reg. (3) [0:0009; 0:0044] [�0:0319; 0:0349]

Convolution 0:0013� 0:0011 0:0003� 0:0105

Reg. (4) [�0:0004; 0:0026] [�0:0281; 0:0291]
Table 7.4: Edge detection results for the two left images in �gure 7.9. Each

method has been applied hundred times with varying starting guesses and

di�erent realizations of the noise. The signed distance from a point on the

theoretical edge to the detected edge is evaluated each time. The table shows

the mean distance, the standard deviation, and the minimum and maximum

distances.
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Method Image 3 (� = 0) Image 4 (� = 3)

Smoothed 0:0679� 0:0341 0:0634� 0:0361

Hough Space [0:0254; 0:2735] [�0:0115; 0:2735]

Normalized 0:1105� 0:5547 0:1280� 0:6812

Gauss [�1:2262; 3:4679] [�1:2662; 3:8363]

Edge Fit 0:1498� 0:0143 0:1488� 0:0159

Reg. (1) [0:1230; 0:1753] [0:1155; 0:1845]

Edge Fit 0:0103� 0:0140 0:0127� 0:0133

Reg. (2) [�0:0018; 0:0325] [�0:0186; 0:0442]

Edge Fit 0:0016� 0:0008 0:0219� 0:0093

Reg. (3) [0:0004; 0:0033] [�0:0017; 0:0484]

Edge Fit 0:0886� 0:0081 0:0889� 0:0113

Reg. (4) [0:0732; 0:1023] [0:0607; 0:1161]

Convolution 0:1566� 0:0146 0:1460� 0:0397

Reg. (1) [0:1280; 0:1822] [0:0707; 0:2380]

Convolution �0:0100� 0:0019 �0:0145� 0:0147

Reg. (2) [�0:0135;�0:0078] [�0:0511; 0:0165]

Convolution �0:0020� 0:0017 0:0399� 0:0239

Reg. (3) [�0:0044; 0:0010] [�0:0191; 0:1153]

Convolution 0:0825� 0:0073 0:0826� 0:0233

Reg. (4) [0:0677; 0:0941] [0:0354; 0:1457]

Table 7.5: Edge detection results for the two right images in �gure 7.9. Each

method has been applied hundred times with varying starting guesses and

di�erent realizations of the noise. The signed distance from a point on the

theoretical edge to the detected edge is evaluated each time. The table shows

the mean distance, the standard deviation, and the minimum and maximum

distances.
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Method Time [1=100 s]

Smoothed Hough 700

Normalized Gaussian 19

Parametric Edge Fitting 10

Gaussian Convolution 3

Table 7.6: The average time required for one edge detection. The edge detec-

tions are based on the pixels in a skew window of dimension 130� 40.

calculations associated with convolution is clearly preferred to the non-linear

optimization required for the parametric model.

The test has also been performed on four images with an edge with a non-

rational slope of ��=4. The results were very much the same, except for the

smoothed Hough space, which gave very biased results. This was caused by

the skewness of the sampled window. In general, the methods based on the

smoothed Hough space and on normalized Gaussian convolution are a�ected

by the shape of the sampled area. The performance of the smoothed Hough

space has been seen to be rather insensitive to the slope of the edge, if the

sampled region is almost symmetric with respect to the edge. Similarly, the

normalized Gaussian convolution has been seen to be very consistent if the

sampled window is closely aligned with the edge.

The test of the di�erent edge detection approaches was also timed. The

average time required for a single detection is shown in table 7.6. The given

time includes the sampling of the window in the image. Clearly, convolution

is superior to the other methods, while the calculation of the smoothed Hough

space is extremely slow.

7.3.4 Conclusion

This section has presented di�erent approaches to edge detection. The two new

methods based on the smoothed Hough space and the normalized Gaussian

convolution were designed to give a global estimate of the edge position. The

empirical test showed, however, that they both are rather sensitive to the

layout of the sampled window and produce estimates with a large spread.

All the methods that used one-dimensional edge detection with subsequent

regression gave very nice results and, furthermore, they performed a lot faster
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in the test. Di�erent approaches to outlier detection were tested, and they all

gave satisfactory results. The choice of method should be guided by the noise

process in the actual data.

It is to be concluded clearly from the test that simple Gaussian convolution

is the best approach with the given noise distribution. It is robust, fast, and

makes only few assumptions about the edge pro�le. A better robustness can

be achieved by using two-dimensional �lters, but the cost is a decrease in the

localization accuracy.

The smoothed Hough space is not suited for high precision edge detection.

Nonetheless, the background theory provides a good understanding of the

projection carried out in Hough space, and the results can probably be used

in other applications.

The methods that were analyzed in this section have been implemented in

the course of the Ph.D. project. That is, methods that have been proved to

have inferior properties in the test, were used in some of the applications that

are presented in the coming chapters. Fortunately, the smoothed Hough space

and the normalized Gaussian convolution were only used in the installations

where the sampled window was closely aligned with the edge. It is therefore not

expected that the shortcomings of these methods have a�ected the presented

results.
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Chapter 8

Averaging Rotations

This chapter presents a paper with the title "Averaging Rotations", that was

printed in the proceedings of the 11th Scandinavian Conference on Image

Analysis, SCIA'99, in Kangerlussuaq, Greenland.

The work was inspired by a technical report by Pennec [57] from INRIA,

France, that addressed the problem of least squares optimization on non-linear

manifolds. In this particular problem, the least squares cost function should be

based on geodesic rather than vectorial distances. The di�erence is signi�cant

in the case where the manifold is very curved. Pennec used the group of

three-dimensional rotations as an example in the report. The conventional

approaches to averaging rotations are to calculate the vectorial average of the

rotation matrices or the quaternions that represent the rotations. However,

the barycentric means do not satisfy the constraints to be proper rotations,

and need to be orthogonalized and normalized, respectively.

In my paper, I try to evaluate the di�erence between the least squares

solutions based on the vectorial distances and the geodesic distances in the

particular case of rotations. It is emphasized that the analysis does not chal-

lenge the interesting general results presented by Pennec. It turns out that if

the squared distance is replaced by two di�erent cosine approximations, the

vectorial means are true least squares solutions, in which the orthogonaliza-

tion and normalization are inherent parts. The cosine approximations are

automatically developed around the mean rotation, and they make it possible

to quantify the committed error by using the vectorial distances instead of the

geodesic distances. It is shown that either linear approximation is very close

to the method that considers the non-linearity of the manifold.
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The results have not yet been applied to problems at the shipyard. It could,

however, be used to fuse e.g. pose results obtained from di�erent cameras, if,

for some reason, a global optimization using all information simultaneously

can not be performed.

The paper can be found at the back of this dissertation.
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Chapter 9

Projective Reconstruction

For a period of six months in the summer of 1998, I visited INRIA Rhône-

Alpes, Grenoble, France. During the stay I was studying projective geometry

and obtained some preliminary results on reconstructing and matching an OSS

mock-up. This work as well as some theory on the structure-from-motion prob-

lem is described in an internal report of the VIGOR project, that is enclosed

at the end of this dissertation. The report is entitled "Reconstruction and

Matching of OSS Mock-Up".

The experiments were primarily based on software and algorithms devel-

oped at INRIA. The calculation of the reconstruction was entirely based on

software developed by S. Christy at INRIA.

The objective of the experiments was to learn how well a real industrial

object can be reconstructed using a fully automatic approach. In short, the

reconstruction is based on a series of point correspondences obtained by au-

tomatic extraction of interest points using the Harris corner detector [21] and

automatic tracking of these points through an image sequence.

The conclusion was that the automatic extraction of points with no use of

a priori knowledge was much too unreliable to reconstruct any real structure

of the object. Many extracted points had no physical interpretation in the

object. They either represented the projection of skew lines or highlights that

drifted with the motion of the camera. Other points were lost in the tracking.

If they were re-extracted, they were not identi�ed with the lost points. Despite

these problems, it was possible to identify a few points in the reconstruction

that could be matched with the corresponding points in a CAD model and,

using the reconstructed motion, this model could be projected into the images
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to yield a good visual match. The many point ambiguities made it impossible

to automate the manual matching.

A number of points were extracted and tracked manually to test the quality

of the actual reconstruction algorithm. The agreement between the images and

the re-projected CAD model was very satisfactory in this test. However, the

three-dimensional deviations between the model and the reconstruction was

still rather large.

It is clear that the chosen approach was much too simple to be of any

use industrially. Nevertheless, it disclosed the complexity and some of the

diÆculties associated with the structure-from-motion problem. Much more

structure and robustness could be obtained if the reconstruction was instead

based on a series of extracted lines. The experiments were, however, not

continued as other projects were given higher priority.
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Chapter 10

Check-In and Quality Control

on Plasma Cutter

10.1 Introduction

The �rst site where vision technology was installed within this project was on

a plasma cutting station in the production. An image of the cutting berth

is shown in �gure 10.1. The plasma cutter is used to cut at steel plates

that are assembled to large ship blocks later in the production. The aim

of the installation was to perform automatic check-in and quality control.

The check-in procedure serves two purposes, namely to ensure that the plate

is in the right position before cutting and that the dimension of the plate

satis�es the minimum requirements. The quality control after cutting can

supply information to the subsequent processes, but is equally important as a

means to reveal a damaged tool. It happens frequently that the tool is bent

by the heavy steel plates and a number of mis-cut plates are passed on in the

production. This is rather costly as the logistics at the yard are not geared

to transport plates backwards in the production line. An automatic quality

control installation would have a substantial savings potential as the yard has

18 plasma cutting berths.

Unfortunately, this vision installation was given a lower priority before

the running-in phase was �nished. Consequently, the testing of the entire

set-up was incomplete. For instance, the probable origin of a bias in the

measurements was never veri�ed. Nevertheless, the installation demonstrates

some of the accuracy that can be obtained with vision measurements. The
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other project that was given a higher priority is described in the next chapter.

The two projects are conceptually similar, and the results in the next chapter

are also relevant for the present installation.

Figure 10.1: Plasma Cutting Berth.

10.2 Set-up

The plasma cutting berth measures approximately 4m � 18m, but the �eld

of view of the cameras must be a bit larger to include reference marks in the

scene. There is not much freedom in the placement of the cameras. The

crane that transports the steel plates needs to move in and out of the area,

forcing the cameras to be mounted just below the ceiling. This gives a distance

of approximately 9600mm from the cameras to the berth. Using four JAI

576� 768 cameras with 8mm lenses the area can be covered with a resolution

of approximately 8mm/pix. The cameras were installed through four holes in

the roof to allow easy access without intervention with the production. The

holes and the crane are seen in �gure 10.2 showing an image of the ceiling just

above the berth. The requirement was to measure the plates in the berth with

an accuracy of �1mm. Consequently, the edge detection in the images should

be performed with sub-pixel accuracy.
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Figure 10.2: Ceiling with three of the four holes for the cameras marked with

circles. The fourth hole is covered by the crane.
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A complete three-dimensional camera model is employed even though the

measurement task is basically two-dimensional. This is necessary to accommo-

date for the varying thicknesses of the plates. At the same time the physical

interpretation of the external camera parameters can be used to monitor the

stability of the set-up. The constraints on the placement of the cameras make

stereo vision impossible. It is therefore necessary to assume that the cut-

ting berth is planar, i.e. the measurements are based on a plane to plane

back-projection. The position of the object space plane is determined by the

thickness of the current plate and the average height of the berth. The pose

calculation for each camera is based on a number of reference marks in the

scene. The marks are placed to give the best pose estimates, but are con-

strained to the edges of the berth. The main dimensions of the set-up and the

placements of the reference marks are summarized in �gures 10.3 and 10.4.

�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
���������������������������������������
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��

����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

����

��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������

9600mm

19000mm
850mm

90mm

760mm

90mm

650mm

5560mm

Figure 10.3: Dimensions of the plasma cutting installation. Top: top view.

Bottom: side view. The vision installation was limited to the left berth.
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10.3 Lighting

To achieve a good contrast on the plate edges in the cutting berth, it was

necessary to put up additional lighting in the work space. It turned out to be

a diÆcult task to obtain even illumination in such a large area. The positions

of the light sources are again constrained by the layout of the work cell. Ad-

ditionally, strong light must not be directed or reected towards the cameras

or the people that work in the area.

A professional lighting company was hired to design an even illumination.

The suggested design actually gave an illumination that seemed even to the

human eye, but the linear cameras revealed that certain areas were illuminated

twice as much as other areas. The lighting was then modi�ed by shielding some

of the projectors to make the lighting more di�use. A truly even illumination

was, however, never achieved.

10.4 Measurement

Although the examples in this chapter all show plates in a �xed position in

the berth, the objective of the installation is to measure the position as well

as the dimensions of the plates. The most probable position of the plate is

therefore determined by relating the CAD model to the measured edges. The

local deviations that are reported to the controller are thus speci�ed in relation

to the optimal position estimate. The steps in a measurement are as follows

1. grab image(s)

2. detect reference marks

3. estimate camera pose(s)

4. down-load the CAD model and the approximate plate

position from the controller

5. superpose the CAD model on the image(s)

6. detect edges

7. calculate the corner positions

8. apply the best rigid transformation to match the

measured corners with the CAD model corners

9. report results to the controller
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The image acquisition in this installation is very simple as the illumination

is constant. Hence, the aperture and the shutter time are always the same. The

detection of reference marks in step 2 is performed as described in chapter 7.

The pose estimates in step 3 are based on a least squares minimization of the

image residuals.

The edge detection approach employed in this installation, and in that of

the next chapter, is a little unconventional. To avoid rectifying the entire

image(s) and to make optimal use of the approximate knowledge of the edge

locations, it was chosen to re-sample the edges in a CAD based, i.e. metric,

coordinate system. This was obtained by direct use of the camera model. In

this particular installation, time was not an issue, and the edge detection was

based on the brute force method described in chapter 7. This was implemented

by applying a Gaussian edge detector [12] to the acquired images. For di�erent

line parameter values in CAD coordinates, the line was then sampled in the

images to calculate the total edge strength along the edge. The line that scored

the highest in this global cost function was taken as the plate edge. In this

approach, it is very important to sample the images with bicubic interpolation,

since the ridge of the di�erentiated edge might be located between pixels.

The corners of the plate are located by the crossings of the edges. The

examples in this chapter only show rectangular plates, but in a real situation

many cuts will be made in the plate to yield a large number of corners. These

detected corners are matched with the corners in the CAD model. In step 8

the two-dimensional position and orientation of the plate are determined by

the method described in appendix A. This is necessary even if the plates are

initially laid in a �xed position, as the release of residual stress in the plates

may cause them to move during cutting.

The most important feedback to the controller in step 9 is the position

and orientation of the plate and the main dimensions. In the long term, it is

interesting to extend the feedback with the local deviations of the plate. To

determine those, the global edge detection method described above has been

applied locally. In the examples given below, the deviations of these local

estimates have been exaggerated relative to the global estimates to show the

variations along the edge.
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10.5 Data Analysis

Unfortunately, the data material from the installation is a little sparse. As

noted earlier, the reason is that another project was given a higher priority, so

that the very resource demanding data collection was not completed. Never-

theless, some tests that were performed show the accuracy of the installation.

The tests investigate the quality of the plate measurements as well as the

consistency in the pose estimates.

Figure 10.5 shows three images of a plate in the cutting berth. At the time

of the tests the fourth camera was not yet calibrated. This was not a problem,

as the majority of the plates that pass through the cutting station are covered

by the �eld of view of the �rst three cameras. Note, the serious lens distortion

in the images. Also note the reference marks on the edges of the berth and the

image overlap. The reference marks and the average height of the berth have

been measured with a theodolite system to establish a world space coordinate

system.

Figure 10.5: Three images from the cameras 10m above the cutting berth.

Plate pb090. From left to right: image 1, image 2, and image 3.

The camera poses can be determined, once the reference marks have been

detected in the images. Remember, that the internal parameters of the cam-

eras have been estimated in the o�-line calibration. Hence, the entire geometry

of the camera set-up is now established. It is therefore possible to re-sample

the image intensities in a plane in object space, that coincides with the surface

of the plate in the berth. This is, in fact, what is done in the edge detection
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phase. To show the principle in the re-sampling of the image, the entire work

space has been re-sampled in �gure 10.6. The sampling rate is 10mm/pix

and the image measures 550 pixels � 1200 pixels. Several observations should

be made in this image. First, the lens distortion and the perspective e�ects

are no longer visible. Second, the overall intensity levels of the images are

di�erent. This could be corrected to improve the visualization, but it is not

reasonable in a measurement situation, where the edge strength carries infor-

mation about the detection variance, cf. chapter 7. Third, the reconstruction

of the reference marks is imperfect. This is because they are positioned in

another height than the plate, giving rise to parallax e�ects. This explanation

has been veri�ed by performing a re-sampling in the height of the reference

marks. Note, in the junction between the �rst and the second image that it

is only the slight di�erence in image intensity that reveals the di�erent origin

of the pixels. There is no spatial evidence that the image is merged from two

cameras.

Figure 10.6: The images in �gure 10.5 re-sampled in a CAD based coordinate

system. Plate pb090.

10.5.1 Pose Estimation

Before proceeding to study the measurement accuracy, it is worthwhile to check

the consistency of the pose estimation. This is done empirically by acquiring

nine images from each of the three cameras and calculating the poses. The
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Parameter Camera 1 Camera 2 Camera 3

x0[mm] -3816.1 � 0.16 -3534.6 � 0.17 -4086.1 � 0.27

y0[mm] -2538.4 � 0.11 -7073.6 � 0.07 -11409.3 � 0.09

z0[mm] 9637.6 � 0.54 9743.3 � 0.49 8837.0 � 0.96

![rad] 3.13757 � 0.00014 3.15912 � 0.00011 3.11438 � 0.00010

'[rad] 0.00914 � 0.00007 0.00219 � 0.00004 -0.06236 � 0.00008

�[rad] 1.57184 � 0.00001 1.58579 � 0.00001 1.57371 � 0.00002

Xc[mm] 2622.4 7041.1 10824.5

Yc[mm] 3780.0 3810.2 3858.5

Zc[mm] 9629.3 9662.6 9638.7

Table 10.1: Empirical pose statistics based on nine images from each camera.

