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Preface

This thesis has been prepared at the Department of Mathematical Modelling (IMM), Technical

University of Denmark and 3D-Lab, School of Dentistry, University of Copenhagen. It is a partial

ful�llment of the requirements for the degree of Ph.D. in engineering.

The subject of the present thesis is surface-bounded growth simulation/modeling applied to human

mandibles. The use of shape features and morphometrics are combined in order to preserve the

characteristics of the mandible when modeled.

It is assumed that the reader is familiar with the �eld of medical image analysis.

Lyngby, July 31st, 1999

Per R�nsholt Andresen
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Summary

This thesis presents mathematical and computational techniques for three dimensional growth mod-

eling applied to human mandibles. The longitudinal shape changes make the mandible a complex

bone. The teeth erupt and the condylar processes change direction, from pointing predominantly

backward to pointing more upward. The full dataset consists of 31 mandibles from six patients.

Each patient is longitudinally CT scanned between three and seven times. Age range is 1 month

to 12 years old for the scans.

Growth modeling consists of three overall steps: 1) extraction of features. 2) registration of the

common features. 3) model the process that moves the matched points (growth modeling).

A local shape feature called crest line has shown itself to be structurally stable on mandibles.

Registration of crest lines (from di�erent mandibles) results in a sparse deformation �eld, which

must be interpolated to yield a spatially dense �eld. Di�erent methods for constructing the sparse

�eld are compared. Adaptive Gaussian smoothing is the preferred method since it is parameter free

and yields good results in practice.

A new method, geometry-constrained di�usion, is used to simplify the deformation �eld. It is shown

how the method signi�cantly improves the growth model.

The most successful growth model is linear and based on results from shape analysis and principal

component analysis. The growth model is tested in a cross validation study with good results.



x

The worst case mean modeling error in the cross validation study is 3.7 mm. It occurs when

modeling the shape and size of a 12 years old mandible based on the 3 month old scan. When

using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11

years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear.

Keywords: adaptive Gaussian smoothing, aperture-problem, automatic landmark detection, crest

lines, CT scans, extremal mesh, geometry-constrained di�usion, homologous points, linear

growth modeling, mandible, morphometrics, non-rigid shape-preserving registration, principal

component analysis, semi-landmarks, shape analysis, simplest deformation �eld
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Resum�e

Denne afhandling anvender matematiske og datamatiske teknikker til tre-dimensional v�kstmodel-

lering af underk�ber fra mennesker. Den tidsm�ssige form�ndring af k�ben, g�r den til en kom-

pleks knogle. T�nderne bryder frem og processus condylaris �ndrer retning fra at pege overvejende

bagud til at pege mere opad. Det fulde datas�t best�ar af 31 underk�ber fra seks patienter. Hver

patient er CT-skannet over tid mellem tre og syv gange. K�berne er mellem 1 m�aned og 12 �ar

gamle.

V�kstmodellering best�ar af 3 overordnede skridt: 1) bestemmelse af features; 2) registrering af

f�lles features 3) modellering af processen, der ytter de sammenh�rende features (v�kstmodeller-

ing).

En lokal form feature, som kaldes crest line, har vist sig at v�re strukturel stabil p�a k�berne.

Registrering af crest lines (fra forskellige k�ber) resulterer i et sparsomt deformationsfelt, som skal

interpoleres for at skabe et kompakt felt. Forskellige metoder til at konstruere et kompakt felt er

sammenlignet. Adaptiv gaussisk glatning er den foretrukne, da den er parameterfri og giver gode

resultater i praksis.

En ny metode, geometry-constrained di�usion, benyttes til at simpli�cere deformationsfeltet. Det

vises, at v�kstmodellen herved forbedres signi�kant.

Den mest succesfulde v�kstmodel er line�r og baseret p�a resultater fra formanalyse og principal
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komponent analyse. V�kstmodellen er blevet testet med gode resultater i et krydsvalideringsfors�g.

Worst case middel-modelleringsfejlen i krydsvalideringsfors�get er 3,7 mm. Fejlen optr�der, n�ar

formen og st�rrelsen af en 12 �arig underk�be modelleres, baseret p�a en skanning fra 3 m�aneders

alderen. Ved successivt at anvendte skanninger af nyere dato som basis for modellen, falder fejlen til

2,0 mm for 11-�ars skanningen. Det synes derfor rimeligt at antage, at underk�ben vokser line�rt.

N�gleord: Adaptiv Gaussisk glatning, apertur problem, automatisk landmark detektion, crest

linier, CT skanning, elastisk form-bevarende registrering, extremal mesh, form analyse, ge-

ometrisk begr�nset di�usion, homologe punkter, line�r v�kstmodellering, morfometri, prin-

cipale komponenter, semi-landmarks, simpelst deformationsfelt, underk�be



xiii

Contents

Preface v

Acknowledgments vii

Summary ix

Resum�e xi

List of Figures xvi

List of Tables xx

1 Introduction 1

1.1 Comments on the last four chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conclusion 9

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



xiv

3 The Extremal Mesh and Crest Lines 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Curvature and corner points in 2D images . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Di�erential characteristics of iso-surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Gaussian extremality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Extraction of the extremal mesh and crest lines . . . . . . . . . . . . . . . . . . . . . 23

3.7 Appendix: curvature of the curve (u; �(u)) . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Feature Displacement Interpolation 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Displacement interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Tikhonov regularization or thin-plate splines . . . . . . . . . . . . . . . . . . 34

4.2.2 Gaussian interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Adaptive Gaussian �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.4 Kriging or Gaussian regression . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Interpolation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



xv

5 4D Shape-Preserving Modelling of Bone Growth 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Local shape features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Flow interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Growth modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Growth analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Non-rigid Registration by Geometry-Constrained Di�usion 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Geometry-constrained di�usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.1 Di�usion step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.4 Choice of time step � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



xvi

6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Surface-bounded Growth Modeling Applied to Human Mandibles 83