The bottom three rows are the camera positions in object space calculated

from the top six rows.

result is shown in table 10.1. The only physical dependency between the

images is a rather short time delay between the acquisitions. It is therefore

very reassuring to see that the standard deviation of the position estimate

is less than 1mm. The camera placements in object space are calculated in

the bottom three rows of the table. Note, that the cameras are placed on a

straight line within 100mm along the direction of the berth, i.e. the X-axis.

The longitudinal positions of the cameras do not match the speci�cations in

�gure 10.4, because the camera placements were adjusted to avoid the girders

in the ceiling, cf. �gure 10.2.

The empirical statistics only prove the consistency of the pose estimations.

The quality of the individual pose estimates can be evaluated from the ref-

erence mark residuals. Therefore, a residual analysis was performed on the

reference marks in the images to show if the di�erences between the projected

and the detected marks were random or systematic. For a perfectly calibrated

camera and exactly known reference mark positions, the residual would nat-

urally be random. Figure 10.7 shows the residuals resulting from the pose

calculation in seven images from each of the three cameras. The residual vec-

tors are plotted in image coordinates with an exaggeration factor of 1000. It is

clear that the independent images have very dependent residuals. For instance,

the total variance of the residuals in the left camera in �gure 10.7 is 1:4e� 02.

If the systematic part is removed, i.e. the average over the seven images, the
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variance is reduced to 1:8e � 04. In other words, the stochastic part only

represents 10% of the standard deviation. The observed systematic deviation

corresponds to approximately 1{2mm in object space. Unfortunately, later ex-

perience showed that the accuracy of the theodolite measurements were very

dependent on the people who performed them. To bene�t from the accuracy of

the system it is required to place targets very precisely and patiently wait for

the system to iterate for a short while. It is therefore likely that the observed

deviations stem from poor reference mark measurements and not from a poor

camera model.

There is also reason to believe that the systematic error is random from

mark to mark. Therefore, the redundancy in the number of marks should lead

to a satisfactory pose after all. It should also be considered that the present

installation is based on relative measurements, so that a modest pose variation

only has small inuence on the measurements. This is naturally only true as

long as the measurements are performed close to the plane spanned by the

reference marks.
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Figure 10.7: Pose residual plots for seven images from each camera. The

residual vector in each point has been exaggerated 1000 times. Coordinates

are in pixels.

10.5.2 Plate Measurements

The ability to measure accurately with the system is naturally also tested. The

plate in �gure 10.6 has been measured nine times with independent images.

The results are shown in table 10.2. Unfortunately, outlier detection was not
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Manual [mm] Measured [mm] Min. [mm] Max. [mm]

length1 10145 10142.2 � 0.09 10142.17 10142.47

length2 10156 10166.4 � 0.29 10165.92 10166.82

width1 2808 2807.2 � 0.09 2806.91 2807.21

width2 2807 2804.9 � 0.09 2804.85 2805.16

Table 10.2: Measurement statistics for plate pb090 based on nine images from

each camera. The lamp inuences the length measurements.

Manual [mm] Measured [mm] Min. [mm] Max. [mm]

length1 9753 9753.7 � 0.5 9753.1 9754.3

length2 9762 9761.6 � 0.3 9761.2 9761.8

width1 1808 1805.9 � 0.1 1805.8 1806.1

width2 1808 1808.5 � 0.0 1808.5 1808.5

Table 10.3: Measurement statistics for plate nn based on three images from

each camera.

implemented in the software at the time of the test. The two length mea-

surements are therefore biased by the saturating lamp near one of the edges.

Another test was performed with three measurements on the second plate in

�gure 10.8, where there are no reections. These results are reported in ta-

ble 10.3. Both tests show that the reproducibility of the system is satisfactory.

The observed stochastic variation is well below the required measurement accu-

racy of �1mm. Unfortunately, the measurements are a few millimeters biased

even when there are no external factors to inuence the result. The probable

origin of this bias will be discussed in the next section, where the local devia-

tions of the measurements are analyzed. Despite the fact that the requirements

are not met, it is convincing that the plate is automatically measured within

2{3mm at a distance of 10m without any use of targets.

10.5.3 Local Deviations

In this section it is investigated how the edge position varies along the edge.

In a real measurement, this variation should reect the deformation of the

plate as a result of heat injection or the release of residual stress. In the

present example, where the plate has not yet been cut, it serves to show if the

variation is random as would be expected. Especially, it should show if the
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edge detection behaves continuously across image junctions.

The local edge position is determined by splitting up the edges in 330mm

long pieces. These pieces are then detected in the same manner as the global

edges. The distance from the end points of the segments to the globally de-

tected edge is exaggerated 50 times to visualize the deviation. The saturating

lamps are excluded from the edge detections in that example. Consequently,

the local edge detections are sometimes unstable owing to the sparsity of edge

information. These deviations should be ignored. The residual plots for four

di�erent plates are shown in �gure 10.8. The larger deviations measure ap-

proximately 3mm. It is seen that there are no particular discontinuities at the

image junctions. However, the magnitude and the correlation of the deviations

are concerning. Comparing the four images, it is noticed that the deviations

follow a similar pattern. As discussed earlier, this can either be a result of

a poor camera model or a violation of the assumptions about the observed

world. The latter seems to be the case here. Subsequent measurements of the

height variations in the cutting berth revealed that it was far from planar. The

variation amounted to more than 10mm, which actually produces a parallax

error in the order of magnitude of the observed deviations.

It is hard to see how this problem can be solved. The spikes that sup-

port the plates in the berth are constantly damaged by the plasma cutter,

and are frequently replaced. It is therefore not straightforward to maintain a

planar support for the plates. It is very unfortunate that this problem was not

realized at an earlier stage. It emphasizes the importance of making proper

speci�cations early in a project.

10.6 Conclusion

The installation on the plasma cutter is seen as a success even though it is

not presently used in the production. The project has shown that a cam-

era's pose can be found accurately and consistently by the use of reference

marks, and that the images from multiple cameras can be employed simulta-

neously in a measurement. Repeated measurements on a plate showed that

the system possessed a very convincing reproducibility. Despite the non-planar

berth, the system achieved a measurement accuracy of 2{3mm at a distance

of 10m. That is, the installation came very close to meeting the speci�cations



120 Chapter 10. Check-In and Quality Control on Plasma Cutter

Figure 10.8: Residual plot for plates pb090, nn, 164pp390, and pp480. The

di�erence between the locally and globally detected edges are exaggerated 50

times. Ignore artifacts near lamps.
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of �1mm. It would therefore be worthwhile to try to solve the remaining

problem. It could e.g. be attempted to level out the berth, or to introduce

additional cameras or lasers to obtain three-dimensional information about the

edge.

One additional circumstance would need to be considered if the installation

should work in production. During cutting the plates are submerged in water,

that become increasingly dirty. The water will probably pose a serious problem

to the edge detection. This problem has not been examined.
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Chapter 11

Check-In of Steel Plates on the

Quay

11.1 Introduction

The vision installation on the plasma cutting station was postponed to release

resources for a check-in system on the quay, where the steel plates are received

and organized in a storage area. The images in �gures 11.1 and 11.2 give an

impression of the storage, with the large cranes, that arrange the plates.

All plates that arrive at the yard are ordered for a speci�c position in a

ship. On arrival they are identi�ed in a database, marked with dimensions

etc., and placed in stock for later retrieval. It is the intention to automate this

process on the yard. This also implies that the cranes, or at least the storage

control, will be automatic. Hopefully, an optimal storage control can reduce

the number of times each plate is handled before it enters the production line.

The aim of the vision installation is to measure the dimensions of the incoming

plates to determine the corresponding entry in the database. In some cases,

the measurement can be used to reject plates that do not satisfy the ordered

dimensions. This allows the yard to return plates as early as possible in the

production line. The dimension and other identi�cation is printed on the plate

right after measurement. The printer is hidden in the white box in the im-

ages in �gure 11.2. The installation is intended to function day and night

all year round, but the �rst e�orts were focused on making satisfactory mea-

surements under normal daytime conditions. The plate thickness is estimated

mechanically as the plate rolls into the measurement area.
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Although this project attracted more interest in the management than the

project in the previous chapter, it was only accepted reluctantly in the vision

group. The two projects are almost similar in their set-up. Since a number

of uncertainties on the plasma cutting station were still not fully understood,

it was considered premature to build an outdoor installation with the varying

illumination being yet another unknown factor. This concern was later justi-

�ed, and the set-up of the installation had to be changed in the course of the

project. This is described in section 11.2 below.

Figure 11.1: The check-in station on the quay. The cameras are mounted on

the beam

Figure 11.2: The check-in station on the quay. The large and small reference

marks have a diameter of 330mm and 110mm, respectively.
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Figure 11.3: The dimensions of the measurement station on the quay.

11.2 Set-up

As mentioned above, the installation set-up was changed during the project.

In the very beginning, vision was supposed to measure the width as well as the

length of the plates. The cameras therefore needed to cover the entire work

area, i.e. approximately 20m� 6m. Again, the cameras had to be placed out

of reach of the large crane that handles the plates. This was achieved by raising

a 12m tall beam reaching into the work area from outside the crane tracks.

The beam is seen from two views in �gure 11.1. It is possible to turn the beam

90 degrees away from the work area to yield access to the cameras without

interrupting the working cranes. The two cameras that point to the far ends of

the roller table are equipped with 8mm lenses to give a suÆcient �eld of view.

The center region of the work area can then be covered by a camera with a

12mm lens. The latter camera is turned 90 degrees to cover the width of the

table. Three JAI cameras where used, cf. chapter 3. 42 reference marks were

placed on the edge of the table for pose determination. Each reference mark

has a diameter of 330mm. A white ruler was placed in the middle of the table

to aid the coarse detection of the plates, cf. �gure 11.4. The main dimensions

of the installation are shown in �gure 11.3. To avoid the problems experienced

on the plasma cutter, the height variation of the rollers was measured. All

measurements were found to be within 1{2mm.

Even though the placement of the cameras is di�erent from that in the
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plasma cutting installation, the software could actually be applied directly.

It was simply a question of specifying a new set of reference marks and three

new approximate camera poses. This shows the clear advantage of utilizing the

available a priori knowledge. Acquiring three images and calculating the poses,

it is again possible to re-sample an image in metric coordinates. This is seen

in �gure 11.4. The images are re-sampled at 12mm/pix. In the upper example

the merged image is based on the images from cameras 1 and 3 only, showing

that these cameras actually cover the entire work area. The images from all

three cameras were used in the lower example. Of course, the middle image is

normally used, as it has a 50% better resolution on the width measurement.

The �tted reference mark models have been subtracted in the upper merged

image to verify the quality of the detection.

The two examples in �gure 11.4 have some artifacts that should be ignored.

In the upper example, circular marks have been placed on the plate to make

a test of the calibration, that is independent of the edge detection. In the

lower example, all but the reference marks have been gamma corrected to test

the measurement's sensitivity to non-linear intensity changes. The trouble

shooting on the installation is described in section 11.5 below.

Unfortunately, it was not possible to obtain satisfactory length measure-

ments with the set-up described above. The error on the length measurements

were often 4{5 times greater than the error on the width measurements. The

dominating source of error was the reecting light from the sun. Adjusting the

shutter to obtain a satisfactory contrast on the edges and the nearby reference

marks in sunshine, often caused the reference marks in the direction of the sun

to be saturated. In fact, this problem was even visible on overcast days. The

upper images in �gure 11.4 are acquired on a cloudy day, but the reference

marks in the left-hand side of the left image are 30% lighter than reference

marks in the right-hand side of the same image. In consequence, a lot of ref-

erence marks far from the camera had to be omitted from the pose estimation

in heavy sunlight. However, these marks were also the most important in

terms of pose accuracy. At the same time the measurements with the angled

cameras are the most sensitive to a correct pose. On top of these problems,

the plate edge was often also corrupted by reected sunlight. Remember, that

sub-pixel edge detection only makes sense, if we know a good model of the

image creation process. This is not the case when the sunlight causes specular

reections on a curved edge.
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Figure 11.4: Merging image information on the check-in station. Top: three

original images and an image merged from camera 1 and 3. Bottom: three

original images and an image merged from all cameras. The work space was

re-sampled at 12mm/pix in both examples.
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Instead of pursuing these problems, it was decided to solve the length mea-

surement by a mechanical solution. This was easily implemented by placing a

tachometer on the roller table. This solution was not chosen immediately, as

the outdoor environment with dirty plates was anticipated to cause diÆculties

for the mechanical device. It has also turned out that a tolerance of 5{10mm

has to be accepted.

It was then attempted to re�ne the vision installation's width measurement.

That is, the installation was reduced to the middle camera. This camera was

replaced by a digital Basler camera with a 1296�1030 resolution, cf. chapter 3.
The camera was changed for two reasons. First, the better resolution and the

better lens of the Basler camera could improve the measurement accuracy.

Second, the video signal had been seen to be very a�ected by electrical noise.

The origin was the electrical �elds induced by the electrical roller table and

the cranes and their electromagnets. If a digital signal is a�ected by noise it

is easily seen as speckles in the image. In comparison, an analog signal has a

much more continuous response to noise, making the noise harder to see.

In the redesign of the installation it was chosen to add light to the scene to

make the plate appear dark on a light background. However, this would also

make the reference marks dark and impossible to see. To make the contrast

on the edge and the reference marks similar, it was decided to base a number

of new reference marks on the same light sources that were used for the plate.

This was achieved by suspending thin steel plates with holes above the light

sources. The holes would then appear as reference marks. Each of four light

boxes was equipped with a plate with a con�guration of �ve reference marks

with diameters of 110mm. These marks can be seen in �gures 11.2 and 11.5.

The next section will describe the arti�cial light that was added to the scene.

11.3 Lighting

As expected the light turned out to be the hardest problem to solve in the

outdoor installation. At �rst it was planned to measure the edge between

the lighter plate and the darker background. In the design phase, it was

considered to dig a 1m deep pit underneath the roller table. Covering the pit

with a dark grid would prevent light to be reected even on days with snow.

The idea turned out to be too expensive and the concrete base was painted
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black instead. This solution turned out to be unsatisfactory. The painted

background was only black for a short while and produced strong reections

in sunlight. Furthermore, the plates often have dark rusty edges, making sub-

pixel edge detection very diÆcult.

Consequently, it was decided to change approach when the installation was

reduced to a single camera. Since the installation is too large for the light to

be shielded, it was chosen to add light to the scene instead. It is impossible to

improve the contrast by illuminating the plate, as the sun produces one or two

factors more light than we could possibly add. Instead, four light boxes where

placed under the roller table and pointing directly towards the camera. This

way the plate appears as a black edge in the image. Figure 11.5 shows the

four light boxes that were placed underneath the plate. This solution has the

advantage that rust and dirt on the plate no longer a�ect the measurements.

Only the light boxes will need to be kept clean. Each light box consists of 15

60watt neon tubes with a high frequency supply, which is necessary owing to

the short shutter time and the fast response of the neon tubes. At �rst, the

light boxes were covered by mat Plexiglas to di�use the light, but this was

soon replaced by transparent glass to improve the daytime performance. The

produced contrast was still not suÆcient in heavy sunlight, but the installation

was now functional under normal conditions as well as at night.

11.4 Measurement

Even though two di�erent set-ups have been described above, the measurement

situation is very much the same. The algorithm listed below is therefore com-

mon to the two set-ups, but a few steps are not relevant or not necessary when

only the width measurement is performed. The main di�erence in the mea-

surement between this installation and the installation on the plasma cutter

is the limited knowledge of the position of the plate. It is attempted to center

the plates on the roller table, but that is the only available a priori knowledge.

It is therefore natural to separate the measurement into a coarse localization

and an accurate edge detection. The rough position of the plate is obtained by

image projections, i.e. the average image intensity is calculated along the rows

and the columns of the image, respectively. Such projections can be seen in

continuation of the edges in �gures 11.4 and 11.5. The projections are drawn
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Figure 11.5: A width measurement based on back lighting. Top: the original

image. Left: re-sampled image with coarse detection result shown with white

crosses. Right: re-sampled image with accurate detection result shown with

white line. Two regions in each of the two lower images have been blown up

to show the details.
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with a width of �fteen pixels for better visualization, but they are of course

one-dimensional arrays. To obtain an estimate of the plate orientation, the

projections are performed bilaterally in the longitudinal direction. The rollers

in the table and the white ruler are avoided in the projections. Now, the edge

positions can be found from the projections by convolving with a Gaussian

edge detector, cf. Deriche [12]. The result of the convolution is also drawn

in the images and the edges show up as clear maxima and minima. Before

the results are accepted they are tested against the assumption of symmetry

around the center and the position of the edge on the white ruler. In fact,

the accuracy of the coarse detection is about 1{2 pixels � 10{20mm. In �g-

ures 11.4 and 11.5 the result is displayed with small white crosses on the edge

of the plate in the merged image. The detected edge is naturally associated

with the center row/column of the projected region.

The coarsely detected edges are then re�ned with a more accurate edge

detector. The method based on the smoothed Hough transform was used

in the length and width measurements. To reduce the processing time, this

method was later replaced by the approach based on normalized Gaussian

convolution. The bias, that is discussed in chapter 7, is not a problem in this

installation because the edge is re-sampled on a closely aligned raster.

The di�erent steps in a measurement are

1. receive estimated plate thickness

2. grab image(s)

3. check image intensities in background and foreground regions

4. if not ok, adjust shutter and o�set and goto 2

5. if necessary mask images

6. perform horizontal and vertical image projections

7. calculate coarse plate position

8. perform accurate edge detection

9. report results to the controller

10. locate the plate in the database

A few steps in this list have not yet been mentioned. The image grabbing

has to be enclosed in a loop that adjusts the shutter and o�set of the camera(s).

This is absolutely necessary in outdoor operations. If the old setting does not
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produce satisfactory images, the o�set parameter is reset to a default value,

and the grabbing procedure is iterated until a good shutter value is found.

Finally, the o�set parameter is adjusted to prevent black level cut-o�. An

image masking has also been introduced. This step tries to limit the e�ect

of local reections that make the image saturate and is done by thresholding

the image at some high intensity level to isolate the saturating pixels, which

can then be discarded from the edge detection. The neighboring pixels, that

may also be a�ected, are removed as well by performing a few dilations on

the thresholded image. A simple pixel count can reveal whether the image is

acceptable or if the amount of reection is too severe.