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Data material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Registration: object correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Registration: point correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Statistical description: geometric morphometric analysis . . . . . . . . . . . . . . . . 99

7.7 Shape evaluation and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.7.1 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xvii

List of Figures

3.1 Di�erential characteristics of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The extremal mesh on a rounded cube . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Crest lines and k2-max lines on a Gaussian smoothed mandible . . . . . . . . . . . . 24

4.1 Adaptive �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Crest lines and their matchings on two cubes . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Kriging, � = 1, � = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Kriging, � = 1, � = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Kriging, � = 2, � = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Kriging, � = 2, � = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Reconstruction of the smaller cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Crest line matches on the mandibular bone . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Interpolated growth of the mandible . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Flow chart of the algorithms involved in the growth analysis . . . . . . . . . . . . . . 48

5.2 Surface interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xviii

5.3 The crest lines on the three smoothed mandibles . . . . . . . . . . . . . . . . . . . . 50

5.4 Result of deformations on the 7 years old mandible using a second order polynomial

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Left: mandibular tracing. Middle: curve for yearly rate of condylar growth. Right:

mandibular growth tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Final matches between two sets of crest lines . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Plots show the frequency and accumulated distribution of the distance errors . . . . 57

5.8 Mandible colored with the local velocity vector . . . . . . . . . . . . . . . . . . . . . 58

6.1 Images show schematically how the di�usion algorithm works . . . . . . . . . . . . . 66

6.2 Flow diagram for the di�usion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Iso-surface and crest lines on mandibles . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Result of running the di�usion algorithm on the displacement �eld . . . . . . . . . . 77

6.5 Converged di�usion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Wrong projection back onto the surface . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Match between the two sets of crest lines . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Deformed crest lines before and after applying the di�usion algorithm . . . . . . . . 80

7.1 Crest lines on the three Gaussian smoothed mandibles . . . . . . . . . . . . . . . . . 91

7.2 Matches between two sets of crest lines . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Images show schematically how the di�usion algorithm works . . . . . . . . . . . . . 93

7.4 Flow diagram for the di�usion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 94



xix

7.5 Iso-surface and crest lines for a 3 and 56 month old mandibles, respectively . . . . . 94

7.6 Result of running the di�usion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 Converged di�usion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.8 Deformed crest lines before and after applying the di�usion algorithm . . . . . . . . 96

7.9 Wrong projection back onto the surface . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.10 Scatterplots of PC1-PC2 before and after the geometric-constrained di�usion is applied102

7.11 The distribution of the six PC1 for each patient . . . . . . . . . . . . . . . . . . . . . 103

7.12
p
age versus the principal component for the full model . . . . . . . . . . . . . . . . 107

7.13 Centroid size versus the principal component for the full model . . . . . . . . . . . . 108

7.14 Length of the mandible versus the principal component for the full model . . . . . . 109

7.15 Raw dataset of patient 3, scan #1 (1 month scanning) . . . . . . . . . . . . . . . . . 110

7.16 Modeled last scan (scan #5) based on the �rst scan (scan #1) for patient 1 . . . . . 111

7.17 Modeled last scan (scan #7) based on the �rst scan (scan #1) for patient 2 . . . . . 112

7.18 Modeled last scan (scan #5) based on the �rst scan (scan #1) for patient 3 . . . . . 113

7.19 Modeled last scan (scan #7) based on the �rst scan (scan #1) for patient 4 . . . . . 114

7.20 Modeled last scan (scan #4) based on the �rst scan (scan #1) for patient 5 . . . . . 115

7.21 Modeled last scan (scan #3) based on the �rst scan (scan #1) for patient 6 . . . . . 116

7.22 Histograms of the prediction errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.23 Modeled shape of the most recent scan of patient 4 (scan #7) using successively

more recent scans of the child . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



xx

7.24 Modeled shape of the most recent scan of patient 4 (scan #7) using successively

more recent scans of the child - di�erent viewpoint . . . . . . . . . . . . . . . . . . . 119

7.25 Histograms of the prediction errors for patient 4 . . . . . . . . . . . . . . . . . . . . 120



xxi

List of Tables

7.1 Data material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Principal component analysis of the landmark data . . . . . . . . . . . . . . . . . . . 101

7.3 Stability of the generated growth models in the cross validation study . . . . . . . . 105

7.4 Mean and standard deviation for the prediction errors . . . . . . . . . . . . . . . . . 106



xxii



1

Chapter 1

Introduction

This thesis describes results obtained through a three-year Ph.D. project starting August, 1996 and

published in four papers [ABC+99, AN99, ANK98, NA98]. The main purpose of the project was

to develop a computerized three dimensional (3D) growth model describing the craniofacial growth

of humans.

Especially, when performing pediatric craniofacial surgery a 3D growth model is useful. The model

would also be useful for basic understanding and teaching.

Earlier longitudinal growth studies on man have only been based on 2D images (cephalograms)

except for [Sub95] and [BNGK97] (See Section 7.2 on page 86 for a short review). Both studies

are based on patient 6 (cf. Table 7.1 on page 90). Even though two dimensional images can be

combined, 3D spatial interpretation is very hard to achieve.

Recently, there has been an explosive development in the area of medical imaging enabling us

to study the anatomy in vivo with very high precision using digital imaging modalities such as

Magnetic Resonance (MR) and Computed Tomography (CT).

Since, the beginning of the 1980's CT scannings of children with Apert syndrome have been per-
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formed at St. Louis Children's Hospital, USA (Dr. Je�rey L. Marsh) and in the late 1980's at The

University Hospital of Copenhagen, Denmark.

The six Apert patients used in the present thesis were scanned between three and seven times, age

range between 1 month and 12 years old (Table 7.1 on page 90). All scannings were performed

for diagnostic and treatment planning purposes. The full dataset was used in Chapters 6 & 7. A

single patient (patient 6 - Table 7.1 on page 90) was used in Chapters 4 & 5. The reason being

that the scannings from St. Louis Children's Hospital (patients 1-5 (Table 7.1 on page 90)) �rst

became available for this study in July, 1998.

The study has been limited to the mandible for three reasons: 1) the development of the mandible

is una�ected by the primary anomaly [KAC99]. Thus, it is assumed that the mandibular growth

in the six subjects in the present study closely resembles normal mandibular development. 2)

the longitudinal shape change makes the mandible a complex bone. The teeth erupt and the

condylar process changes direction, from predominantly pointing backward to pointing more upward

(Figure 5.6 on page 56). It is therefore a challenging bone to model. 3) non of the mandibles

underwent surgery in the observation period. A paper by Dean et al. [DHBS99] indicates that

the growth model presented in Chapter 7 should generalize to the rest of the craniofacial region,

thereby making the results of this project applicable to the rest of the craniofacial region.

Making a growth model consist of the three general steps:

1. extraction of features.

2. registration of the common features.

3. model the process that moves the matched points (growth modeling).

When making a \pure" registration (e.g. superimposing two volumes), the process in between the
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acquisitions is irrelevant. Only the starting and ending \points" are relevant. This is opposite

to growth modeling where the path between the \points" is the growth. Further, the \points"

also have to correspond across the cases i.e. be semi-landmarks (see page 86 for a de�nition of

landmarks and semi-landmarks). Thus, the two �rst steps above must provide the semi-landmarks

and the third makes the temporal interpolation/extraction of them.

Looking at the temporal change on the mandible, it is seen that the topology does not change a

lot. For automatic registration we search for features reecting the �xed topology of the mandible.

Crest lines seem to be a good choice. Crest lines are lines where the surface bend most (Chapter 3).

The use of crest lines have been very much inspired by Subsol et al. [STA95] (also published in an

international journal [STA98]).

Chapter 5 presents our �rst attempt to make a growth model following the three steps above. On

the mandible it is not enough to use the crest lines, therefore lines maximally in k2 (here called

k2-max lines) in the extremal mesh (Chapter 3) are included. Besides the inclusion of the k2-max

lines, the extraction and registration of the lines closely follow the ideas of [STA98].

Crest lines and k2-max lines only de�ne a sparse deformation �eld. A dense �eld is needed in

order to deform the surface of the mandible. The dense �eld is obtained by interpolating the

sparse �eld as described in Chapter 4. In that chapter di�erent methods are investigated, like

Gaussian interpolation with renormalization, thin-plate splines, kriging and adaptive Gaussian

smoothing. Even though adaptive Gaussian smoothing does not satisfy all the desired properties

for the interpolation schemes (Chapter 4), it is the preferred interpolation method. Mainly since it

yields very good results in practice and it is parameter free.

Having the dense deformation �eld that links points on the mandible together, a second order

polynomial is used to model the growth (Chapter 5). The coeÆcients of the polynomial depend
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on the placement of the mandibles in space. Therefore, the mandibles are initially registered with

respect to biological \�x points" like the nerve canal (Section 5.6). Choices of initial registration

will be discussed shortly. The deformation �eld contained folds, which are seen on Figure 6.4 on

page 77. The folds arise from an imperfect registration e.g. wrong pairings of lines,- especially the

k2-max lines. See Figure 3.3 on page 24 for k2-max lines on the mandible. Chapter 5 solves this by

deforming volumes instead of surfaces. Generating an iso-surface from a deformed volume always

result in a surface without folds due to the de�nition of the iso-surface. The only demand is that

links inside (outside) the source object also link to the inside (outside) of the target object, which

is satis�ed when using the adaptive Gaussian smoothing.

When having folds in the deformation �eld, we do not have semi-landmarks. It is assumed that ho-

mologous points do not \change" place i.e. the ordering of the anatomical structures are preserved.

It also seems reasonable to assume, that the deformation not tear apart the object: it should be

a homeomorphism (at least). Chapter 6 presents a new iterative algorithm, geometric-constrained

di�usion, that removes the folds. Table 7.2 on page 101 shows that the algorithm signi�cantly

improves the growth model.

Discussion with Dr. Fred L. Bookstein and the article by Dean et al. [DHBS99] (I received a draft

thanks to Dr. Fred L. Bookstein) inspired me to use the same methods as in [DHBS99] (see page 88

for a short review), which are presented in Chapter 7. Chapter 7 describes how shape analysis and

principal component analysis are used to make a linear growth model based on the full dataset,

which precisely model the longitudinal shape change of the mandible.

Shape analysis uses a metric that actually make up a Riemannian manifold, called the Kendall

Shape manifold with Procrustes distance1 as metric [Boo97].

1Procrustes distance between the shapes is the minimal sum of squares of the residual distances between land-

marks [Boo97].
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The use of Kendall Shape manifold as \registration" instead of the biological registration discussed

above is no more right or wrong,- but certainly improves the growth model. This is also topic for

discussion in the next chapter.

To summarize:

� Chapter 2 collects the results obtained throughout the project.

� Chapter 3 de�nes the extremal mesh and the subset called crest lines.

� Chapter 4 compares di�erent interpolation methods used to make a dense deformations �eld

from a sparse one.

� Chapter 5 presents our �rst attempt to make a growth model.

The next two chapters improve the registration and the growth model, respectively.

� Chapter 6 presents a new iterative algorithm, geometric-constrained di�usion, which simpli�es

a deformation �eld.

� Chapter 7 uses shape analysis and principal component analysis to make a linear growth

model that predicts the shape and size changes of the mandible with high precision.