11.5 Trouble Shooting

The previous sections have touched on the diÆculties that were encountered

on the initial installation. It was observed that length measurements were bi-

ased 5{10mm or varied 2{5mm between measurements. The problem is that

the origin of these deviations is not visually obvious in the images owing to

the poor resolution. It is therefore impossible immediately to conclude from

an image if the problem is caused by reections from the sun, a hanging or

bulgy plate, or a poor pose estimation. A series of experiments were there-

fore designed to isolate the inuence of various factors. However, it is very

diÆcult, if not impossible, to eliminate individual factors in an outdoor exper-

iment and the conclusions are therefore rather vague. Nevertheless, the indoor

experiments have provided an indirect proof that the dominating problem on

the installation is the sunlight. The light a�ects the measurement through

the reection on the edge as well as on the pose estimation. In either case, it

can cause an error in the detection of the edge of as much as 1 pixel, which is

approximately 10mm. Another problem could be that the theodolite measure-

ments of the reference marks were inaccurate resulting in poor pose estimates.

A measurement of the marks was ordered three times, and the results were seen

to vary 2{3mm. Despite the redundancy in the number of reference marks,

this could easily have a serious e�ect on the measurements.

It was attempted to analyse the e�ect of three factors independently in the

experiment, namely the light, the position of the plate, and the size of the plate.

A special 4m plate was constructed to eliminate the e�ect of reections on the
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edge. The plate was actually based on a larger plate with black background

painted around the border to make a virtual 4m plate in the center. This also

ensured a perfect background for the edge detector.

In the light experiment, the plate was kept in the same position to elimi-

nate the variations caused by the geometry of the installation. The plate was

positioned right below camera 2, where it could be seen by all three cameras.

The plate was measured 210 times with each camera in two minute intervals.

The mean and standard deviations of the measurements from camera 1, 2,

and 3 were 4002:1 � 2:2mm, 4004:9 � 1:3mm, and 4002:8 � 3:4mm, respec-

tively. It is seen that the standard deviations are a bit too large to measure

the plate within the speci�ed requirement of �2mm. Especially, the measure-

ments from camera 3, which points towards the sun, is a�ected by the light

changes. It is also seen that the bias in the estimate is di�erent from camera

to camera. This could be an indication that the pose estimates are biased,

which might be explained by the di�erent reections from reference marks at

di�erent positions, or the poor theodolite measurements of the marks.

The dependency on the position of the plate was tested by moving the 4m

plate to di�erent positions on the roller table. It is, however, impossible to

eliminate the serious e�ect of light in this experiment. For instance, a biased

pose caused by the light will have a larger inuence on the measurement when

the plate is positioned at the ends of the table. The length of the plate was

measured ten times in ten di�erent positions on the table. The standard

deviation in the same position was typically 0:5{1:0mm, but the mean values

varied as much as 10mm. The variation of the mean was not systematic. Even

though this experiment was meant to isolate the geometric e�ect, it is very

hard to conclude from the data whether the light or the geometry is the origin

of the variation.

In the �nal experiment, the size of the plate was varied from 1m to 4m by

applying a fake background with black tape to one of the ends of the plate.

Twenty measurements were performed on each of nine di�erent plate lengths.

The standard deviations of the measurements were again 1{2mm, with the

bias varying randomly up to 10mm.

The two geometric experiments above show that the bias in the dimension

measurement varies with the position and the size of the plate. This can

be caused by purely geometric errors, such as the plate not lying totally at

on the table or poor theodolite measurements of the reference marks. It can,
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Parameter Mean Std. Dev. Min Max

Xc[mm] 8063.4 � 8.3 8044.6 8088.5

Yc[mm] 2175.7 � 4.2 2162.3 2187.6

Zc[mm] 11360.1 � 4.3 11344.8 11368.7

Table 11.1: The pose variation of the camera mounted on the beam

however, also be caused by the sunlight's indirect inuence on the pose through

the reections on the reference marks. The length measurement was given

up before the exact origin of the variations was determined, but the indoor

experiments show that the desired measurement accuracy can be obtained if

there is no sunlight and the geometry of the set-up is carefully measured. This

statement is also supported by the width measurements discussed below, which

were performed under much better lighting conditions.

11.6 Data Analysis

The accuracy of the width measurement was tested in 32 repeated measure-

ments of a plate. A measurement was conducted every half hour from 3:00 p.m.

July 30 to 6:30 a.m. June 1, 1999, so that the test period contained night as

well as day. The plate was also measured manually in �ve di�erent positions

giving the results 3080mm, 3082mm, 3082mm, 3081mm, and 3080mm. This

gives a mean and standard deviation of 3081� 1:5mm. The thickness of the

plate was 10mm.

The automatically adjusted shutter time of the camera did not vary much,

as the scene is dominated by the arti�cial light. All shutter times were between

530�s and 690�s.

The pose of the camera was not constant. However, this was expected as

the beam is a�ected by the wind. The variation in the calculated position of

the camera can be seen in table 11.1. It is seen that the estimated position of

the camera varies as much as 40mm. The results below, will show that the

movement of the camera has no e�ect on the measurements.

The width of the plate is derived from the edge detections described in

section 11.4 above. There are two edge segments on each side of the plate.

They are drawn in the right image of �gure 11.5. The shortest distance to the

opposite segment is calculated for each of the eight end points. Distances that
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correspond to opposite points are averaged, such that we are left with four

width measurements. These are shown in the upper plot in �gure 11.6. The

four widths are reduced to one by a consensus scheme. If a measurement is

found to be an outlier it is not included in the average. If the measurements

agree two by two, the average of the two smallest widths is used. This approach

is chosen because the false edges always occur on the light side of the edge.

The width, that is returned to the controller, is displayed in the lower plot of

�gure 11.6.
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Figure 11.6: Width measurements as a function of time. Top: the width at

four di�erent positions. Bottom: the consensus result.
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The plots show that the measurement accuracy is clearly better at night.

All the large uctuations occur in the �rst four hours, while the sun is still

very bright. Despite these variations, all the measurements lie within 2mm

and have a standard deviation of only 0:3mm. This is a very nice result,

considering that the camera is placed 11:4m away from the edge and that the

camera has moved between images.

The behaviour seen in the �rst four hours gives an indication of the prob-

lems that are experienced when the installation is exposed to heavy sunlight.

The day the test was performed was actually mildly overcast. The conclusion

is that the installation is not able to measure reliably on bright summer days.

11.7 Conclusion

This chapter has described the measurement station on the quay. From the

beginning, it was meant to measure the length as well as the width of the steel

plates that arrive at the yard. Soon the installation was reduced to the width

measurement. It has been shown that accurate measurements can be obtained

with the given set-up. It is, however, only possible when the outdoor light

is di�use. When the sun shines on the plate edges, it causes reections, that

makes sub-pixel edge detection impossible. The installation might work day

and night if the light boxes were replaced by some more powerful light sources

that could compete with the strong reections from the sunlight. This could

possibly be strobed light, and the source would not have to have the physical

size of the light boxes.

The installation in its current state has not been accepted in the produc-

tion. It was decided to see what could be obtained by a mechanical solution

on the width measurement as well.
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Chapter 12

Check-In and Quality Control

on Laser Cutter

12.1 Introduction

The most recent vision installation on the yard is designed to do accurate

measurements on a new gantry station for laser cutting and welding. The

high energy laser tool is expected to give more accurate cuts and welds as

a result of better focusing and less heat injection. The alternative processes

employed at the yard put large amounts of energy into the material during

processing, causing a deformation of the assemblies. The laser tool is mounted

on a very accurate gantry system. According to the speci�cations, the gantry

can be positioned within 0:1mm. The gantry and the laser cutter can be seen

in �gure 12.1. It is planned to use vision to measure the performance of the

laser cutter.

The vision system serves several purposes. It is also providing results

for the Brite-EuRam project QualiGlobe. This project focuses on the use

of product state information in processing. That is, a product state model

(PSM) is maintained as the product travels through the di�erent steps in

the production. Speci�cally, it is planned to estimate the width of the gap

to be welded between two parts from the actual shape of the parts. It is

therefore necessary to be able to measure in-plane deformations as well as out-

of-plane deformations. Only the former task has been addressed so far, but it

is planned to investigate what accuracy can be obtained on the out-of-plane

measurements by extending the vision installation with an extra camera or a
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Figure 12.1: The laser cutting and welding installation. The table measures

approximately 4500mm� 18000mm.

laser. The size of the gap is an important piece of information in terms of

optimal time planning and optimal choice of process parameters.

The installation is at the same time a test bench where the results in the

previous installations can be veri�ed without too many unknown factors. In

this project, the camera is much closer to the object to be measured and the

lighting conditions are much more stable. Furthermore, the laser cutting tool

performs clean cuts on the primed plates without burning the edges, so that

the condition of the edges is well suited for vision measurement. It is therefore

a perfect set-up to prove the potential of vision technology in shipbuilding.

A fast check-in system has also been implemented on the laser cutter to

determine the position and orientation of plates on the table. The operator

only has to jog the gantry camera to a corner of the plate, and the system

will automatically detect the other corners and calculate the rotation and

translation of the plate. This allows an arbitrary placement of the plates on

the table. This system is already running in production.
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12.2 Set-up

It was chosen to bene�t from the accuracy of the gantry system by placing

the camera on the gantry in this installation. This makes it possible to mount

the camera much closer to the edge to be measured and thereby increase the

image resolution signi�cantly. The placement of the camera can be seen in

�gure 12.2 on the exterior of the hood on the vertical Z-axis. The camera is

a digital 1296� 1030 Basler A113, cf. chapter 3.

The work area measures approximately 4500mm � 18000mm, i.e. the

camera must be moved around by the gantry to measure the plates. Apart

from an initial pose calculation, the external calibration of the camera therefore

relies on the position read-out on the gantry controller. It might be argued

that this set-up cannot be transported to a gantry station, that is less accurate.

However, the deviations from the ideal cut on the other cutting stations on the

yard typically originate from damaged tools, poor process parameters, or plate

deformations caused by the process and not the accuracy of the gantry. It is

therefore normally fair to base a measurement on the precision of the gantry,

which is in any case setting the lower limit on the performance of the process.

Figure 12.2: The camera placement on the gantry.

On the laser gantry system we operate with three di�erent coordinate sys-

tems. First, we have the coordinate system of the cutting table (O; i; j;k).
No subscript is used for this global coordinate system. Second, we have the

coordinate system centered on the TCP (OT ; iT ; jT ;kT ) with the subscript T .
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(OC ; iC ; jC ;kC)
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Figure 12.3: The three coordinate systems at the laser station. From left to

right: the gantry frame, the TCP frame, and the camera frame.

The TCP is located at the origin of this frame. Finally, we have the coordi-

nate system of the camera (OC ; iC ; jC ;kC) with the subscript C. It is from this

frame that the central projection to the image plane is performed. That is, the

focal center is placed at the origin of this frame and the z-axis is the principal

axis of the camera. In the camera model that we use, there is no skewness

parameter, meaning that the x-axis is aligned with the horizontal u-axis of the

image and the y-axis is aligned with the vertical v-axis. The three coordinate

frames are depicted in �gure 12.3.

The relation between the global coordinate system and the TCP-centered

coordinate system is de�ned by a pure translation. In fact, this translation is

directly related to the read-out on the gantry controller XG(�) at time �

XT (�) = X�XG(�) (12.1)

We assume that the TCP is positioned at the origin of the table when the

read-out on the controller is zero, XG(0) = (0; 0; 0). If, however, these two

frames are not aligned, an o�set can be introduced in the equation above. In

the following we assume that the arbitrary origin of the coordinate system of

the table is placed so that the equation holds, cf. �gure 12.4.

The mapping between the TCP frame and the camera is described by the
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Figure 12.4: The relation between the global frame and the frame centered on

the TCP.

camera's pose, i.e. rotation R and translation t. This gives

XC(�) = RXT (�) + t (12.2)

Note, that this relation holds independent of the gantry position and describes

the �xed position of the camera in relation to the TCP, cf. �gure 12.5. Natu-

rally, we can combine equations 12.1 and 12.2 to get the direct mapping from

the global coordinate system to the camera frame

XC(�) = R(X�XG(�)) + t (12.3)

The external calibration of the camera consists of �nding R and t, which

are both independent of the gantry position. This is done by cutting e.g. a

rectangle with the TCP and moving the camera to a gantry positionXG(�CAL)

that makes the rectangle visible in the image. The coordinates of the gantry

position are then subtracted from the coordinates of the rectangle to obtain

the rectangle in the TCP coordinate system. The pose of the camera is then

easily calculated from the projection of the rectangle. The relation between the

global coordinates of the rectangle and its image projection is then described

by the calibration matrix

P(�CAL) = K [R t]T�1
G (�CAL); (12.4)

where

TG(�CAL) =

2
4 I XG(�CAL)

0T 1

3
5 (12.5)
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Figure 12.5: The relation between the frame centered on the TCP and the

camera frame.

is the translation represented by a homogeneous matrix, and K contains the

internal calibration, that is determined o�-line. This formulation is used to

calculate the appropriate calibration matrix every time an image is acquired

from a new gantry position XG(�)

P(�) = K [R t]T�1
G (�) (12.6)

= P(0)T�1
G (�); (12.7)

where P(0) is the gantry-independent camera matrix that maps from the TCP

frame into the image.

12.3 Gantry and Measurement Accuracy

A number of experiments have been conducted to verify the absolute as well

as the relative accuracy of the gantry system. The absolute accuracy was

tested by a theodolite system by moving the various axes of the gantry and

comparing the theodolite measurements and the gantry controller read-out.

At this point in time, the measurement data from the gantry are very sparse,

but it seems that the absolute accuracy of the gantry is far from what is

promised in the speci�cations. In an experiment, the X-axis of the gantry,

that moves in the longitudinal direction of the cutting table, was asked to

move 8500mm. The distance that was actually moved, was measured by
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Coordinate Mean � Std.Dev. [Min;Max] Max-Min

Corner 1 X 9090:96� 0:03 [9090.93;9091.02] 0.09

Y 2204:10� 0:03 [2204.04;2204.16] 0.12

Corner 2 X 11697:23� 0:03 [11697.16;11697.30] 0.14

Y 3761:97� 0:03 [3761.92;3762.03] 0.11

Table 12.1: The relative gantry accuracy on the laser in two times 40 mea-

surements. The test also shows the reproducibility of the vision system. All

numbers are in millimeters.

theodolite to be 8498:6mm, i.e. the gantry lost 1:4mm. At the same time

the Z-coordinate was seen to increase by 1:7mm. Discrepancies between the

theodolite measurements and the gantry controller were also observed when

moving the other axes. It is necessary to perform more measurements to give

de�nite conclusions on the accuracy of the gantry, but if the �rst indications

are veri�ed, the gantry needs to be better calibrated. This is, of course, im-

portant for the vision system, but it is even more crucial for the cutting and

welding on the installation. The gantry is assumed to be properly calibrated

in the sequel.

The relative accuracy was tested with the vision camera by repeated mea-

surements of two diagonal corners of a plate. The gantry was programmed to

move back and forth between the two corners. The corners were each time

approached from a di�erent direction to best analyse the behaviour of the

gantry. The position of the two corners were each measured 40 times with the

method described in section 12.5 below. The results of the measurements are

summarized in table 12.1. Note, that this test also veri�es the reproducibil-

ity of the vision measurement. It is seen that all measurements lie within

0:14mm with a standard deviation of 0:03mm, even though the gantry moves

10500mm between each measurement. The image resolution is approximately

2 pixels/mm. The test lasted an hour and was performed around noon.

Finally, the performance of the vision system was tested as a function of

time. This was done by leaving the gantry in a �xed position for 20 hours,

while measuring the same corner every half hour. The experiment tests the

sensitivity to changes in illumination. The result is shown in �gure 12.6. The

upper plot shows the variation of the two coordinates around their mean,

and the lower plot shows the variation of the shutter setting. Measurements
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started at 1:40 p.m. It is seen that the position varies smoothly as a function

of time. The change in illumination cause the estimate to drift 0:3mm from

the minimum to the maximum value.

12.4 Calibration

The internal calibration of the camera is naturally the same as in the other

installations. With regard to the external calibration, the camera needs to be

calibrated with respect to the tool center point (TCP), since this installation is

meant to produce absolute measurements. The external calibration is obtained

by letting the TCP cut e.g. a rectangle and using the corners to make a pose

calculation. This procedure can be performed in any place in the work area,

since the calibration is invariant to the gantry position and only depends on the

relation between the camera and the TCP. In practise, we obtained calibration

data from each end of the table and optimized a single pose estimate using the

data simultaneously. This way, the calibration is equally valid at both ends

of the table, even if the pose of the camera is slightly a�ected by the di�erent

gantry positions. The residual of the pose calculation was 0:56 pixel, which is

way too high. This is known to be caused by a varying Z-coordinate of the

corners of the rectangles in the calibration images. This will be corrected in

the future.

To bene�t from the simplicity of projective algebra, it was chosen to work

with recti�ed images in this installation. Consequently, all images are recti�ed

right after acquisition. The calibration is therefore described by a 3�4 camera

matrix derived from the individual intrinsic and extrinsic parameters. That is,

the entries of the matrix were not estimated by the linear method. The result

of the calibration and the separation into intrinsic and extrinsic parameters is

P(0) � (12.8)2
664
�1:766e� 02 �4:803e+ 00 �1:173e+ 00 5:552e+ 02

�4:828e+ 00 �3:274e� 02 �7:317e� 01 3:195e+ 03

�6:925e� 05 �7:838e� 06 �1:753e� 03 1:000e+ 00

3
775 � (12.9)

2
664
2734:78 0:00 680:50

0:00 2733:94 525:53

0:00 0:00 1:00

3
775
2
664

0:006 �1:000 0:004 �26:11
�0:999 �0:006 0:040 556:57

�0:039 �0:004 �0:999 570:06

3
775 (12.10)
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Figure 12.6: Corner position vs. time on the laser cutter. Top: the variation of

the X and Y position around the mean. Bottom: the shutter value variation.

Time is measured from 1:40 p.m.
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Figure 12.7: The two recti�ed images that are used for the external camera

calibration on the laser cutting installation.

The entries of these matrices can easily be interpreted as described in chap-

ter 5. The right-hand matrix in the last equation contains the rotation and

the translation of the camera pose. The last entry in the translation vec-

tor shows that the TCP is 570mm below the camera. During measurement,

the camera is lifted to the gantry position ZG = 890mm, so that the total

distance to the plate is approximately 570 + 890 = 1460mm. It can there-

fore be seen from the intrinsic camera parameters that the image resolution is

2734 pixels=1460mm = 1:9 pixels/mm. The rotation matrix reveals the orien-

tation of the camera. The object space X-axis points in the direction of the

negative y-axis of the camera, the Y -axis points in the direction of the negative

x-axis, and the Z-axis points opposite the camera's z-axis. The placement of

the TCP in relation to the focal point is (�26:1mm; 556:6mm; 570:1mm) in
the camera coordinate system. This is in good agreement with the physical

set-up, cf. �gure 12.2. That is, the TCP is in front of the camera but translated

556:6mm in the direction of the camera's y-axis. Some information can also be

extracted directly from the camera matrix P. The projection of XT = (0; 0; 0)

gives the (virtual) image coordinates of the TCP (555:2 pixels; 3194:8 pixels).

That is, the TCP is centered in the u-direction and is two image heights beyond

the bottom of the image. The direction of the principal axis is given by the

�rst three entries in the bottom row of the camera matrix or the bottom row

of the rotation matrix (�0:039;�0:004;�0:999). That means that an error in

the plate's height of 10mm will result in a parallax error in the measurement of

(0:39mm; 0:04mm) in the principal point (681 pixels; 526 pixels). Experiments
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have shown that the cutting table is not even, and that the height variation

amounts to as much as 10{15mm. Measurements are therefore always per-

formed in the point where there is no parallax, namely the point right below the

focal point. We call this point nadir and �nd it as the vanishing point on the Z-

axis in object space. The image coordinate is determined by the third column

of the camera matrix and is (�1:17;�0:73)=�0:00175 = (669 pixels; 417 pixels).

The image center, the principal point, and nadir are speci�ed in �gure 12.8.

Remembering the sensitivity to height variations in the principal point, it is

remarkable how fast the precision degrades away from nadir.

Figure 12.8: Image center, principal point, and nadir in an image from the

laser station.
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12.5 Check-In

As mentioned above, a check-in system has been implemented on the laser

cutter. This system is used to determine the position and orientation of plates

on the cutting table, so that the cutting programs can be properly transformed.

This gives the freedom to place objects to be cut or welded arbitrarily on

the table, allowing more exibility in the process planning. The system only

requires the operator to jog the camera to a prede�ned corner on the plate.

The rest of the check-in is then performed automatically. The steps are

1. receive approximate dimensions from the controller

2. prompt the operator to jog the camera to the �rst corner

3. measure the corner position and orientation

4. calculate the next corner position

5. move the gantry automatically

6. measure the corner position and orientation

7. if not last corner, goto 4

8. calculate translation and rotation

9. report result to controller

The user interface can be seen in �gure 12.9. In the left-hand side of the

image, the operator selects the plate to be checked in from the database of

cutting program �les. He then clicks the corners that he wants to measure in

the graphic display to the right, and indicates whether the plate is lying in one

of two �xed positions or is placed arbitrarily. Finally, he starts the program,

that will ask him to jog the camera if necessary.

The actual detection of the corner in the image is based on a number of

image analysis algorithms. The task is di�erent from the earlier edge detections

in the limited amount of a priori knowledge. The only information that is given

to the vision system is the opening angle of the corner and the approximate

orientation. This information is contributing to an error rate that is practically

zero. The diÆculty in the task lies in the grid below the plate, which produces

many false edges and highlights.

The di�erent steps in the image analysis are shown from left to right in

�gure 12.10. First, the image is median �ltered with a large 39�39 �lter. The

size of this �lter is determined to remove the underlying grid. The plate can
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Figure 12.9: User interface for plate check-in on the laser station.

now be separated from the background by a simple threshold. The threshold

value is determined automatically to best separate the intensity distributions

in the foreground and the background. Next, the edge pixels are found as

the di�erence between the thresholded image and an eroded version of the

thresholded image. This image is then Hough transformed to �nd candidate

edges. Only the eight strongest edges are considered. Each time an edge

is found, it is drawn in the image and the contribution to the Hough space

from the edge pixels nearby is removed. This way the multiple representation

of the same line, that is often the result of aliasing in the Hough space, is

avoided. These eight lines are then paired two by two to form corners. Among

the corners that satisfy the a priori knowledge, i.e. corners that have a given

opening angle and orientation, a measure of �t is calculated. This measure

is based on the number of edge pixels that is actually covered by the corner

and the total edge length of the corner. The detected edges are shown in dark

grey in the �fth image of �gure 12.10 and the corner with the highest score is

drawn in light grey. The best candidate is then re�ned by a more accurate edge

detection method. On this installation, the accurate edge detection is based on

the maxima of one-dimensional Gaussian convolutions with subsequent linear
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regression with outlier detection. The result is shown in the last image in

the �gure. Actually, the method just described has recently been modi�ed

to perform the coarse corner detection on an image, that is down-sampled

twice. That is, the reduced image contains sixteen times fewer pixels. At the

same time the size of the median �lter can be reduced correspondingly. The

�nal accurate detection is, of course, still performed on the original image, so

that the improved computational eÆciency does not cause a decrease in the

precision.

The accuracy and reproducibility of the check-in procedure was already

described in section 12.3.

12.6 In-Plane Measurement

Once a plate has been cut, it is measured along the edge. The density and the

organization of the measurements are determined by the desired detail of the

PSM, which is managed by another group at the yard. The software, that is

developed in the vision group, is ready to be interfaced with the PSM, but it

also works as a stand-alone system, so that vision speci�c results can be tested

o�-line.

The interface to the vision system is very simple. The controller simply

provides the two end points (X1;X2) of an edge and the o�set � from one of

these points to the position X where the measurement is to be made. The

o�set is speci�ed as a fraction of the total edge length, so that

X = X1(1� �) +X2� (12.11)

The vision system then calculates the gantry coordinates that will place the

camera so that the point X is in the nadir position in the image. When

the gantry is moved to this position, it is an easy task to detect the edge

position. The orientation of the line in the image is approximately known

from the speci�ed end points, and these can also be used to restrict the edge

detection near the corners. The edge detection is based on the available edge

information in the image, i.e. the edge is detected as a line and not as a point.

This line in the image is represented by the homogeneous coordinate Ledge. In

object space, the line and the focal point of the camera de�nes a plane Pedge.

Obviously, the plate edge is lying in this plane. It is calculated directly from
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Figure 12.10: The di�erent steps in the corner detection. From left to right:

recti�ed image, median �ltered image (39 � 39), thresholded image, eroded

image (3 � 3), detected edges, and superposed corner. In the latter image a

region has been blown up to show the sub-pixel position of the detected line.
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the camera matrix P(�)

Pedge = LedgeP(�) (12.12)

We have to use two more constraints to �nd the edge position corresponding

to the point X. The �rst constraint is the height h of the edge determined by

the thickness of the plate, which de�nes the vertical location of the observed

edge. That is, the edge is also constrained to the plane with the homogeneous

coordinate

PZ=h = (0; 0; 1;�h) (12.13)

Finally, it is required to �nd the edge location exactly corresponding to the

point X. We therefore construct a plane that intersects the edge in precisely

that point. This plane is denoted Pnorm, since it is normal to the edge

Pnorm = (X2 �X1;�X2 �X+X1 �X); (12.14)

where '�' denotes the usual dot product. The desired edge location is now the

intersection of these three planes, which is well-de�ned owing to the construc-

tion above. The homogeneous coordinate of the edge location may be found

as the null-space of the matrix

2
664
Pedge

PZ=h

Pnorm

3
775 (12.15)

In the visualization of the results, we also use the orientation of the edge to

draw a cubic spline between measurements. The orientation can be found by

omitting the constraint de�ned by the plane Pnorm above. That is, the edge

is spanned by the two points that de�ne the null-space of2
4 Pedge

PZ=h

3
5 : (12.16)

The angle is straightforwardly calculated from these two points.

Figure 12.11 shows the result of a measurement. The edge position is

measured relative to an ad hoc CAD model based on the four check-in corners.

The bars, that are perpendicular to the CAD model, represent the individual

measurements. They are interpolated by a cubic spline, which is based on

the local edge direction estimates. The maximum deviation from the \CAD"

model is seen to be 0:3mm. In �ve repetitions of the plate measurement, the
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maximum deviation on the same point was 0:03mm. The plate has not yet

been measured accurately with the theodolite system, why it is not possible

to evaluate the absolute accuracy of the measurements. Note, the continuity

of the independent measurements along each edge.
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Figure 12.11: Measurements along the plate edge on the laser cutting station.

The bars show the measurements in relation to the rectangle based on the

four check-in corners, which is denoted CAD. The spline is based on the local

direction estimates. The graphic representation is exaggerated 100 times, but

the numbers are the actual deviation in millimeters.

12.7 Conclusion

The laser installation has been the most successful project in the Ph.D. pe-

riod. The implemented check-in system is already used in production, and the

measurement system for the product state model (PSM) has shown promising

results.

The check-in system is able to measure the corners within 0:1mm when the

corners are approached from varying directions. Edge measurements, where
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the direction of approach is always the same, have been reproduced within

0:03mm in �ve tests. The absolute accuracy of the whole system remains to

be shown, but preliminary theodolite measurements indicate that the absolute

positioning of the gantry is not satisfactory. This is primarily a problem with

respect to cutting and should be solved to bene�t from the advantages of the

laser tool. The tests show that the accuracy of the vision system should be

comparable to that of the gantry system.
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Chapter 13

Conclusion

The present dissertation has described the theory and practise of the work

that has been done on large-scale object measurement with vision at Odense

Steel Shipyard in the course of the project. The emphasis has been put on

accurate dimension measurement and uncertainty evaluation. All the examples

that have been given have concerned the measurement of at steel plates,

but the experience gained in the project in terms of geometry, calibration,

lighting conditions etc., is also applicable more generally in the industry. Two

immediate examples are the use of vision to position large three-dimensional

assemblies and to provide a visual input to welding robots.

The dissertation has presented the basic algebra describing projective ge-

ometry and its relation to typical camera models. The factorization and in-

terpretation of the linear models have been described. A complete non-linear

model with radial and decentering lens distortion has been employed to obtain

a highly accurate description of the relation between object points and image

points. As a possible alternative to a complete recti�cation of the image, New-

ton iterations have been proposed as a means to �nd the inverse of the lens

distortion function.

A chapter has described the problem of camera calibration with focus on

a proper evaluation of the calibration quality. It is argued that the mere

calibration residual is often an insuÆcient measure for the quality. It is shown

how the theoretic dispersion of the �tted camera parameters can be propagated

to uncertainty ellipses in the image. For instance, this shows that an extra

decentering distortion parameter that gives a marginal improvement of the

calibration residual results in a signi�cant increase in the uncertainty of the
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model outside the convex hull of the calibration points. It is also proposed

to analyze the local correlation structure of the residuals, which indicates if

the camera model is under-parametrized. The various tests are performed in

a calibration program, that has been developed in the course of the project.

The cameras used at the yard have been successfully calibrated to an accuracy

of 0:05{0:10 pixel.

Accurate detection of two kinds of features has been discussed. Circular

reference marks have been detected by the use of a parametric model and it

has been shown that the theoretical and empirical dispersions are comparable

in magnitude. It was proposed to apply the a priori knowledge on the ap-

proximate pose of the camera to back-project the reference marks to a metric

coordinate system, where the marks are isotropic. This adds to the stability

of the system and seems more fair than to estimate a separate perspective

distortion for each mark. The e�ect of a trend in the illumination has been

analyzed leading to an appropriate extension of the model. To guide the de-

sign of reference marks, the relation between size and detection certainty was

analyzed. It was shown that the certainty was proportional to the edge length

for radial symmetric binary marks.

Two new methods based on simultaneous use of all image information were

proposed for straight edge detection. The �rst method is based on smoothing

the Hough space obtained by a grey level Hough transformation of the raw im-

age. The involved theory gives valuable insight on the relationship between the

Hough and the Radon transforms and shows that two-dimensional anisotropic

image interpolation kernels can be applied as one-dimensional �lters in Hough

space. Bilinear and nearest neighbor interpolations were shown as examples.

The second method is based on normalized Gaussian convolution of the pro-

jected image. The two new methods were compared to conventional sequential

approaches where local edge detection and line �tting are performed in two

separate steps. The comparative study showed that Gaussian convolution with

subsequent linear regression with outlier detection was superior to the other

methods in the test in both speed and accuracy.

Three approaches to averaging rotations that have been proposed in the

literature have been compared theoretically. The two most popular methods

are to represent the rotations by matrices or quaternions and simply calculate

the barycentric mean. Both methods require some sort of subsequent correc-

tion to obtain proper rotations. The third method considers that rotations
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are represented on a non-linear manifold and minimizes a least squares cost

function based on geodesic distances. It is shown that the approaches are the-

oretically very similar, and that the subsequent corrections of the two linear

methods are justi�ed by the formulation of an approximated least squares cost

function.

A preliminary attempt to reconstruct a mock-up from the shipyard from

a sequence of images has been performed. The test showed that feature ex-

traction with no a priori knowledge is very diÆcult on a real industrial object.

Nevertheless, the tracking of points lead to a fair reconstruction of the motion.

The Euclidean reconstruction algorithm was shown to produce nice results on

manually tracked points.

Finally, three installations that have been implemented at the yard were

presented. In the two �rst applications, it was necessary to base the measure-

ment on several cameras mounted approximately 10m away from the object.

It was shown that those measurements were very sensitive to the varying light-

ing conditions and to the geometric stability of the installations. It was found

to be very diÆcult to ensure or maintain a satisfactory geometric description

of the reference marks and the plate tables. Nonetheless, the reproducibil-

ity studies showed that measurements could be performed within 1mm under

favourable conditions. In the third installation the camera was mounted on

the gantry 1{2m from the plate. At that distance, the plates were measured

with an accuracy better than 0:3mm. The check-in system is currently used

in the production on the laser cutting station.

The overall conclusion is that accurate measurements can actually be per-

formed on the raw steel plates without reectors or markers. But the measure-

ments are very sensitive to the illumination of the scene, to the general state

of the plates, and on the quality of the geometric model of the work area. Sub-

pixel accuracy measurements can therefore only be achieved in very controlled

set-ups. While this requires special precautions in large-scale installations, it

is more easily obtained when the camera is placed close to the object. It is

concluded that vision technology does have a potential in shipbuilding both

as a tool for measurement and as a robot sensor.
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From Hough Transform to Radon Transform
using Interpolation Kernels
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Odense Steel Shipyard Ltd. Lind�, Denmark
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E-mail: cgr@imm.dtu.dk

Accurate straight edge detection in images applies to dimension mea-

surement, camera calibration, Euclidean reconstruction etc. Among the

non-parametric robust approaches the Hough transform is probably the

most popular. However, the interpretation of the Hough space tends to

be qualitative more than quantitative. In this paper, a link is established

between image interpolation, the Hough transform, and the Radon trans-

form allowing for a quantitative interpretation of the projection space.

This generalizes the notion of inuence functions introduced in the con-

text of the Hough transform. To support the theory it is shown that

edge detection can be performed on the projected image. Furthermore,

it is shown that lens blur and additive pixel noise parameters may be

extracted in Hough space.

Key Words: Hough transform, Radon transform, high resolution, in-

uence function, interpolation, sinc, nearest neighbor, bilinear, edge de-

tection.

14.1 Introduction

It is often of great importance to be able to estimate features to a high sub-pixel

accuracy in images. This paper will concentrate on straight edge detection,

which is relevant for photogrammetric measurements, calibration of camera

parameters, Euclidean reconstruction from stereo images and so forth.

A usual non-parametric scheme for straight line detection is to apply an

edge detector proceeded by a threshold algorithm to extract the relevant edge

points. The edge points are then used to perform a robust estimation of the
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edge parameters. The Hough algorithm (Hough [33], Duda and Hart [15])

has been widely used due to its robustness. An alternative method is to

�t the parameters of an edge model de�ned by the edge location, the edge

strength, and the edge width. However, this usually requires that the image

is approximately uniform on the two sides of the edge to avoid a bias in the

estimation.

Unfortunately, the discrete nature of the Hough space makes the peak

detection very diÆcult and the problem becomes even worse when the res-

olution of the Hough space is increased as severe aliasing occurs. Several

researchers have addressed the problems of obtainable precision and inter-

pretability of the Hough transform. Accuracy has e.g. been analyzed by

Niblack and Petkovic [52] and Shapiro and Iannino [66], who also investigated

the peak spread by a geometrical construction. Peak bias due to side-lobes

and the background distribution has been addressed by Brown [5], Leavers

and Boyce [44], and Maitre [47]. The use of inuence functions to regularize

the Hough space was introduced by Thrift and Dunn [68]. Inuence functions

has been applied in a hypothesis testing framework by Palmer et al. [55, 56]

and Princen et al. [62]. In Kiryati and Bruckstein [38, 39, 40] the inuence

function was optimized with respect to the frequency properties of the Hough

space. A probabilistic Hough transform was also de�ned by Hunt et al. [34]

and Stephens [67], who was inspired by the work of Weiss [75]. Illingworth

and Kittler [35] produced a thorough survey of the Hough transform research

before 1988.

Deans [10] emphasized already in 1981 the strong relation between the

Hough transform and the Radon transform. Some theory on the Radon trans-

form is given in Rosenfeld and Kak [65] and an implementation is proposed in

Hinkle et al. [27]. Much research has been carried out on the Radon transform

due to its application to medical imaging, radioastronomy etc.

In this paper, the link between the Hough transform, the Radon transform,

and the use of inuence functions as mentioned above is studied. It is shown

that performing a Radon transform on an interpolated image is equivalent to

applying an inuence function to the Hough transform of the image. This

leads to the design of inuence functions that facilitate the interpretation of

the Hough space. In addition, it is shown that important statistical measures

on the edge can be estimated from the projection.

To best illustrate the implications of the theory, the Hough transform is
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applied to the raw image data in the sequel. Although, only a subregion of

the images is processed, this is naturally computationally expensive. However,

the theory is also applicable in the normal set-up, where the Hough transform

is based on the edge pixels of a pre-processed image.

An advantage of working on the raw image is that the edge detection is

performed globally without any intermediate thresholds. In conventional edge

detection all higher order information about the edge structure is disregarded

through the thresholding performed prior to the Hough transform. Actually,

the presented theory can be applied to analyze any straight structure in an

image.

14.2 Notation

To make the presentation easier to read the following notation is introduced.