1.1 Comments on the last four chapters

The Chapters 4-7 are published papers. They have only been changed from its originals for ty-

pographic layout. Spelling errors and other typos have been removed (as much as possible). The

bibliographies have been updated and the entries are changed to make cross referencing easier
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Chapter 4. The Paper [NA98] was accepted as a poster at the IEEE Signal Processing Society

1998 International Conference on Image Processing (ICIP'98) held in Chicago, Illinois, USA. The

review process is unknown.

Chapter 5. The article [ANK98] was accepted as a poster at the First International Conference on

Medical Image Computing and Computer-Assisted Intervention (MICCAI'98) held in Massachusetts

Institute of Technology, Cambridge MA, USA. There were four reviewers on the paper. 243 papers

were received, 48 was selected as oral presentations and 85 as posters.

Chapter 6. The article [AN99] is accepted for oral presentation at the Second International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention (MICCAI'99) to be hold in

Cambridge, England (September, 1999). There were three reviewers on the paper. 212 submissions

was received of which 49 have been accepted for oral presentations and 84 as posters.

Chapter 7. The manuscript [ABC+99] was submitted to IEEE Transactions on Medical Imaging

July, 1999 and accepted for publication on March 10th, 2000.
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Chapter 2

Conclusion

Growth is a very interesting and fascinating area in its own. Characterization of the growth process

has many important practical application. This thesis contains a contribution to this attempt.

The remaining of this chapter consists of one main conclusion and �ve sub-conclusions.

The main conclusion is that

� we have constructed a growth model which accurately models the temporal shape and size

changes of the mandible using a linear growth model, a mandibular surface of the patient to

be modeled and a future size of the modeled mandible.

Based on the main conclusion and the methods used, we have the following sub-conclusions.

� It is surprising that the growth of the mandible is modeled very well with a linear growth

model. Previous studies assume/show the growth to be non-linear [BS83]. These two state-

ments (linear versus non-linear) do not have to be contradictions. Based on a biological

coordinate system (e.g. using metal implants in the mandible as basis for the coordinate

system) it is very plausible that the growth is non-linear [BS83]. Hopefully, we will see a
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combination of the two frames in the future. The linear system used for growth prediction,

and the biological space used to make inference concerning the growth process.

� It is remarkable that two di�erent growth processes, the growth of the mandible itself and

tooth eruption, are both well modeled using the same linear growth model.

� Geometric-constrained di�usion is a new method which simpli�es a 3D deformation �eld

based on a simple iterative scheme. A deformation �eld often contains folds or other structures

making it a \non-homeomorphic" mapping. It is our belief (we have not been able to prove it),

that the method changes the deformation �eld towards a homeomorphism/di�eomorphism.

Geometric-constrained di�usion signi�cantly improves the growth model.

� Crest lines have shown themselves to be very good shape features on the mandible, although

some topology changes do occur. Generally, two crest lines are found on top of the teeth for

a young patient. Later, there is only one crest line. Similar changes occur at other places on

the mandible.

� Di�erent methods for interpolating sparse deformation �elds have been investigated. Adaptive

Gaussian smoothing is the preferred method as it is parameter free and yields good results in

practice.

At present, we can only obtain the closely spaced CT scans that allow this kind of analysis from

clinical cases with various types of craniofacial growth disturbances. It will be interesting when

longitudinal scans become common for larger populations.
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Chapter 3

The Extremal Mesh and Crest Lines

The following sections explain the de�nition and extraction of the extremal mesh, and, crest lines

which is a subset of the extremal mesh.

A short summary of the main results from two research reports [TG93, Thi93] (the later is also

published in [Thi96]) is given below. No new results are presented. Appendix 3.7 is a minor

extension, deriving the expression for the curvature of a curve.

3.1 Introduction

Extremal lines are lines where one of the two principal surface curvatures is locally extremal.

Extremal points are points where the two principal surface curvatures are both extremal. The

extremal mesh is the graph of the surface whose vertices are the extremal points and whose edges

are the extremal lines. It is invariant with respect to rigid transformations. Good topological

properties of the graph are ensured with a local geometric invariant of 2D surfaces called the

Gaussian extremality, which allows one to overcome orientation problems encountered with the

\direct" de�nition of the extremal lines and points.
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Mathematically the calculation is simple: �rst, a surface patch is locally �tted to the data, with a

known parameterization in a local coordinate system (u; v), and then rely on the traditional results

from di�erential geometry. The major problem of those methods is how to �t (or deform) the

surface patch in a reliable way, which is independent from the topology of the surface.

It has been shown that it is possible to compute locally the principal curvature and principal

direction, without �tting a surface patch [MBF92]. The major di�erence between [MBF92] and

the present is, that we do not consider a parametric representation of the surface, but its implicit

de�nition. The �nal formula only use the di�erentials of the image function f(x; y; z) in the three

axes, and are symmetric with respect to those axes.

First we need some de�nitions.

3.2 De�nitions

For any continuous function f(x; y; z) in R3, any value I of R (called the iso-value), f de�nes a

continuous, not self intersecting surface, without hole, which is called the iso-intensity surface of

f , or simply iso-surface by the separation of the regions f � I and f < I (or the regions f > I

and f � I). The surface cannot simply be de�ned by the implicit equation f(x; y; z) = I, as some

regions of R3 may have a constant intensity I. In that case, f = I does not de�ne a surface but a

volume.

Let us now see some properties of the two times di�erentiable surfaces (Figure 3.1). At each point

P of those surfaces, there is an in�nite number of curvatures, but for each direction ~t in the tangent

plane at P , there is only on associated curvature k~t. There are two privileged directions of the

surface, called the principal directions (~t1 and ~t2), which correspond to the two extremal values

of the curvature: k1 and k2 (except for the umbilic points where the curvature is constant for all
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Figure 3.1: Di�erential characteristics of surfaces.

directions). One of these two principal curvatures is maximal in absolute value (let say k1), and is

called the maximal curvature.

The product of the two principal curvatures is called the Gaussian curvature K, and the half sum is

called the average curvature S. To those values we can add the extremality criterion e which is the

directional derivative of the maximal curvature (here k1), in the corresponding principal direction

(~t1). In fact, the same extremality criterion can also be de�ned for the other principal direction,

and we have therefore two \extremalities" e1 and e2. The successive loci of the zero-crossing of the

Gaussian extremality Eg = e1e2 de�nes the extremal mesh.

There are some orientational problems, which comes from the fact that ~t1 and ~t2 are not de�ned

as vectors, but as directions. I will refer to [Thi93, TG93] for a solution.

We will use the following notations for the partial derivatives: fx for @f(u; �(u))=@x, fxy for

@2f(u; �(u))=@x@y etc., and �0 for d�=du. ~r is the gradient operator.
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3.3 Curvature and corner points in 2D images

I this section, we present the description of the method in the 2D case, which will help to understand

the computations of the next section.

For a 2D function f(x; y) of R2, we call iso-boundary (or iso-contour) the restriction of the iso-

surface to 2D. The iso-boundary is the lines which separate the regions f � I from the regions f < I.

We show now how to compute the curvature of this iso-contour, and how to derive a 2D extremality

criterion e whose zero-crossings are the points of maximal curvature along the iso-boundary.

It is assumed that f(x; y) is the continuous function. This is obtained by convolving the image with

the Gaussian function. f is then continuous and in�nitely di�erentiable. The iso-contour de�ned

with the iso-value I is also in�nitely di�erentiable, and its equation is f(x; y) = I, if k~rfk 6= 0.

This equation is the implicit equation of a curve in the plane. Using the implicit functions theorem,

there exits locally a function � such that (x = u; y = �(u)) and f(u; �(u)) = I. The derivatives of

� satis�es

�0 = �fx=fy (3.1)

since

f(u; �(u)) = I

+
d

du
f(u; �(u)) =

d

du
I

+

fx + fy�u = 0 (3.2)

+

�0 = �u = �fx=fy (3.3)
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Di�erentiation of Equation 3.2 by u gives:

�00 =
2fxfyfxy � f2xfyy � f2y fxx

f3y
(3.4)

The curvature c of the curve is given by c(u) = �00(u)=(1 + �02(u))3=2) (Appendix 3.7), thus:

c(x; y) =
2fxfyfxy � f2xfyy � f2y fxx

(f2x + f2y )
3=2

(3.5)

Equation 3.5 gives the curvature at any point on the image, and which depends only on the

di�erentials of the image up to order 2.

The points of maximum curvature along the iso-contour are now calculated. Those points satisfy

the equation dc(u)=du = 0. A strictly equivalent equation is to state that the derivative of the

curvature in the direction of the tangent is zero, that is ~rc(x; y) � ~t = 0, where ~t is the tangent

(�fy; fx) to the iso-contour, and ~rc(x; y) is the gradient of c with respect to x and y: (cx; cy).

With this notation ~rc(x; y) � ~t equals

cxfy � cyfx = 0 (3.6)

This equation is of the form e(x; y) = 0, and de�nes a new implicit curve in the 2D image, whose

intersections with the iso-contour f(x; y) = I are the points of maximal or minimal curvatures.

The curve e(x; y) = 0 is called the maximal (respective minimal) curvature curve.

It is remarkable, that the maximum curvature curve does not depend on the choice of any iso-

value threshold I, but is intrinsically de�ned with the values of the image f(x; y). Of course, the

extremality is only really signi�cant in the neighborhood of a \true" contour, that is, when the

gradient norm is high.
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3.4 Di�erential characteristics of iso-surfaces

As seen in the last section, the determination of the corner points was reduced to the computation

of the intersection of two planar curves f(x; y) = I and e(x; y) = 0. In the 3D-case, it is shown

that the computation of the extremal mesh on an iso-surface is reduced to the intersection of two

iso-surfaces. One being the the well-known iso-surface f(x; y; z) = I, and the other one being the

zero-crossing of the Gaussian extremality function Eg(x; y; z) = 0.

As for the 2D case, the implicit functions theorem is used in order to transform the implicit

equation of the iso-surface f(x; y; z) = I into the parametric equation of the surface: (x = u; y =

v; z = �(u; v)). Then the �rst and second Fundamental Forms of di�erential geometry [Lip69] are

used to compute the principal curvatures and directions. These formulae are generally written

for the parametric formulation. In the present chapter, the idea is to �nd equivalent results with

the implicit equation of the surface. The principal curvatures and principal directions correspond

respectively to the eigenvalues and eigenvectors of the matrix, called the Weingarten endomorphism:0
BB@ E F

F G

1
CCA
�10
BB@ L M

M N

1
CCA =

0
BB@

GL�FM
H

GM�FN
H

EM�FL
H

EN�FM
H

1
CCA =

0
BB@ a b

c d

1
CCA (3.7)

Let S be the parametric surface de�ned as S(u; v) = (u; v; �(u; v)). For a point S(u; v) on the

surface, we have

E = k~Suk2 F = ~Su � ~Sv G = k~Svk2 (3.8)

L =
~Suu � ~n
H1=2

M =
~Suv � ~n
H1=2

N =
~Svv � ~n
H1=2

H = EG� F 2 (3.9)

Here ~n(u; v) is de�ned as ~Su� ~Sv, and is a vector lying normal to the surface at ~S(u; v). Using the

implicit functions theorem, and substitution of the derivatives of f for the derivatives of ~S, as in

the 2D case:
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E =
f2x+f

2
z

f2
z

L = �fz(�2fxfxz+fxxfz)+f2xfzz
f3
z

F =
fxfy
f2
z

M =
fz(fxzfy+fxfyz�fxyfz)�fxfyfzz

f3
z

H =
f2x+f

2
y+f

2
z

f2
z

G =
f2y+f

2
z

f2z
N = �fz(�2fyfyz+fyyfz)+f

2
yfzz

f3z

(3.10)

The formulae are not symmetric with respect to the three axes ~x; ~y and ~z, as ~z is given a special

role, when using the implicit functions theorem.