Image intensity functions and �lters have lower case names, e.g. f(x; y). The

image coordinates are denoted (x; y) or sometimes (X;Y ) to emphasize dis-

crete coordinates. Subscript x and y are used to distinguish the two factors

of a separable function. The polar line parameters are (�; �) and the line nor-

mal is denoted n� = (cos �; sin �). The Hough transform is denoted by Hfg
or superscript h. It is considered a function of � and the dependency on � is

expressed by subscript �. Similarly, the Radon transform isRfg or superscript
r. Ffg is the Fourier transform and the resulting function is denoted by a cap-

ital letter F (u; v). It has rectangular coordinates (u; v) and polar coordinates

(!; �). Where the Gaussian function is used the scale parameter is denoted

by �. Dirac's Æ-function is widely used. It is zero everywhere except at zero

where it goes to in�nity. Across zero it integrates to one. When nothing else is

speci�ed, integrals have the limits ]�1;1[. The operator '�' denotes spatial
convolution. Superscripts 0 and 2 show that the image intensities are replaced

by the value one or has been squared, respectively.

14.3 Image Material

The present paper will focus on the problem of �nding accurate parameters

for straight edges with almost known location. This is a typical set-up in

industrial applications, where approximate line parameters can be obtained
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Figure 14.1: Images of an edge de�ned by 4 = 0:8x � 0:6y. The edge in the

left image has a width de�ned by �2 = 0:5 and no added noise. The right

image was produced with �2 = 2:0 and additive independent Gaussian white

noise with standard deviation 5:0.

from the ideal CAD model of the scene. Consequently, the problems sometimes

encountered with multiple close lines will not be addressed in this paper.

The derived algorithms will be demonstrated on two very simple images.

They both show an edge given by the equation 4 = 0:8x�0:6y. x is positive to

the right and y is positive down. The intensity variation over the edge follows

the accumulated Gaussian from 50 on the dark side to 200 on the light side. In

one image the edge has a width of �2 = 0:5 and in the other image the width

is �2 = 2:0. In the latter, independent Gaussian white noise with standard

deviation 5:0 has been added. The edge images are shown in �gure 14.1.

14.4 The Radon and Hough Transforms

In the following the very close relationship between the Radon and the Hough

transforms will be explained.

14.4.1 The Hough Transform

We assume the normal representation of a line in the Hough transform as

proposed by Duda and Hart [15]

� = x cos � + y sin � (14.1)

In the Hough transform every image point (x; y) votes for possible line param-

eter values (�; �) in parameter space through the relation (14.1). That is, the
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Hough space consists of the superposition of all the sinusoids formed by the

image points. Consequently, the cell associated with the line parameters (�; �)

holds a count of all image points along that line. If the digital image f(X;Y )

is de�ned on a discrete raster indexed by the integer coordinates (X;Y ) on the

domain f0; : : : ; DX � 1g � f0; : : : ; DY � 1g the Hough transform is de�ned by

fh� (�) = Hff(x; y)g (14.2)

=
DX�1X
X=0

DY �1X
Y=0

f(X;Y ) Æ(��X cos ��Y sin �) (14.3)

The Æ-function e�ectively restricts the summation to the pixels that satis-

�es (14.1). In practice, the Hough transform is represented by a two-dimen-

sional accumulator array indexed by � and �.

The continuous equivalent to (14.3) would be to integrate the image inten-

sity along a certain line. That is what the Radon transform does.

14.4.2 The Radon Transform

Formally, the Radon transform is given by

f r� (�) = Rff(x; y)g (14.4)

=
ZZ
f(x; y) Æ(��x cos ��y sin �) dx dy (14.5)

The transform is de�ned as an integral over the entire two-dimensional domain,

but the Æ-function picks out the integral along the line satisfying (14.1). The

two-dimensional Fourier transform of the image function

F (u; v) = Fff(x; y)g (14.6)

=
ZZ
f(x; y) e�j2�(ux+vy) dx dy (14.7)

is closely related to the the one-dimensional Fourier transform of the Radon

transform

F r
� (!) = Fff r� (�)g (14.8)

=
Z
f r� (�) e

�j2�!� d� (14.9)

If we denote the polar representation of F (u; v) by F (!; �), introducing u =

! cos � and v = ! sin �, the Fourier slice theorem, a.k.a. the projection slice

theorem, states that

F (!; �) = F r
� (!) (14.10)
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The theorem follows from straightforward calculation. The Fourier slice the-

orem will be be applied extensively in the following. But �rst the relation to

the Hough transform is established.

14.4.3 From Hough Transform to Radon Transform

We take the Radon transform of the discrete image function f(X;Y ) and show

that we arrive at the Hough transform. To do so we need a representation of

the image on the continuous domain de�ned by x and y. This is obtained by

the use of Æ-functions

f(x; y) =
DX�1X
X=0

DY �1X
Y=0

f(X;Y ) Æ(x�X) Æ(y�Y ) (14.11)

We can now take the Radon transform of the image by inserting this expression

in (14.5). The Radon transform evaluates to

Rff(x; y)g

=
ZZ DX�1X

X=0

DY �1X
Y=0

f(X;Y ) Æ(x�X) Æ(y�Y ) Æ(��x cos ��y sin �) dx dy (14.12)

=
DX�1X
X=0

DY �1X
Y=0

f(X;Y )
ZZ
Æ(x�X) Æ(y�Y ) Æ(��x cos ��y sin �) dx dy (14.13)

=
DX�1X
X=0

DY �1X
Y=0

f(X;Y )Æ(��X cos ��Y sin �) (14.14)

= Hff(X;Y )g (14.15)

In fact, the two transforms are identical in the generalized representation.

In consequence, the results derived for the Radon transform may be readily

applied to the Hough transform as well. This is used in the following section.

For later reference the Hough transform of the left image in �gure 14.1 is

shown to the left in �gure 14.2. The Hough space does not resemble the usual

Hough spaces, as the transform is based on the raw image and not on the edge

pixels of a processed image. Vertically �� 2 [�5; 5] is discretized in 201 cells

and horizontally �� 2 [�7:5; 7:5] is discretized in 301 cells around the true

line parameters. The resulting resolution for � is 0:05 pixel=cell. The image

points contributing to the transformation are extracted from a twenty pixel

wide rectangular band from (x; y) = (20; 20) to (x; y) = (80; 100) giving an

integration across a length of about 100 pixels. Note, the strong aliasing in the
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Figure 14.2: Hough transform and normalization image for the left image in

�gure 14.1. Vertically � 2 [�5; 5] is discretized in 201 cells and horizontally

� 2 [�7:5; 7:5] is discretized in 301 cells around the true line parameters. The

resulting resolution for � is 0:05 pixel=cell. Note, the strong aliasing caused

by the image raster.

parameter space caused by the image raster. In fact, columns corresponding

to lines with rational slopes are easily identi�ed. In the center of the Hough

space the true edge with the slope 4=3 is seen and further to the right the

line given by 3=2 gives rise to even worse aliasing. This clearly shows that

the Hough transform without careful peak detection will favour lines with a

rational slope. If all pixels in the image are assigned the value 1 prior to the

transformation, we obtain the right image in the �gure. As explained later

this image is used for normalization.

14.5 Linearity of the Radon transform

It follows directly from the Fourier slice theorem that the Radon transform is

linear. Since the linearity will be used to derive the algorithms in the rest of

the paper, the proof is given here. Assume h(x; y) = f(x; y) � g(x; y). The

Radon transform of h(x; y) is then given by

hr�(�) = F�1fHr
� (!)g (14.16)

= F�1fH(!; �)g (14.17)

= F�1fF (!; �) G(!; �)g (14.18)
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= F�1fF r
� (!) G

r
�(!)g (14.19)

= f r� (�) � gr�(�); (14.20)

where F�1fg in all equations refer to the one-dimensional inverse Fourier trans-

form with respect to !. A consequence of the linearity is that any convolution

performed in image space may just as well be applied in Radon space by

convolving with the Radon transform of the two-dimensional kernel. Remem-

bering that the Hough transform is merely the Radon transform of a discrete

function, it is now clear that the Radon transform of a two-dimensional convo-

lution kernel can be identi�ed with the inuence functions introduced by Thrift

and Dunn [68] and later addressed by Kiryati and Bruckstein [38, 39, 40],

Palmer et al. [56, 55], and Princen et al. [62].

In relation to edge detection, or rather edge analysis, it should be noted

that once we have a non-aliased high resolution projected representation of the

edge, we can apply any of the non-parametric or parametric one-dimensional

edge detection theories that have been suggested in the literature, see e.g.

Canny [6], Petrou and Kittler [59], Deriche [12], or �Astr�om [2].

14.6 Separable Convolution Kernels

The linearity of the Radon transform can be used to �nd the transform of an

interpolated discrete image, since interpolation is simply obtained by convo-

lution. One may expect that the Radon transformation of the bilinear, the

bicubic or the sinc interpolation kernels gives rise to complicated integrals.

This is actually not so, as the Radon transform becomes particularly simple

for separable functions. A separable function h(x; y) can be written as

h(x; y) = hx(x) hy(y) (14.21)

= (hx(x) Æ(y)) � (Æ(x) hy(y)); (14.22)

such that the linearity of the Radon transform can be applied. The Radon

transform of each of the two terms in (14.22) has already been given by

Deans [10]. For the �rst term the result is

Rfhx(x) Æ(y)g =
ZZ
hx(x) Æ(y) Æ(��x cos ��y sin �) dx dy (14.23)

=
Z
hx(x) Æ(��x cos �) dx (14.24)
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=
1

j cos �j
Z
hx(x) Æ(

�

cos �
�x) dx (14.25)

=
1

j cos �jhx(
�

cos �
) (14.26)

It is obvious from the above integrals that when cos � becomes zero the Radon

transform will only be non-zero for � = 0 and the value will be the area

under hx(x). For interpolation kernels this area will usually be 1. Similar

to (14.26), the scale change of the second term in (14.22) is related to the

angle of projection

RfÆ(x) hy(y)g = 1

j sin �jhy(
�

sin �
) (14.27)

As a result the Radon transform of the image signal f(x; y) interpolated by

the separable kernel becomes

Rff(x; y) � h(x; y)g = fh� (�) �
1

j cos �jhx(
�

cos �
) � 1

j sin �jhy(
�

sin �
) (14.28)

Note, that the convolutions are performed directly on the usual Hough trans-

form. Also note, that the kernel only changes scale, such that the scheme

immediately applies to any separable kernel. Furthermore, most of the convo-

lution kernels investigated in the following are easily optimized.

14.6.1 Sinc Interpolation

For theoretical reasons it is interesting to investigate the sinc interpolation

kernel. The discrete image is a sampled version of the continuous image

that passes through the camera lens. Assuming that the imaging system has

smoothed the continuous signal so that there are no frequency components

above the Nyquist frequency associated with the image raster, no loss of infor-

mation will occur in the sampling process. That is, it is possible to reconstruct

the continuous signal from the sampled signal by ideal low-pass �ltering. The

ideal low-pass �lter is given by the sinc function. The sinc interpolation kernel

is

sinc (x; y) = sinc (x) sinc (y) (14.29)

=
sin�x

�x
� sin�y

�y
(14.30)
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It is seen that the two-dimensional kernel is separable. The �lter in Hough

space, that corresponds to this interpolation is obtained directly from (14.28)

sinc r�(�) =
1

j cos �jsinc (
�

cos �
) � 1

j sin �jsinc (
�

sin �
) (14.31)

=
1

w
sinc

�

w
; (14.32)

where w = maxfj cos �j; j sin �jg. The wider kernel completely cancels the

narrower kernel due to the ideal nature of the sinc function. Consequently,

the e�ect in Hough space of a two-dimensional sinc interpolation of the image

can be obtained by a single convolution in the �-direction of the Hough space.

Note, that the width of the sinc kernel varies with the angle �. Actually,

the Hough space is ideally low-pass �ltered at the e�ective frequency of the

image raster, namely the frequency of the raster seen under the angle �. The

result also shows that even though we need a high resolution Hough space

when drawing the sinusoids to reduce the e�ect of rounding errors, we can

immediately after the sinc reconstruction re-sample the Hough space at the

e�ective frequency. This could be of interest if the representation was to be

stored.

The Radon transform of the edge images in �gure 14.1 interpolated by the

sinc function, implemented as a convolution in Hough space, are shown in the

top row of �gure 14.5. The �gure to the left corresponds to the image without

noise whereas the �gure to the right corresponds to the noisy image. The

Radon space value is displayed as a height in the three-dimensional �gures.

The data has been normalized using the right image in �gure 14.2 as described

in a later section. As expected, the edge is steepest when integrated along the

true direction of the edge corresponding to �idx = 101. The edge pro�les cor-

responding to this �-value are displayed in the top row of �gure 14.6. These

plots show some rippling caused by the truncation of the very wide sinc func-

tion. For the same reason, there is a bias on the estimate of the intensity on

the two sides of the edge.

14.6.2 Nearest Neighbor Interpolation

For practical purposes the sinc function is often found to be too badly localized,

i.e. we prefer �lters that are not too wide in the spatial domain to reduce

the computational cost of the convolution. The most simple interpolation
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Figure 14.3: The Radon transform is obtained by the integral over l of the

uniform function.

scheme is the nearest neighbor interpolation where the image value at non-

integer positions are simply obtained from the closest integer position. This is

equivalent to convolving the image with the uniform kernel

uni (x; y) =

8<
: 1 ; (x; y) 2 [�1

2
; 1
2
]� [�1

2
; 1
2
]

0 ; else
(14.33)

Deans [10] has already derived the Radon transformation of this kernel, how-

ever shifted to the �rst quadrant. The Radon transform of the uniform kernel

can be obtained both by use of (14.28) and by geometric interpretation. The

latter is included here to verify the analytic result. The set-up is shown in

�gure 14.3 for � 2 [��=4;�=4]. It follows directly from the drawing that as

the value of � increases uni r�(�) will increase linearly from zero, then remain

at a constant value, ending with a linear decrease back to zero. The size of

the respective regions and the magnitude of the integral follows from simple

trigonometry. The function is drawn in �gure 14.4, where the dimensions are

also given. The �gure suggests that the function may be separated into two

uniform kernels of width j cos �j and j sin �j. Since the separation is symmetric

in j cos �j and j sin �j the derived integral is valid for general values of �. That
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1=j cos �j

1=j sin �j

1=j cos �j

� � �

= �

j sin �j
j cos �j � j sin �j

j sin �j j sin �j j cos �j

Figure 14.4: The integral over l as a function of � and the separation into two

uniform kernels.

is, the geometric result is in agreement with the analytic result

uni r�(�) =
1

j cos �juni (
�

cos �
) � 1

j sin �juni (
�

sin �
) (14.34)

Note, that convolution by the uniform kernel is exceptionally fast as it has

equal weights for all entries. The problem of non-integer widths of the �l-

ters is solved by assigning fractional weights on the boundary elements of the

convolution kernel.

The middle row of �gure 14.5 shows the Radon transform of the edge

images interpolated with nearest neighbor interpolation. The comments in

section 14.6.1 applies here as well. The interpolation looks smooth because

the edge runs through the images at an angle. Had the edge been oriented in

one of the raster directions, the normal blocky nature of the nearest neighbor

interpolation would have been revealed. The pro�les corresponding to the true

angle are shown in the top row of �gure 14.6. Note, the �ne estimation of the

intensity levels in the two intervals where the function is constant.

14.6.3 Bilinear Interpolation

Nearest neighbor interpolation is very crude and the uniform kernel has very

poor characteristics in the frequency domain. Instead, it is often chosen to

interpolate discrete images by bilinear or bicubic interpolation kernels. Still,

it is only a matter of applying (14.28). The result is given for the bilinear

interpolation below, as the linearity makes this case special. The bilinear

interpolation kernel is given by

bil (x; y) =

8<
: 1�jxj�jyj�jxyj ; (x; y) 2 [�1; 1]�[�1; 1]

0 ; else;
(14.35)
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i.e. the kernel is linear in the raster directions. The bilinear interpolation

kernel is the convolution of two uniform kernels

bil (x; y) = uni (x; y) � uni (x; y) (14.36)

=
ZZ

uni (x�x0; y�y0) uni (x0; y0)dx0dy0 (14.37)

=
Z 1

2

� 1

2

Z 1

2

� 1

2

uni (x�x0; y�y0) dx0 dy0 (14.38)

= (1� jxj) (1� jyj) (14.39)

(14.40)

These remarks lead to

bil r�(�) = uni r�(�) � uni r�(�); (14.41)

where each of the two terms on the right is implemented as two convolutions

in Hough space, such that the bilinear interpolation can be obtained by four

convolutions. Remember, as noted earlier, that these convolutions may be

implemented using fast algorithms.

The bottom row of �gure 14.5 shows the Radon transform of the edge im-

ages interpolated with bilinear interpolation. Bilinear interpolation seems like

a reasonable choice when the edge detection is postponed to a later processing

step. If, however, we were to estimate the position of the maximum of a ridge

from the projection we would need a non-linear interpolation scheme. Other-

wise maxima of ridges in the raster direction are always detected on the raster.

The pro�les of the bilinear projection are shown in the top row of �gure 14.6.

Note again, the un-biased estimate of the intensities.

14.6.4 Gaussian Regularization

It is worthwhile also to analyze the Radon transform of the Gaussian as it

is often reasonable to assume a spatial Gaussian distribution for the features

in the image. The two-dimensional Gaussian with di�erent widths in the two

axis directions can also be separated and applied in Hough space

g(x; �2x; y; �
2
y) = g(x; �2x) g(y; �

2
y); (14.42)

where �x and �y are the widths of the respective Gaussians. Application

of (14.28) gives

gr�(�) =
1

j cos �jg(
�

cos �
; �2x) �

1

j sin �jg(
�

sin �
; �2y) (14.43)
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Figure 14.5: Radon transform of the interpolated edge images. The left col-

umn corresponds to the image without noise and the right column corresponds

to the noisy image. The rows are sinc, nearest neighbor, and bilinear interpo-

lation, respectively.
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= g(�; �2x cos
2 �) � g(�; �2y sin2 �) (14.44)

= g(�; �2x cos
2 � + �2y sin

2 �); (14.45)

which, naturally, reduces to g(�; �2) for � = �x = �y. That is, the one-

dimensional Gaussian inuence function is just the Radon transform of the

two-dimensional Gaussian inuence. When the covariance structure of the

Gaussian is not diagonal the theory is still applicable. Let us denote the

principal variances �2min and �
2
max and the angle with the x-axis of the direction

of the largest variance  . We get

gr�(�) = g(�; �2max cos
2(�+ )) � g(�; �2min sin

2(�+ )) (14.46)

= g(�; �2max cos
2(�+ ) + �2min sin

2(�+ )) (14.47)

It has now been shown that the Radon transform of the image interpolated

by a separable kernel is easily derived from the traditional Hough transform

applied to the raw image. To perform edge analysis on this Radon transform

we need to know how to implement image di�erentiation. This is the subject

of the next section.