We now seek for symmetric equations for the curvatures and principal directions.

~k1; ~k2 are the two principal curvatures, and ~t1; ~t2 are the associated principal directions. K = k1k2

is the Gaussian curvature, and S = (k1 + k2)=2 is the average curvature of the iso-surface. K and

S are also respectively the determinant and half the trace of the matrix given in Equation 3.7, that

is:

K = (LN �M2)=H and 2S = (EN � 2FM +GL)=H (3.11)

Using Equation 3.10:

K =
1

(f2x + f2y + f2z )
2
[ (3.12)

� �f2xzf2y �� f2xf
2
yz + 2fxyfxzfyfz

�2fxfxzfyyfz � f2xyf
2
z + fxxfyyf

2
z

+2fyz (fxfxyfz + fy (fxfxz � fxxfz))

+
��2fxfxyfy + fxxf

2
y + f2xfyy

�
fzz ]

S =
�1

2(f2x + f2y + f2z )
3=2

[ (3.13)

�2fxfxyfy + fxxf
2
y + f2xfyy

�2 (fxfxz + fyfyz) fz

+(fxx + fyy) f
2
z +

�
f2x + f2y

�
fzz ]
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Once having K and S, k1 and k2 are the solutions of a second order equation (i 2 f1; 2g):

ki = S �
p
� with � = S2 �K (3.14)

The computation of the principal directions is a bit more complicated. Using the notations of Equa-

tion 3.7, the principal directions ~ti, which are the two eigenvectors of the matrix in Equation 3.7,

may be represented in the basis ~Su; ~Sv in the form ui~Su + vi~Sv, and satisfy the equations

(a� ki)ui + bvi = 0

cui + (d� ki)vi = 0

(3.15)

For each i 2 f1; 2g the two equations are dependent, and thus the solution set for (ui; vi) will lie

along a line colinear with ~ti. ~ti can be computed by either of the two equations in Equation 3.15,

which gives us two vectors ~ti1 and ~ti2 colinear to ~ti.

Since ~Su = (1; 0;�fx=fz) and ~Sv = (0; 1;�fy=fz) (remember that S(u; v) = (u; v; �(u; v)) and

�u = �fx=fz; �v = �fy=fz ) one solution is:

~ti1 = ui~Su + vi~Svwwwwwww�
(a� ki)ui + bvi = 0 )

ui = b ^ vi = ki � a

~ti1 = b~Su + (ki � a)~Sv

+ The vectors ~Su and ~Sv are multiplied with fz

~ti1 =

0
BBBBBB@

fzb

fz(ki � a)

�fxb� fy(ki � a)

1
CCCCCCA

(3.16)
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and

~ti2 = ui~Su + vi~Svwwwwwww�
cui + (d� ki)vi = 0 )

ui = ki � d ^ vi = c

~ti2 = (ki � d)~Su + c~Sv

+ The vectors ~Su and ~Sv are multiplied with fz

~ti2 =

0
BBBBBB@

fz(ki � d)

fzc

�fx(ki � d)� fyc

1
CCCCCCA

(3.17)

Some simpli�cations are possible, as:

(ki � a) =
EN �GL

2H
�
p
� ; (ki � d) =

GL�EN

2H
�
p
� (3.18)

We seek for symmetric equations in x; y; z. Thirion and Gourdon ([TG93]) found a solution, which

uses a given linear combination of ~ti1 and ~ti2. Making the substitutions for E;N;G;L, and then

using the linear combination ~ti =
fx�fz
fz

~ti1 +
fz�fy
fz

~ti2 restores the symmetry between the three

coordinates. We obtain

~ti = ~��
p
�~� with ~� = (fz � fy; fx � fz; fy � fx) (3.19)

~� is complicated. Like ~�, it is symmetric with respect to the three coordinates. Equation 3.20

gives the x-component of ~�. The y and z components are obtained by circular permutations of

x; y and z. Despite the symmetry between the three axis, there is still a privileged direction, which

is ~! = (1; 1; 1), because, if ~rf is colinear to ~!, then ~� = ~� = 0, which means that we fails to

�nd ~t1;~t2. There are locations where the principal directions are not obtained be means of the

symmetric formula:
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� Umbilic points (� = 0)

� The gradient vanishes (~rf = 0)

� and rather unexpected a privileged direction when ~rf and ~! are colinear (~rf � ~! = 0)

~� � ~x =
1

2(f2x + f2y + f2z )
3=2

[ (3.20)

�2fxfxyf2y + 2fxfxzf
2
y + fxxf

3
y � 2fxzf

3
y + f2xfyfyy

�2f2xfyfyz + 2fxf
2
yfyz � fxxf

2
y fz + 2fxyf

2
y fz + f2xfyyfz

�2fxfyfyyfz + 2f2xfyzfz + 2f2y fyzfz � 2fxfxyf
2
z + 2fxfxzf

2
z

+fxxfyf
2
z � 2fxzfyf

2
z � fyfyyf

2
z � 2fxfyzf

2
z � 2fyfyzf

2
z

�fxxf3z + 2fxyf
3
z + fyyf

3
z � f2xfyfzz � f3yfzz � f2xfzfzz

+2fxfyfzfzz + f2y fzfzz]

3.5 Gaussian extremality

The Gaussian extremality (which de�nes a surface) is de�ned as:

Eg = e1e2 = 0 (3.21)

where

ei = ~rki � ~ti ; i 2 f1; 2g (3.22)

The extremal mesh is the intersection of the Gaussian extremality and the iso-surface. Extremal

points are the simultaneous zero crossings of the two extremalities, e1 = 0 and e2 = 0. For extremal

lines either e1 = 0 or e2 = 0, not both.
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Figure 3.2: The extremal mesh on a rounded cube. The crest lines, maximal second curvature, and

minimal second curvature are red, yellow, and green, respectively. There is no curve with minimal

largest curvature. The orientation problem (Section 3.6) is seen on one of the diagonals,- the color

changes in an unpredictable way.

3.6 Extraction of the extremal mesh and crest lines

The extremal mesh can be classi�ed into 4 types, depending of the type of extremality of the

extremality zero-crossing, Eg = 0:

� lines of maximum largest curvature (this is called crest lines)

� lines of minimum largest curvature

� lines of maximum second curvature

� lines of minimum second curvature
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Figure 3.3: Crest lines (red) and maximal second curvature lines, k2-max lines (yellow) on a Gaus-

sian smoothed mandible seen from two di�erent viewpoints. Some lines have been removed. Only

crest lines and k2-max lines longer than 20 and 10 points, respectively, are shown. The surface is

translucent.

So, the crest lines are calculated as being the the zero-crossing of e1 = ~rk1 � ~t1 (remember that

jk1j � jk2j by de�nition). But unfortunately this does not work. ei = ~rki � ~ti is only a correct

de�nition when ~ti is an oriented direction! If the orientation of ~ti chnages into �~ti (this is still

a valid eigenvector), ei turns into �ei. What is then the meaning of the zero crossing of a value

whose sign is meaningless?

This is why, the more complicated expression Eg = e1e2 is used and demands that (~t1;~t2; ~n; ) is a

direct orthonormal basis. When (~t1;~t2; ~n; ) being direct, there are only two acceptable choices for

the principal direction orientations, which are either ~t1;~t2 or �~t1;�~t2. In both cases the product

e1e2 is the same. Eg is also invariant to a change of the surface orientation, k1; k2 just change
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sign. However a negative isometry (a symmetry with a respect to a plane) inverts the Gaussian

extremality values, because of the convention (~t1;~t2; ~n; ) direct. Refer to [Thi93] for details about

the orientation problem.

Figure 3.2 shows the extremal mesh on a rounded cube. The lines on the rounded edges are the

crest lines. Figure 3.3 shows Crest lines and maximal second curvature lines on a mandible. The

maximal second curvature lines are \orthogonal" to the crest lines. Together they give a good

outline of the mandible.

3.7 Appendix: curvature of the curve (u; �(u))

In this appendix the curvature for a line l in 2D is calculated given by the parameterization

l :

0
BB@ u

�(u)

1
CCA

Section 3.3 for a de�nition of the notation. Remember that x = u; y = �(u).

It will be shown that the curvature is given by

c(u) =
�00

(1 + �02)3=2
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Let s be the arc length of the curve l, then:

ds2 = dx2 + dy2

+
ds2

dx2
= 1 +

dy2

dx2
= 1 + �0

2

+

ds

dx
=

q
1 + �02

+
ds

du
=

q
1 + �02 (3.23)

thus

dl

ds
=

dl

dx

dx

ds
=

dl

du
=
ds

du
=

0
BB@ 1

�0

1
CCA (1 + �0

2
)�1=2

+

d

du

dl

ds
= �1

2
(1 + �0

2
)�3=22�0�00

0
BB@ 1

�0

1
CCA+ (1 + �0

2
)�1=2

0
BB@ 0

�00

1
CCA

+

d

du

dl

ds
=

0
BB@ ��0�00(1 + �02)�3=2

�00(1 + �02)�1=2 � �02�00(1 + �02)�3=2

1
CCA (3.24)

By de�nition, the curvature c(u) is given by

c(u) =

 d2lds2

 =
 d2l

dsdu

 = dsdu
From Equations 3.23 and 3.24 we get:

c(u) =
�00

(1 + �02)
=(1 + �0

2
)1=2

+

c(u) =
�00

(1 + �02)3=2
(3.25)
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The last equation is the desired result.
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Feature Displacement Interpolation1

Mads Nielsen and Per R. Andresen

Abstract

Given a sparse set of feature matches, we want to compute an interpolated dense dis-

placement map. The application may be stereo disparity computation, ow computa-

tion, or non-rigid medical registration. Also estimation of missing image data, may be

phrased in this framework. Since the features often are very sparse, the interpolation

model becomes crucial. We show that a maximum likelihood estimation based on the

covariance properties (Kriging) show properties more expedient than methods such as

Gaussian interpolation or Tikhonov regularizations, also including scale-selection. The

computational complexities are identical. We apply the maximum likelihood interpola-

tion to growth analysis of the mandibular bone. Here, the features used are the crest

lines of the object surface.

4.1 Introduction

Given images of an object and a deformed version of the object we wish to compute the displacement

�eld. The overall strategy is to extract features [Mar82], match these, and then interpolate the

displacement �eld. Since feature extraction and matching is not ideal operations, only a very sparse

set of reliable features may be extracted and matched. In our current application to 3D human

bone-growth analysis, we use the crest lines of the surface as features [TG95]. In this paper, we

assume the features and matches are given, and examine the interpolation problem. Since the

1Copyright by IEEE.
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images are very large 3D images, we only consider direct methods, and not more computational

heavy methods such as those based on functional minimization [BZ87, MS85].

In the following we describe methods such as Gaussian interpolation [KW93], Tikhonov regu-

larizations [TA77, Gri81], kriging [Cla79], and an adaptive scheme, and describe their di�erent

properties. Finally, we apply the kriging to the growth analysis on synthetic 3D images of cubes,

and the mandibular bone obtained from 3D CT scans of the same patient at di�erent time instances

[ANK98].