14.7 Di�erentiation

In a situation of edge detection we would like to take the image derivative

orthogonal to the direction of projection. First, we write the two-dimensional

Fourier transform of the derived image

Ff d

dn�
f(x; y)g = Ffn� � rf(x; y)g (14.48)

= n� � (j2�u; j2�v)F (u; v) (14.49)

= j2�(! cos2 � + ! sin2 �)F (!; �) (14.50)

= j2�!F (!; �) (14.51)

= j2�!F r
� (!) (14.52)

From the Fourier slice theorem we can now obtain the Radon transform of the

derived image by the one-dimensional inverse Fourier transform

Rf d

dn�
f(x; y)g = F�1fj2�!F r

� (!)g (14.53)

=
d

d�
f r� (�) (14.54)
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Eq. (14.54) shows that taking the �-derivative in Radon space is exactly equiv-

alent to projecting the two-dimensional gradients. In consequence, we can

calculate the one-dimensional Radon space derivative, at the cost of one con-

volution, instead of calculating the two-dimensional image derivative, at the

cost of two convolutions. Note, that edges that are aligned with the direction

of projection give a high contribution whereas orthogonal edges give no con-

tribution. In this sense the result is closely related to the methods that has

been presented in the literature, where the estimated edge directions are used

as weights when drawing the sinusoids in the Hough space.

Note, that if we search for the projection with the maximum derivative,

and time is an important parameter, we can design a search strategy where

we only interpolate and di�erentiate a few �-columns in the Radon space.

In the bottom row of �gure 14.6 the Radon spaces for the di�erent interpo-

lation strategies are shown. Only the pro�les corresponding to the true edge

direction are displayed. Note, that the sinc reconstruction gives the strongest

derivative on the true edge location. These derivatives was obtained by �nite

di�erence and are therefore sensitive to noise.

14.8 Edge Pro�le Parameters

In the present framework, the projection of the image is based on an assump-

tion that the image structure is basically one-dimensional. Once the projected

image is calculated the direction � of the one-dimensional structure being pro-

jected, e.g. an edge, can be determined. This could, for example, be carried

out by searching for the maximal gradient or by correlation with an expected

pro�le. The outcome of this process is the mean pro�le of the edge as a func-

tion of �. Now, all sorts of analysis may be performed on this pro�le. Firstly,

the mean pro�le can be compared to an expected pro�le to reveal errors in the

image. Secondly, the intensity variation across e.g. an edge, will give an idea

of the precision to be expected from an edge detection. Thirdly, the blurring

of the optical system may be estimated from the width of the derivative of the

edge. The two latter variables appear in the expression by �Astr�om [2] putting

a lower bound on the edge detection variance. This is just a few suggestions

to the information that can be extracted from the projection.

The mean and variance of the derivative of the edges shown in �gure 14.6
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Figure 14.6: The top row shows the pro�les of the Radon space that corre-

sponds to the true edge angle, i.e. the mean edge appearance. The rippling of

the sinc curve is due to truncation of the sinc �lter. The bottom row shows the

derivatives of these pro�les. Note, that sinc has the steepest edge reconstruc-

tion. The theoretical derivative of the edge is added for reference. Theoretical

(+), Sinc (solid), Uniform (dashed), and Bilinear (dotted).
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edge without noise edge with noise

(�2 = 0:5; std:dev: = 0) (�2 = 2:0; std:dev: = 5)

mean variance mean variance

sinc -3.3e-4 0.46 4.0e-2 1.87

uniform 0.0e0 0.59 -1.7e-2 1.96

bilinear 0.0e0 0.67 -2.1e-2 2.09

Table 14.1: Estimated Mean and Variance of the Edge obtained from the

Derivative of the Radon Transform.

have been estimated and the results are given in table 14.1. The mean is given

relative to the known location of the edge. The bias on the sinc estimates is

assumed to originate from the truncation of the sinc �lter. The nearest neigh-

bor and the bilinear interpolation methods seem to give un-biased estimates.

Hence, the edge location in the noisy image is determined with an accuracy of

2% of a pixel. The variance estimates are also close to the theoretical values

of �2 = 0:5 and �2 = 2:0.

14.9 Radon Transform of other Image Moments

14.9.1 Normalization

It has long been known that the Hough space should be normalized to account

for the shape of the retina. In the Radon transform framework it is of interest

to determine a central estimate of the mean intensity along the direction of

projection, i.e. the Radon integral should be divided by the length of the

integration interval. When using interpolation kernels the e�ective length of

the interval is dependent on the shape of the kernel. It then follows that

the relevant normalization coeÆcients are obtained by calculating the Radon

transform of the interpolated unit image

f 0
r

�(�) = Hff0(x; y)g � Rfh(x; y)g; (14.55)

where f 0
r
�(�) are the normalization coeÆcients, f0(x; y) is the unit image and

h(x; y) is the interpolation kernel.

The variation of the normalization coeÆcient as a function of � for the true

value of � is shown in �gure 14.7. The left plot corresponds to nearest neighbor
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Figure 14.7: The normalization coeÆcients as a function of � for the angle

corresponding to the true edge direction. The left plot shows the coeÆcients

for nearest neighbor interpolation and the right plot shows the coeÆcients for

bilinear interpolation.

interpolation whereas the right plot corresponds to bilinear interpolation. The

former is an integral over a blocky binary domain and is piece-wise linear and

the latter is an integral over a blocky parabolic surface and is piece-wise cubic.

Obviously, they are di�erent.

14.9.2 Variance

In line with the above, we can also determine other moments in the projection.

The image variation along the direction of projection may be estimated from

the projection of the second moment of the image

f 2
r

�(�) = Hff2(x; y)g � Rfh(x; y)g; (14.56)

where f 2
r
�(�) is the second moment of the projection, f2(x; y) is the squared

image and h(x; y) is the interpolation kernel. Again, the result is dependent

on the smoothing properties of the interpolation kernel. Additive noise in the

image is associated with the individual pixels and to estimate the variance of

this noise we should therefore use nearest neighbor interpolation. The estimate

becomes

V�(�) = f2
r

�(�)� f r�
2(�); (14.57)

where proper normalization according to (14.55) is assumed for both terms on

the right. The result of this transform is shown in �gure 14.8. The left column

is obtained from the noiseless image and the right column corresponds to the

noisy image. It is clear that the steeper edge gives rise to a higher variance on
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Figure 14.8: The estimated variance along the projection. The left column cor-

responds to the edge image without noise and the right column to the noisy

edge image. The bottom plots show the variation across the edge correspond-

ing to the true edge direction.

integrals across the edge. The bottom plots show the variation across the edge

corresponding to the true edge direction. Ideally, this plot should be constant

across the edge, but due to the discretization there is a variance increase on the

edge. Note, however, that the estimated variance on the two sides of the edge

are in agreement with the added noise of �2 = 0:0 and �2 = 25:0, respectively.

The above result is mainly of theoretical interest owing to the time com-

plexity. However, one might use the second moment to determine the value

of � being the direction of least variation. This could be the case when the

only available information is that the image is basically one-dimensional. A

possible scheme could be to take the average variation over all values of �.

This has been done in �gure 14.9. It is seen that the mean variation has a

well-de�ned minimum corresponding to the true direction of the edge.
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Figure 14.9: Average variation over all values of �. The variation shows a clear

minimum corresponding to the true direction of the edge.

Figure 14.10: Image of a steel plate positioned in a plasma cutting birth.

14.10 Real Image Example

This section gives an example of the described theory applied to edge detection

in a real image. Figure 14.10 shows an edge of a steel plate positioned in a

plasma cutting birth. The edge is corrupted by a reecting lamp. This will

not cause a problem as we employ the normalization scheme and may omit

saturated pixels from the Hough transformation without introducing a bias.

The processing chain is shown in �gure 14.11. In the shown plots � 2 [�12; 12]
and � 2 [�5; 5] have both been discretized to 401 levels. The �rst column shows

the general Hough transform of the image and the Hough transform of the unit

image. In the second column these images have been interpolated using the

bilinear interpolation scheme as explained in the previous sections, giving the

Radon transform of the interpolated image. Note, the inuence from the shape

of the retina. The upper right image shows the normalized Radon transform.
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Figure 14.11: For the �rst two columns the upper row is the transformation

on the image data and the lower row is the transformation of the unit image.

The �rst column shows the usual Hough transform of the pixels in the vicinity

of the edge. The second column shows interpolation by the bilinear kernel.

Note, the strong inuence from the shape of the retina. The top right plot is

the normalized Radon transform and the bottom right plot is the �-derivative

of the normalized Radon transform.

This is obtained by division of the two images in the middle column. The lower

right image is the derivative with respect to � of the upper right image, using

a Canny-Deriche �lter with � = 1:0. The edge parameters are determined by

the maximum in this image. The normalized Radon transform and the related

derivative are also displayed as surface plots in �gure 14.12. It is seen that

the maximum is very well-de�ned. In the lower plots the edge pro�le is shown

for the value of � with the highest gradient. The pro�les reveal that the edge

is approximately Gaussian, although part of this shape is inherited from the

Canny-Deriche �lter.

14.11 Conclusion

The close relationship between the Hough transform and the Radon transform

has been investigated. It was shown that the Radon transform of interpolated

discrete images can easily be obtained by convolutions in Hough space. In
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Figure 14.12: The normalized Radon transform and the derivative with respect

to �. The top images show the entire Radon space, while the bottom row only

shows the pro�le corresponding to the highest gradient. It is seen that the

maximum is well-de�ned, and that the average edge pro�le is approximately

Gaussian.
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particular, the adequate kernels for sinc, nearest neighbor, and bilinear inter-

polation were derived. Similarly, the Gaussian inuence function was derived

from the corresponding two-dimensional kernel. It was also shown how the

image derivative can be derived in Radon space, such that edge detection can

be performed on the projected image. Finally, it was suggested how to ex-

tract qualitative information from the interpolated Radon space such as edge

strength and lens blur.

The presented theory can be useful in any analysis of straight one-dimen-

sional structures in images. To illustrate the information available in the

Hough space, a simple example of edge detection was given.
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DK-5100 Odense C., Denmark

Department of Mathematical Modelling,

Technical University of Denmark, Building 321

DK-2800 Lyngby, Denmark

In this article two common approaches to averaging rotations are

compared to a more advanced approach based on a Riemannian

metric. Very often the barycenter of the quaternions or matrices

that represent the rotations are used as an estimate of the mean.

These methods neglect that rotations belong to a non-linear man-

ifold and re-normalization or orthogonalization must be applied to

obtain proper rotations. These latter steps have been viewed as

ad hoc corrections for the errors introduced by assuming a vector

space. The article shows that the two approximative methods can

be derived from natural approximations to the Riemannian met-

ric, and that the subsequent corrections are inherent in the least

squares estimation. Keywords: averaging rotations, Riemannian

metric, matrix, quaternion.

15.1 Introduction

When we measure the pose of an object with di�erent devices or di�erent

approaches we would like to integrate these measurements into a single mean

pose. This could be the case in a robot vision system, where we measure

the orientation of an object with multiple cameras, or it could occur in the

registration of medical images, where several poses are computed from images

of di�erent modalities [58]. Figure 15.2 shows a typical ship block where

robot manufacturing requires a high quality pose estimation with respect to a

�xed frame. This can be obtained by the fusion of information from multiple
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cameras and/or sensors. In this article we only consider taking the mean of a

set of three-dimensional rotations, and do not treat problems where there is a

translational component.

The problem with calculating the mean of a set of rotations lies in the fact

that rotations do not belong to a vector space, but lie on a non-linear manifold.

If we choose to represent the rotation by a quaternion _q = (q;q) the proper

rotations are constrained to the three-dimensional unit sphere j _qj = 1 of a four-

dimensional vector space. Another representation is obtained using a 3 � 3

matrix R constrained to be orthogonal, RT = R�1, i.e. a three-dimensional

manifold in a nine-dimensional space. Despite the non-linearity of rotations it

has become customary to calculate the average by the barycenter in the larger

vector spaces. If we let underscore denote the mean, we have R = 1
n

P
iRi

or _q = 1
n

P
i _qi. There is, however, no guarantee that these means lie on the

non-linear manifolds of allowable rotations. To ensure this, the rotation matrix

must be orthogonalized, �nding the closest orthogonal matrix to the calculated

mean, or the mean quaternion must be re-normalized to lie on the unit sphere.

Recently, Pennec et al. [57, 58] have addressed the problem of taking the

mean of geometric features in a very general framework. Their approach is to

consider the geodesic distance between points on the non-linear manifold in-

stead of the vector distance. The geodesic distance is the length of the shortest

curve lying on the manifold and connecting the two points. Their thorough

work applies to all geometric features on non-linear manifolds and also con-

siders Mahalanobis distances in place of the simple least squares with scalar

weights. They use the particularly simple example of rotations to demonstrate

their theory. Without questioning the importance of the theory described

above this article will try to answer the following question: how close does the

barycentric means of rotations approximate the mean based on the Riemannian

metric.

The question if other linearizations are superior to the two barycentric

means is not addressed. The comparison is based on the equally weighted

average, but applies just as well to the weighted case.
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15.2 Notation

In the above section, di�erent notations were introduced. Scalars are written in

lower case, vectors are lower case bold, matrices are bold capitals, quaternions

are lower case bold with dots with the scalar part q �rst and the vectorial part

q last, and mean values are expressed with an underscore. The abbreviation

ort. denotes the orthogonality constraintR�1 = RT on a matrix. The distance

between two features is denoted d(�; �), and �(�) is the angle of rotation induced
by the quaternion or matrix argument. The cross product and dot product

operators of vectors are '�' and '�', respectively. The determinant of a matrix

is denoted det() and diag(: : :) is a diagonal matrix with the arguments on the

diagonal.

15.3 The Invariant Metric

We have already argued that the vectorial distance k _q1� _q2k2 or kR1�R2k2
between two rotations ignores the curvature of the respective manifolds. We

need a distance measure d(R1;R2) that expresses the distance along a curve on

the manifold. Rotations belong to a multiplicative group, i.e. rotations act on

rotations by multiplication and form new rotations. It is therefore natural to

require that the metric is invariant to rotations d(R1;R2) = d(I;R�1
1 R2), such

that the distance only depends on a single rotational argument. Invariance to

orientation leads to the metric d(R1;R2) = �(R�1
1 R2), which is the metric

used by Pennec [57].

In the following sections we will investigate how this metric is related to

the barycentric mean approaches.

15.4 Quaternion-Based Mean

Rotations can be expressed using unit quaternions. A quaternion is a four-

dimensional vector, that has a scalar part and a three dimensional vector part.

We can also view it as a sort of complex number with a real part and three

imaginary parts. A rotation through an angle � around the unit vector n is

represented by the quaternion _q = (cos �=2;n sin �=2). It is easily veri�ed that

_q and � _q give rise to the same rotation. Having a set of rotations, we may
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choose consistent representatives by requiring that the dot product with the

�rst quaternion is positive. For all reasonable sets of rotations this approach

will work. It will occasionally fail if the quaternions scatter all over the unit

sphere, but in that case the mean does not make much sense anyway. The

inverse of a rotation _q�1 is obtained by the conjugate quaternion _q� = (q;�q).
The composition of rotations represented by quaternions is achieved by the

quaternion product de�ned by

_q1 _q2 = (q1 � q2 � q1 � q2; q1q2 + q2q1 + q1 � q2) (15.1)

We see immediately that _q _q� = 1, verifying that multiplication with the con-

jugate rotation yields the identity. According to the metric derived above the

distance between two rotations is

d( _q1; _q2) = �( _q�1
1 _q2) (15.2)

= �( _q�
1 _q2) (15.3)

= �(( _q1 � _q2; q1q2 � q2q1 � q1 � q2)) (15.4)

= 2 arccos( _q1 � _q2); (15.5)

where it was used in the last equality that the real part of a quaternion is

the cosine of half the angle of rotation. It is not surprising that the distance

along a geodesic takes this form. We know from classical geometry that the

geodesics on a sphere are formed by the great circles and the distance between

two points on the unit sphere is therefore the angle between the corresponding

vectors. Neglecting the di�erence in scale, this is exactly what is derived in

equation 15.5.

As expected the di�erence between two rotations is a non-linear function

of the vectorial representations. To arrive at a closed form approximation to

the mean, we need to linearize this expression. Consider the Taylor expansion

of cosine

cos
�

2
= 1� 1

8
�2 + o(�4): (15.6)

Rearranging this expression gives

�2( _q�
1 _q2) = 8(1� cos

�( _q�
1 _q2)

2
) + o(�4) (15.7)

� 8(1� _q1 � _q2) (15.8)
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Now, the mean rotation is the rotation _q that minimizes the quadratic cost

function

�2 =
X
i

�2( _q� _qi) (15.9)

We have not considered weights wi in this expression, but they are straight-

forwardly included. Using the approximation above, the mean rotation is

determined as

_q = arg min
j _qj=1

X
i

�2( _q� _qi) (15.10)

� argmin
j _qj=1

X
i

8(1� _q � _qi) (15.11)

= argmax
j _qj=1

X
i

_q � _qi (15.12)

= argmax
j _qj=1

_q �X
i

_qi (15.13)

=
X
i

_qi=j
X
i

_qij (15.14)

i.e. the optimal quaternion is exactly the barycentric mean with re-normali-

zation. It is interesting to note, that in this formulation the re-normalization

is part of the true optimization of an approximated cost function and not an

ad hoc repair of an approximated optimization.

15.5 Matrix-Based Mean

Let us now look to another representation of rotations, namely the rotation

matrix. This is a 3 � 3 orthogonal matrix with the rotated basis vectors as

columns. Naturally, the composition of two rotations is obtained by usual ma-

trix multiplication and the inverse rotation is consequently the matrix inverse.

The eigenvalues of an orthogonal matrix are (1; ei�; e�i�), where the eigenvec-

tor corresponding to the unit eigenvalue represent the rotation axis. The trace

of a square matrix is the sum of the eigenvalues, such that

tr(R) = 1 + ei� + e�i� (15.15)

= 1 + 2 cos � (15.16)

Using this relation to evaluate the distance between two rotations represented

by matrices we get

d(R1;R2) = �(R�1
1 R2) (15.17)
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= arccos(
tr(R�1

1 R2)� 1

2
) (15.18)

This time we use the usual Taylor expansion of cosine

cos � = 1� 1

2
�2 + o(�4) (15.19)

which gives the expression

�2(R�1
1 R2) = 2(1� cos �(R�1

1 R2)) + o(�4) (15.20)

� 2(1� tr(R�1
1 R2)� 1

2
) (15.21)

= 3� tr(R�1
1 R2) (15.22)

As in the case of quaternions, the mean rotation is de�ned by

R = arg min
R ort:

X
i

�2(R�1Ri) (15.23)

� arg min
R ort:

X
i

3� tr(R�1Ri) (15.24)

= arg max
R ort:

X
i

tr(R�1Ri) (15.25)

= arg max
R ort:

tr(R�1
X
i

Ri): (15.26)

The latter optimization problem is actually the core of the 3D-3D pose prob-

lem, which has been solved among others by Horn [32], Arun et al. [1], and

Umeyama [73]. The solution can be seen as the rotation that best rotates the

identity matrix into the matrix consisting of the sum of rotations. In this light

the solution is obviously minimizing the sum of squared distances of the indi-

vidual elements of the matrix, and is what we understand of a best orthogonal

approximation to the sum of rotations. Since the solution is scale invariant,

we can also regard it as an orthogonalization of the barycentric mean. Just

as for quaternions the orthogonalization is a natural part of the optimization,

and is thus more than an ad hoc subsequent correction.

The solution to the above problem is most easily obtained by Singular

Value Decomposition (SVD),
P

iRi = UDV, where the singular values are

ordered in descending order. Introducing the matrix

S = diag(1; 1; det(U)det(V)) (15.27)

the mean rotation in the above problem is simply given by

R = USV (15.28)
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Again, individual weights wi on the rotation matrices were omitted, but they

are easy to add.

Both approximations to the Riemannian metric are based on a linearization

of the non-linear manifold around the identity rotation. Consequently, the

contact point of the linear sub-space is e�ectively chosen as the estimated

mean. This is immediately veri�ed by noticing that any rotation applied to

our set of rotations before estimating the mean will, due to linearity, cause a

similar rotation of the mean. Thus, the linear approximations have the same

invariancy to rotations as the non-linear metric does.

15.6 Comparison

As derived, both averaging quaternions and rotation matrices can be seen as

approximations to the true least squares problem. They are based on the

same order of approximation, namely the second1 order Taylor expansion of

cosine. Comparing the two representations we see, however, that they cannot

give rise to the same optimum. The rotation matrix that may be derived

from a quaternion contains the elements of the quaternion quadratically. This

di�erence is also reected in the quality of the approximation. The quaternion

solution is based on an approximation of cos �=2, whereas the rotation matrix

solution is based on an approximation of cos �. For the sake of comparison we

preserve the scale in the o() notation

quaternion : �2 � 8� 8 cos
�

2
+ o(

1

48
�4) (15.29)

matrix : �2 � 2� 2 cos � + o(
1

12
�4) (15.30)

For small values of �, we see that the error caused by the latter approximation

is four times larger than for the former approximation. It should be noted,

though, that for any reasonable variation in the rotations either one of the

approximations is very good. Figure 15.1 shows the errors related to the

two di�erent approximations. When using the quaternion-based method the

relative error committed is less than 1% for angles smaller than 40 deg: For the

matrix-based method the 1% limit is violated for angles greater than 20 deg:

1
actually the third order as cosine has no odd terms
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Figure 15.1: Evaluation of the cosine approximation. Top: the true squared

angle and the two approximations. Middle: the absolute error of the approxi-

mations. Bottom: the relative error of the approximations. For the quaternion

and matrix approximations the angle corresponding to 1% relative error is ap-

proximately (40 deg:) and (20 deg:), respectively.
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15.7 Test

A series of tests has been carried out to verify the similarity of the three

approaches to taking the mean of rotations: Riemannian metric-based, qua-

ternion-based, and matrix-based. Synthetic samples of rotations have been

constructed to compare the di�erent approaches. The rotation space is sam-

pled by sampling the direction and the angle independently. The angle is

sampled from a Gaussian distribution. The direction is sampled uniformly

over all directions. In all experiments the rotations are sampled with the iden-

tity as mean. The comments at the end of section 15.5 justi�es that the tests

are invariant to this choice. In the �rst series of experiments we take the

mean of only 10 rotations to investigate the robustness for a small number

of samples. The experiment is repeated 50 times for each of three di�erent

choices of the standard deviation of the angle of rotation: 2 deg:, 10 deg:, and

40 deg: The quality of the estimation of the mean is measured by the angle of

rotation required to bring the mean into the identity. The results are seen in

�gure 15.3. For the small value of the standard deviation there are no di�er-

ence to be seen in the estimation. The plots lie on top of each other. As the

standard deviation is increased the di�erence becomes visible. In the exper-

iments the quaternion-based and matrix-based approximations actually seem

to be superior to the method based on the Riemannian metric. This could be

an e�ect of the more robust weighting function caused by the approximation,

see �gure 15.1, but the di�erence is too insigni�cant to make �nal conclusions.

In another series of experiments the sample size has been increased to 100

to test if the true Riemannian metric is superior for large sample sizes. The

result is displayed in �gure 15.4. The three methods seem equally good in this

experiment as well.

For all tests the theoretical standard deviation of the mean was calculated

as �x = �x=
p
n, where n is the number of samples. This value is plotted as

a vertical line in �gure 15.3 and 15.4. As expected around 70% of the mean

values lie within one standard deviation.

In one of the Riemannian metric experiments with a standard deviation

of 40 deg: in the sample of rotations, the MATLAB-routine fmins failed to

converge in 800 iterations. The starting point of the optimization was in

all cases the output from the linear quaternion method. When the identity

rotation was used as starting point the test showed 34 cases of divergence. Of
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Figure 15.2: Top: CAD generated image of a ship block. Bottom: di�erence

between the top image and the image of the ship block rotated 0.6 degrees

horizontally around its center.

course, there is no convergence issue in the closed form solutions.

To give an idea of the quantities discussed above the e�ect of rotation

on a ship block is displayed in �gure 15.2. The �gure shows a ship block

with an almost quadratic base plate. This block has been rotated horizontally

around its center through an angle of 0.6 degrees. This is by far greater than

any angular deviation between the three methods observed when the standard

deviation of the individual rotations is less than 10 degrees. The image of the

rotated ship block has been subtracted from the image of the original block

and the di�erence is displayed in the bottom of the �gure. Note, that we in

general expect a standard deviation on the individual pose estimates much less

than 10 degrees.

15.8 Conclusion

In this article the problem of averaging rotations have been investigated. The

customary approaches based on the barycenter of either the quaternion rep-

resentations or the matrix representations have been compared to the 'exact'

least squares method based on the Riemannian metric. Theoretical and em-

pirical analysis have shown that both linear approaches give very good ap-

proximations to the non-linear average.
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Figure 15.3: The absolute angular deviation from the identity of the average

of 10 rotations for three di�erent values of the standard deviation of the angle

of rotation: 2 deg:, 10 deg:, and 40 deg. In each case the experiment has been

repeated 50 times.
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Figure 15.4: The absolute angular deviation from the identity of the average

of 100 rotations for three di�erent values of the standard deviation of the angle

of rotation: 2 deg:, 10 deg:, and 40 deg. In each case the experiment has been

repeated 50 times.
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16.1 Introduction

The work described in this report was performed within the Vigor project

during a visit to INRIA, Rhône-Alpes. The time in Grenoble was mainly

used for experimenting with three-dimensional reconstruction of a ship block

mock-up supplied by Odense Steel Shipyard. The visit also served to align the

industrial and academic needs of the partners.

The �rst three sections of this report will cover the underlying theory for

the method applied for the three-dimensional reconstruction of the OSS mock-

up. The description closely follows that of Christy and Horaud [7]. The

idea of iteratively re�ning an estimate obtained with the weak perspective

camera towards a solution for the full perspective camera was �rst described

in Dementhon et al. [11, 54] and was later improved using the para-perspective

camera model by Horaud et al. [28, 30]. The factorization of motion and

structure for the various camera models was proposed by Tomasi, Kanade,

and Poelman [69, 60].

16.2 Camera Models

A camera model describes the relation between the coordinates of a point in

the observed world and the corresponding coordinates in the projected image.

A widely used perspective camera model takes the form

0
BB@
sui

svi

s

1
CCA =

0
BB@
�u 0 u0

0 �v v0

0 0 1

1
CCA
0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

1
CCA

0
BBBBB@

iT tx

jT ty

kT tz

0T 1

1
CCCCCA

0
BBBBB@

Xi

Yi

Zi

1

1
CCCCCA ; (16.1)

where i is a point index. This model assumes a CCD chip with no skew

and takes no account of any possible lens distortions. The latter is normally

modelled independently. The left side of the equation is the homogeneous

coordinates of the image point. The matrices on the right hand side are from

left to right the internal camera calibration parameters, the central projection

matrix, the rigid displacement between the camera coordinate system and the

world coordinate system, and �nally the points homogeneous world coordinates

(Pi; 1) = (Xi; Yi; Zi; 1). We assume that the origin of the object coordinate

system is P0 = (0; 0; 0). If we have calibrated the camera we can eliminate the
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e�ect of the internal camera parameters by applying the equations

ui = �uxi + u0 (16.2)

vi = �vyi + v0 (16.3)

If we proceed with the metric image coordinates (xi; yi), we can write the

camera model more compact as

xi =
i �Pi + tx

k �Pi + tz
(16.4)

yi =
j �Pi + ty

k �Pi + tz
(16.5)

Dividing both numerator and denominator by tz and introducing the new

variables I = i=tz, J = j=tz, and �i = k �Pi=tz we obtain

xi =
I �Pi + x0

1 + �i
(16.6)

yi =
J �Pi + y0

1 + �i
(16.7)

Note, that x0 = tx=tz and y0 = ty=tz, where (x0; y0) are the image coordinates

of the point P0. The variable �i is denoted the perspective e�ect.

It is immediately noticed that if the perspective e�ect is zero the relation

between the world coordinate and the image coordinate is just an aÆne func-

tion. We can obtain an aÆne approximation to the camera both by setting

1=(1 + �i) equal to 1, leading to the weak perspective camera model, and by

setting 1=(1+�i) to 1��i, leading to the para-perspective camera model. Only

the former will be presented here.

16.3 AÆne Reconstruction

The reconstruction problem consists of determining the geometry of the viewed

three-dimensional world and the di�erent positions of the camera simultane-

ously from the image coordinates of the points. It is naturally only possible to

determine these sizes in an arbitrary coordinate system, e.g. the coordinate

system of the �rst camera. It is assumed that the points in the di�erent images

have been matched, such that we know if two points in two di�erent images

actually correspond to the same physical three-dimensional point. Using the
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weak perspective camera model above, the problem may be solved in a very

nice and compact manner. With this approximation equations 16.6 and 16.7

become

xi = I �Pi + x0 (16.8)

yi = J �Pi + y0 (16.9)

We may also move the origin of the image coordinate system to the point

(x0; y0)
1 to obtain

si =

0
@ xi � x0

yi � y0

1
A =

0
@ IT

JT

1
A Pi (16.10)

The above equation describes the relation between the world object and the

image coordinates for a single camera. If the same world is imaged from

di�erent view points we get a series of these equations

sij =

0
@ xij � x0j

yij � y0j

1
A =

0
@ ITj

JTj

1
A Pi = Aj Pi; (16.11)

where subscript j is the image index and Aj is the aÆne projection matrix

built from Ij and Jj. If we observe n points from k di�erent views we can set

up the matrix equation

S =

0
BBB@
s11 � � � sn1
...

. . .
...

s1k � � � snk

1
CCCA =

0
BBB@
A1

...

Ak

1
CCCA
�
P1 � � � Pn

�
= AP (16.12)

This equation shows that the three-dimensional object being viewed and the

motion of the camera may be separated into two independent matrices. The

matrix P contains the coordinates of the world points and the matrix A con-

tains the projection matrices associated with the di�erent poses of the camera.

That is, the structure and motion problem amounts to the factorization of the

measurement matrix S, containing the measured image points.

It will now be described how we can obtain one such factorization. The

key observation is that the right hand side of 16.12 is of rank three owing

to the dimensions of A and P. The rank of S may be more than three due

1
The reference point does not need to be a point of our data set, but can be the barycenter

of the available points. In the aÆne set-up, the barycenter of the three-dimensional points

projects to the barycenter of the image points.
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to measurement noise, but the best rank three approximation to S can be

obtained from the Singular Value Decomposition (SVD)

S = UDVT (16.13)

or

skl =
X
m

ukmdmvlm (16.14)

If we limit the summation in the latter equation to the three largest singular

values d1, d2, and d3
2, we obtain an optimal rank three factorization of S and

we have the following estimates for the structure and motion

P̂ =

0
BB@
d1 0 0

0 d2 0

0 0 d3

1
CCA

1

2 �
v1 v2 v3

�T
(16.15)

and

Â =
�
u1 u2 u3

�
0
BB@
d1 0 0

0 d2 0

0 0 d3

1
CCA

1

2

; (16.16)

where ui and vi denote columns of the matrices U and V.

The factorization above is however not the only one. Consider the matrices

A0 = AT and P0 = T�1P, which are also possible factors of S

A0P0 = ATT�1P = S (16.17)

There are however some constraints on our motion matrix A that allows the

estimation of the best possible T

jIj = jJj and I � J = 0 (16.18)

The constraints arise from the fact that the camera performs a rigid motion,

i.e. pure rotation and translation. Once we have estimated the matrix T that

makes the motion rigid we also achieve that our reconstruction is Euclidean,

and not just aÆne. In fact, T may only be determined up to an unknown sign,

but this ambiguity can be resolved in a later processing step. The determina-

tion of T will not be described here.

2
assuming that the singular values are ordered in decreasing order.
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We can now estimate the Euclidean motion by

ij = Ij=kIjk (16.19)

jj = Jj=kJjk (16.20)

kj = ij � jj (16.21)

tzj =
1

2
(1=kIjk+ 1=kJjk) (16.22)

txj = x0jtzj (16.23)

tyj = y0jtzj (16.24)

Even with the estimation of T we cannot be sure that the vectors i and j are

orthogonal. We should therefore orthogonalize the rotation matrix (i; j;k).

Christy et al. propose to solve the problem using a 3D-3D pose algorithm.

However, the solution may be calculated directly in the particularly simple

case where k is orthogonal to i and j. The orthogonalized matrix (i0; j0;k0) is

k0 = k (16.25)

j0 = i+ j+ k� (i+ j)=ki+ j+ k� (i+ j)k (16.26)

i0 = j0 � k0 (16.27)

16.4 Perspective Reconstruction

The above section have shown how the structure and motion problem may be

solved using a simpli�ed camera model, namely the weak perspective camera.

The result is obtained by using linear algorithms and the approach can there-

fore be used without any initial estimates of the motion or the structure. The

result can be improved by non-linear optimization using the complete camera

model. Christy and Horaud [7] have proposed a method that takes advantage

of the simple relation between the weak perspective camera model and the

true perspective camera model.

The algorithm proceeds by iteratively performing aÆne reconstructions.

At each step the perspective e�ect is estimated and subtracted from the data,

such that the aÆne model becomes more and more valid. Given an Euclidean

motion the perspective e�ect is estimated as

�ij = kj �Pi=tzj (16.28)
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From equations 16.6 and 16.7 we have the relation between the observed per-

spective point coordinates (xij; yij) and the weak perspective point coordinates

(xwij; y
w
ij)

xwij = xij(1 + �ij) (16.29)

ywij = yij(1 + �ij) (16.30)

The left hand side of the above equations is then used as input for the factor-

ization algorithm in the next step.

It was mentioned earlier that the matrix T can only be determined up to

a possible reection of the reconstruction. This problem is resolved as the

algorithm converges as the perspective e�ect will remove the ambiguity.

16.5 Results

16.5.1 The OSS Mock-Up

At OSS a small model of a ship block has been built to test vision algorithms.

The mock-up is not part of an actual ship, but contains many of the features

encountered on a ship block. At OSS it is interesting to be able to measure

such a ship block as well as to move a robot to one of its weld lines. Assuming

that the mock-up is placed arbitrarily in the camera's �eld of view, a �rst step

towards one of these tasks is to estimate the location of the mock-up. We do

this by relating CAD features to features observed in the images, i.e. we need

to reconstruct the observed object.

The reconstruction is based on the described theory. We need to observe

the same physical features from various view points to apply the algorithm.

The easiest and most robust way to obtain this is by tracking the features

through a sequence of images. Since the inter-image distance is small, the

appearance of the feature will only change slightly from image to image, and

the feature may be tracked by e.g. image correlation. Figure 16.1 shows �ve

images of a sequence acquired of the mock-up. The sequence has in total eighty

images. Unfortunately, the mock-up is very dark and has very little contrast

compared to the surrounding world. To enhance the features of the mock-up,

the grey levels of the images have been stretched, giving more contrast to the

darker regions. At �rst glance, the images reveal some obvious pitfalls. The

�rst is the shadows that introduce false edges, and consequently false features,
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Figure 16.1: Images 1, 20, 40, 60, and 80 of the image sequence of the mock-up.

on the mock-up. The second is all the structure in the surroundings, that

does not belong to the mock-up. These false features does not pose a problem

for the reconstruction as they represent �xed points in the three-dimensional

world, but they will make automatic matching with the CAD model very

diÆcult. The third problem is the many lines that appear to intersect in the

two-dimensional projection, but are actually skew lines in three-dimensional

space. These points do not correspond to a �xed three-dimensional points as

the camera moves and will corrupt the reconstruction algorithm.

16.5.2 Corner Detection

The �rst task in the tracking algorithm is to detect some points in the �rst

image, that are likely to be corners on the mock-up. An algorithm called the

Harris corner detector [21] is applied to do this. This algorithm computes the

local auto-correlation of the image and selects points where the curvature is

large in both image directions. These points are likely to be corners and are

well localized. The result of such a detection is shown in �gure 16.2. It is

seen that the algorithm has detected many of the true corners of the mock-

up. As expected, it has unfortunately also detected some false features as

described above. It is possible to detect more points by lowering the tolerance

of the Harris corner detector, but the small gain in true features is vastly

overshadowed by the number of additional false features.

16.5.3 Tracking

The points that have been detected in the �rst image are now tracked through

the sequence. The trajectory of part of the tracking is displayed in �gure 16.3.

The tracking is performed by local correlation. Unfortunately, some points are

impossible to track from one image to another. This may be due to occlusion
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Figure 16.2: Points extracted by the Harris corner detector.
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or to a change of appearance as the camera moves. It is therefore necessary to

perform an occasional re-detection of features, when important CAD corners

have been lost. This means that the tracking algorithm is only semi-automatic.

Since the tracking is slow and an operator needs to survey the process, the

presented approach is not suited for practical purposes. Furthermore, the

Figure 16.3: Trajectories of tracked points.

points that are re-detected are not identi�ed with the lost points, and the

reconstruction will contain multiple candidates for the corresponding three-

dimensional corners. The problem is shown in �gure 16.4. The points that have

been tracked, and where some have been re-detected, have been entered into

the reconstruction algorithm. The reconstructed three-dimensional structure

has been re-projected into the images. Note, how the upper corners in the

foreground are represented by multiple points. Whereas it may be possible to

fuse some of the spurious points in the foreground, it is obviously not so easy

in the complex region in the left part of the image.
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Figure 16.4: Re-projection of reconstructed points. Notice how points that

have been lost and re-extracted appear multiple times.

16.5.4 Reconstruction and Matching

The tracked points are used as input to the reconstruction algorithm. This

algorithm will give a three-dimensional interpretation of the points seen in

the image sequence. The back-projection of the reconstruction was shown in

�gure 16.4, but the quality is easier to evaluate when a CAD model is matched

to the reconstructed points. The matching is performed by manually specifying

corresponding points and subsequently calculating the three-dimensional rigid

motion between the reconstruction and the CAD model. Once the CAD model

has been matched to the reconstructed structure, it can be projected into the

images by the reconstructed motion. The result is shown in �gure 16.5. The

result shows that a lot of information about the three-dimensional space has

been recovered by the reconstruction. However, the quality of the result is far

from suitable for robot manipulation or for measurement. It should be noticed,

though, that the general motion of the camera has been recovered rather well,

even in this noisy set-up.

The drawback of the approach lies in the unreliable point tracking. To

demonstrate the capability of the pure reconstruction, a series of 17 points were

tracked by hand in the �ve images shown in �gure 16.1. In the same manner

as before a reconstruction was performed, the CAD model was matched, and

the model was projected into the images. The result is shown in �gure 16.6.

Clearly, the position of the CAD corners and the motion of the camera has
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Figure 16.5: The CAD model has been matched to the reconstructed three-

dimensional points and is projected into the images. Points have been tracked

automatically.
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been recovered with high accuracy. If a reconstruction of this quality could be

obtained automatically it would be straightforward to proceed with sub-pixel

localization of features, and calculate accurate positions and dimensions on

the observed mock-up.

16.6 Conclusion

This report has described the basic theory behind the solution of the structure

and motion problem. The algorithm has been tested on a mock-up from OSS.

The tracking of points seems not to be a feasible way to obtain points to enter

the reconstruction algorithm. Too many points are lost during tracking and

the ratio of CAD related points to non-CAD related points seems to be too

small to implement automatic matching reliably. Since the majority of points

are tracked correctly from image to image, the reconstructed motion is in good

agreement with the actual motion.

One way to solve the sketched problems could be to track lines instead of

points. Lines can be detected more accurately, are easier to track, and will

most often be true features of the observed object. With this reduced set of

more reliable features, it should be possible to match the reconstruction and

the CAD model automatically.
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Figure 16.6: The CAD model has been matched to the reconstructed three-

dimensional points and is projected into the images. Points have been tracked

manually.
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Point-Matching in the Plane

In the course of the project the need to relate two-dimensional measured po-

sitions to a CAD model has occurred in di�erent forms. Mostly, the model is

known up to a rigid motion, described by a rotation and a translation. In other

situations, only the general shape of the model is known, e.g. a rectangle with

unknown dimensions. In either case, we need to estimate an aÆne mapping

from the CAD model to the measured data satisfying a set of constraints.

Formally, we can assume a set of point pairs, (xi;yi); i = 1; : : : ; N , where

xi are points in the CAD model and yi are measured points. We want to

estimate an aÆne map that minimizes the least squares distance between the

two set of points. The aÆne model takes the form

yi = Axi + t+ �i; i = 1; : : : ; N; (A.1)

where (A; t) are the aÆne parameters and �i is the residual related to mea-

surement number i. In the least squares optimization we minimize the sum of

squared norms of the residuals. The cost function becomes

F =
1

N

X
i

j�ij2 (A.2)

=
1

N

X
i

�Ti �i (A.3)

=
1

N

X
i

(yi �Axi � t)T (yi �Axi � t) (A.4)
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A.1 Translation

The translation vector t can easily be determined by taking the partial deriva-

tive of the cost function, and setting equal to zero

@F
@t

= � 1

N

X
i

2(yi �Axi � t) (A.5)

= �2(�y�A�x� t) (A.6)

= 0; (A.7)

where the bar denotes averages over N. Solving for t yields

t = �y �A�x (A.8)

which shows that the translation merely matches the center of mass of the

two data sets. If the data are centered, so that �x = �y = 0, we see that t

becomes independent of A owing to the linearity. This holds no matter what

constraints we put on A. We can therefore just as well consider the model

yi � �y = A(xi � �x) + �i; i = 1; : : : ; N (A.9)

In the sequel we assume the data to be centered. The model for the un-centered

data A.1 is then obtained subsequently by the use of equation A.8.

A.2 Rotation

Most often we have an exact CAD model of the measured part. We only need

to determine the position and rotation relative to our measurements. This

corresponds to the case where the aÆne matrix is a proper rotation A = R.

The cost function becomes

FR =
1

N

X
i

(yi �Rxi)
T (yi �Rxi) (A.10)

=
1

N

X
i

yTi yi � 2yTi Rxi + xTi xi; (A.11)

where the orthogonality of R was applied in the last term. To bring the

unknown matrix R into vector form we introduce the equivalence

Rx =

2
4 cos � � sin �

sin � cos �

3
5
2
4 x1

x2

3
5 (A.12)
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=

2
4 x1 �x2
x2 x1

3
5
2
4 cos �

sin �

3
5 (A.13)

= Xr; jrj = 1 (A.14)

This way we indirectly force the rotation to be proper, i.e. det(R) = 1. The

unity constraint on r is introduced by the Lagrange multiplier �, and the total

cost function becomes

F 0
R = xTx+ yTy � 2yTXr+ �(rTr� 1) (A.15)

Taking the partial derivative with respect to r and setting equal to zero yields

@F 0
R

@r
= �2yTX+ 2�r (A.16)

= 0 (A.17)

This gives a closed-form solution for r

r =
1

�
yTX; (A.18)

where the unity constraint naturally gives

� = jyTXj (A.19)

By direct insertion, this gives the least squares error in optimum

F 0
R = xTx+ yTy � 2jyTXj (A.20)

A.3 Rotation with Independent Scales

In a certain application we were faced with the problem of estimating the best

rectangle that approximate four measured corners, in order to construct an

arti�cial CAD model. This problem may be identi�ed with the problem of

optimizing the map between a unit square and the four corners, where the

map allows for rotation, translation, and independent scaling of the width and

length of the square. The considered aÆne model becomes

yi = RDxi + �i; i = 1; : : : ; N (A.21)
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where the data are still assumed to be centered. The diagonal matrix D

contains the two independent scales of the model. We write the cost function

as

FR;D =
1

N

X
i

(yi �RDxi)
T (yi �RDxi) (A.22)

=
1

N

X
i

yTi yi � 2yi
TRDxi + xTi D

TDxi; (A.23)

where the orthogonality of R was applied in the last term. To bring the un-

known matrices R and D into vector form we introduce the following equiva-

lences

RTy =

2
4 cos � sin �

� sin � cos �

3
5
2
4 y1

y2

3
5 (A.24)

=

2
4 y1 y2

y2 �y1

3
5
2
4 cos �

sin �

3
5 (A.25)

= Yr; jrj = 1 (A.26)

and

Dx =

2
4 d1 0

0 d2

3
5
2
4 x1

x2

3
5 (A.27)

=

2
4 x1 0

0 x2

3
5
2
4 d1

d2

3
5 (A.28)

= Xd (A.29)

The unity constraint on r is introduced by the Lagrange multiplier �, and the

total cost function becomes

F 0
R;D = yTy � 2rTYTXd+ dTXTXd+ �(rTr� 1) (A.30)

Taking the partial derivative with respect to r and d and setting equal to zero

yields

@F 0
R;D

@r
= �2YTXd+ 2�r (A.31)

= 0 (A.32)

and

@F 0
R;D

@d
= �2XTYr+ 2XTXd (A.33)

= 0 (A.34)
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Solving the latter equation for d gives

d = XTX
�1
XTYr; (A.35)

which inserted in the former equation leads to

YTX XTX
�1
XTYr = �r (A.36)

That is, (�; r) is an eigensolution to the matrix YTX XTX
�1

XTY. This

result can be inserted in the cost function to �nd

F 0
R;D = yTy � � (A.37)

which means that r is the eigenvector corresponding to the greatest eigenvalue.

The scale vector d can now be determined from equation A.35.
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Appendix B

Analysis of Variance

Complex systems consist of a large number of components, each contributing

to the total uncertainty of the system. A vision system, for instance, contain

o�-line calibration, on site pose estimation, measurement, and statistical val-

idation against ground truth. The di�erent components have di�erent noise

processes and we need to analyze these to estimate the accuracy of the vision

output. If we assume a normal distribution for our errors, which is fair for

the given processes, it is easy to propagate uncertainty through the individual

parts of the system.

Another bene�t of the analysis is the detection of singularities in e.g. the

view-points chosen in the calibration of the camera or the lay-out of reference

marks in an application.

The appendix will describe how the propagation of uncertainty through

non-linear functions can be approximated, how to calculate conditional vari-

ance in the normal distribution, and the basic theory used for residual analysis

in image space.

B.1 Propagation of Uncertainty

This section is inspired by Conradsen [9] and Press et al. [61]. The implementa-

tion of the Levenberg-Marquardt algorithm is based on Press et al. [61]. When

we �t a model to some observed data, the uncertainty of the observations is

propagated to the model parameters. This is the case when we estimate the

parameters in a camera model from a set of world points and the correspond-

ing image points. It also occurs when a model is �tted to the image intensities
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of a reference mark. Typically, the model is non-linear in the parameters a.

If we assume that the model f(x; a) fully explains the deterministic part of

the relation between the observations y and the regression variables x, we can

write

y = f(x; �a) + �; (B.1)

where � is the observation noise. It is modelled as a normal distribution with

mean zero, � 2 N(0;�). Normally, the observations are assumed to be in-

dependent and identically distributed, so that � = �2I. The assumed un-

derlying 'true' value of the model parameters is denoted �a. If we observe p

two-dimensional image points, the dimension of y will be n = 2p. The values

of the parameters are unknown and must be estimated from the observations.

We minimize the least squares cost function

F(a) = �T��1� (B.2)

= (y � f(x; a))T��1(y � f(x; a)) (B.3)

We see that F(�a) 2 �2(n). The function is minimized by the Levenberg-

Marquardt algorithm. Close to the optimal parameter value this algorithm

uses Newton steps to arrive at the minimum. We therefore need the gradi-

ent vector and the Hessian matrix of the cost function. Taking the partial

derivative with respect to a yields

@F(a)
@a

= �2@f
T

@a
��1(y � f(x; a)) (B.4)

The second derivative can be approximated by

@2F(a)
@a@aT

� 2
@fT

@a
��1 @f

@a
; (B.5)

where the second derivative term of f has been omitted. This approximated

expression is used for several reasons. First of all, this expression is guaranteed

to be positive semi-de�nite. Secondly, the second derivatives of f are small for

a reasonable model, and these terms are weighted by the residuals, which are

also small. Note, that equation B.5 could also have been obtained by using

a �rst order expansion of equation B.1. We see that equation B.4 as well

as equation B.5 is based on the �rst derivative of f , which can be calculated

analytically.
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After a number of iterations in the Levenberg-Marquardt algorithm we

obtain a value of a very close to �a. The �nal estimate is given by the Newton

step

�̂a = a�
 
@2F(a)
@a@aT

!�1
@F(a)
@a

(B.6)

= a+

 
@fT

@a
��1 @f

@a

!�1
@fT

@a
��1(y � f(x; a)) (B.7)

To evaluate the statistics of this estimate, we apply the approximation

f(x; a) = f(x; �a) +
@f(x; a)

@a
(a� �a); (B.8)

which leads to

E(�̂a) = a+

 
@fT

@a
��1 @f

@a

!�1
@fT

@a
��1E(�� @f(x; a)

@a
(a� �a)) (B.9)

= �a (B.10)

�̂a is therefore a central estimate for �a. By straightforward calculations we

also obtain the dispersion of �̂a

D(�̂a) = D(

 
@fT

@a
��1 @f

@a

!�1
@fT

@a
��1�) (B.11)

=

 
@fT

@a
��1 @f

@a

!�1
@fT

@a
��1D(�)��1 @f

@a

 
@fT

@a
��1 @f

@a

!�1

(B.12)

=

 
@fT

@a
��1 @f

@a

!�1
@fT

@a
��1 @f

@a

 
@fT

@a
��1 @f

@a

!�1

(B.13)

=

 
@fT

@a
��1 @f

@a

!�1

(B.14)

Thus, the dispersion of �̂a is immediately available as the Hessian matrix of

the cost function. Note, that the expressions above are in agreement with

the corresponding expressions in the linear regression. As expected a large

gradient of f will decrease the uncertainty in the estimation of �a.

Assuming that we know the value of � we can perform a test of �t to

validate our model. Under the hypothesis that the model is valid, the cost

function follows a �2-distribution

F(�̂a) 2 �2(n�m); (B.15)
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where m is the dimension of a. However, � is usually unknown and we assume

that � = �2I, so that the the observations are independent and identically

distributed. In that case, we proceed with � = 1, so that F(�̂a) 2 �2�2(n�m),

and we can �nally estimate the value of � to be

� =
q
F(�̂a)=(n�m) (B.16)

B.2 Conditional Variance in the Normal Dis-

tribution

Very often, the parameter dispersion matrices are very large, making them

diÆcult to interpret. For instance, a calibration with v views and p internal

parameters gives rise to a parameter vector of dimension m = p + 6v. In

addition, some of these parameters are known to be extremely correlated, thus

making the overall uncertainty seem greater than it is. In fact, we are more

interested in knowing the dispersion of a subset of the parameters when we

assume all other parameters �xed. We do that by calculating the conditional

dispersion. If we consider a normally distributed variable

a =

2
4 a1

a2

3
5 2 N(

2
4 �a1

�a2

3
5 ;
2
4 �11 �12

�21 �22

3
5) (B.17)

we can �nd the distribution of a1 conditional on a2

a1ja2 2 N(�a1 +�12�
�1
22 (a2 � �a2);�11 ��12�

�1
22 �21) (B.18)

Note, that the conditional dispersion of a1 is reduced by the knowledge of

a2. The reduction is determined by the magnitude of the dispersion of a2

and the covariance between the two vectors. To ease the calculations, we take

advantage of the fact that we can condition on the parameters one by one. We

can write

a1ja2 � (: : : ((a1; a2(1); : : : ; a2(m�1))ja2(m))j : : :)ja2(1); (B.19)

where a2(�) denote the individual entries of a2. Doing this we avoid the matrix

inversion, as �22 in the conditioned distribution B.18 becomes scalar. The

proof is based on induction and follows from straightforward calculations.
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B.3 Two-dimensional Residual Analysis

There are several pitfalls in �tting models to observed data. First, one has

to �nd a reasonable model. Next, the dimension of the model must be deter-

mined. If the number of parameters is chosen too large we risk to incorporate

the stochastic noise in the deterministic model, and this noise will then a�ect

the predictions served by the model in the future. If the number of parameters

is too small, the model is not able to explain the deterministic behaviour of

the observed data. This section is concerned with the latter situation in the

case of camera calibration.

Now, how do we reveal an insuÆcient model? If the model fail to �t

the data, the calibration residuals will locally have the same sign or in the

two-dimensional case the same orientation. It is therefore appropriate to test

whether the residuals locally can be assumed to have a trend in some direction

or if they can be assumed to follow a distribution with mean zero. Such a test

is given by Hotelling's T 2-test [9]. We want to test the hypothesis that the

local mean of the residuals is zero, i.e.

H0 : �� = �0 against H1 : �� 6= �0; (B.20)

where �0 = 0. In order to calculate the test statistic we need the local statistics

of the residuals. Let

� =
1

n

nX
i=1

�i (B.21)

be the local mean of the residuals and let

S =
1

n� 1

nX
i=1

(�� �)(�� �)T (B.22)

be the local empirical dispersion of the residuals. The test statistic is then

T 2 = n(�� �0)
TS�1(�� �0) (B.23)

We now have
n� p

(n� 1)p
T 2 2 F (p; n� p) (B.24)

under H0, where p is the dimension of the residual. For the residuals in the

image plane, we naturally have p = 2. Consequently, the hypothesis can be

tested in the F -distribution and H0 is rejected for large values of the test

statistic.
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In the present application it is obviously not fair to require that H0 is not

rejected in all local tests on a signi�cance level of say � = 5%. We should either

choose a signi�cance level that reect the number of tests t, �t = 1� t
p
1� �,

or we should compare the observed rejection rate to the theoretical rejection

rate of � = 5%.

Another issue concerning the interpretation of the test result is the spatial

layout of the calibration marks in the images. Remember, that the calibration

is based on a number of images of the calibration plate acquired from di�erent

points of view. From these images the internal parameters of the camera are

determined along with the individual pose associated with each point of view.

Hence, each image has six degrees of freedom dedicated to minimize its own

residuals. If the extent of the calibration marks in the image is limited to a

small region, this set-up will induce local anti-correlation of the residuals. This

will of course reduce the rejection rate of the proposed test. The quality of

the test is therefore increased if the calibration marks exhibit a global nature

in all images.
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