4.2 Displacement interpolation

The values of a displacement �eld f : IRD 7! IRD is provided by feature matches in a sparse set

of points ~x = [x1; x2; : : : ; xn] as g(~x). In the following, we keep D = 1 for notational simplicity,

whereas D = 3 in the �nal computational examples. We want the following properties of the

interpolation scheme:

� (i) Approximation criterion. f must approximate the data values well since localization

of the features are assumed relatively precise.

� (ii) Regularity criterion. In regions of missing features a regular solution must be created.

In general, we will require smoothness (C1), but only C1 and visual regularity (no extra

structure introduced).

� (iii) Asymptotic behavior. The data must be able of shadowing each other. That is, in a

given direction only the nearest data must be weighted.

� (iv) Maximum principle. The solution must not extent the solution to values larger than

the largest data value or smaller that the smallest data value.
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Among the above mentioned interpolation methods, we analyze for these criteria.

4.2.1 Tikhonov regularization or thin-plate splines

A displacement �eld can be reconstructed as a Maximum A Posteriori (MAP) estimate given noise

estimates and a prior of displacement �elds. Especially, when the prior is an uncorrelated Gaussian

in the displacement gradient magnitude, we obtain Tikhonov regularization [Nie95]:

f = arg minE[f ];

where

E[f ] =
X
i

(g(xi)� f(xi))
2 + �

Z
IR

(@xf)
2dx

The solution may be obtained as [NFD95]:

f(x) =
w(x; ~x) � g(~x)
w(x; ~x) �~1

where g(~x) is a vector containing the data values in the data points x arranged in the vector ~x,

~1 is a vector containing 1's, and w(x; ~x) is a vector containing values wi(x) = e�
jx�xij

� . This is

also known as the unbiased estimation of Thin-plate splines [Boo91]. The essential part here is the

shape of the �lter (e�jxj) and that this may be perceived as a standard �ltering of the unevenly

distributed data points with a re-normalization so that the total �lter weight becomes unity. This

method does not comply with the approximation criterion and the asymptotic behavior, but does

ful�ll the maximum principle. The solutions are not in a mathematical sense smooth, but only C1,

which is suÆcient for our applications..

4.2.2 Gaussian interpolation

Knutson and Westin [KW93] proposed a similar �ltering, but based on Gaussian �lters: wi(x) =

e�
(x�xi)

2

2�2 . This �lter shows di�erent properties than the Tikhonov �lter, especially far from data
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points, which is interesting in the case of very sparse data. It has the required asymptotic behavior.

A theoretical di�erence is that Tikhonov regularizations yieldsC1 functions while the Gaussian �lter

yields C1 functions.

The parameter � yields in both methods a trade o� between over-smoothing in regions where many

data are given (violation of (i)) and making smooth solutions in areas where only few data are

given (property (ii)).

4.2.3 Adaptive Gaussian �ltering

A solution to the violations in the normalized �lterings may be a local adaption of the scale

parameter to the distance of the nearest features: �(x) =
p
Distance. This, however, has the

inexpedient property that data points cannot \shadow" each other. That is, far from a step edge,

the solution will take an intermediate value, thus we have violated property (iii). Furthermore, in

vast regions, structure may be introduced (violation of (ii)). Other principles of selecting the scale

may exhibit di�erent properties.

4.2.4 Kriging or Gaussian regression

The basic problem of the normalized �ltering method is that the belief in the smoothness of the

solution and the belief in the accuracy of the data values are merged into one smoothness parameter

�. We can phrase the statistical inference problem a little di�erently and then separate these two

parameters, thus yielding kriging [Cla79]:

Assume, instead of a prior on the derivative, that the covariance function C(x; x0) is known. The

covariance function expresses the covariance of the data values in two points x and x0. Typically the

closer points are, the more correlated their data values are assumed to be. An interesting aspect
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is that if this covariance de�nes a distribution of functions, and if C(x; x0) = e
�

�
jx�x0j

�

��
, some

well-known function classes appear with probability 1, for di�erent choices of �: � = 0 yields white

noise, � 2]0; 2[ yields fractional Brownian motions with � = 1 as the classical Brownian motion

[MN68], while � = 2 (the Gaussian) yields C1 functions.

Given the covariance function C(x; x0) and an expression of the belief in data as the assumed

variance of data values r2, we can make a maximum likelihood estimation of f(x) as [WR96]

f(x) =
w(x; ~x)Q�1g(~x)

w(x; ~x)Q�1~1

where w(x; ~x) is a vector containing wi = C(x; xi), and Q is a matrix containing Qij = C(x1; x2)+

r2Æij . The intuitive interpretation of the introduction of Q�1 is that, prior to the regularizations

based on the covariance function, an inverse �ltering is performed to make the samples uncorrelated.

In terms of scale-space we might say that we have data given at some scale �. To interpolate we

�rst perform a deblurring to scale zero, interpolate, and then blur back to the current scale. The

solution has the same regularity properties as the corresponding normalized �ltering (� = 1, thin-

plate splines are C1 and � = 2, normalized Gaussian �ltering is C1). Varying the parameter r

yields di�erent properties of the solutions, and in the limit r 7! 1, we are back to normalized

�ltering.

4.3 Interpolation properties

The properties of the di�erent interpolation models are noted in the �gure captions below. Below

we give a table indicating properties. Notice that all methods except the adaptive scale method

may be formulated as Kriging. If � = 1 and r2 =1 Kriging yields Tikhonov regularization, while

� = 2 and r2 =1 yields Gaussian interpolation.
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Figure 4.1: Adaptive �ltering, � = 2. This violates the principle of asymptotic behavior, only

the closest value should be used. Furthermore notice the bump in the middle; extra structure is

introduced thus violating the regularity criterion.

Method (i) (ii) (iii) (iv)

� = 1; r2 = 0 + C1 + +

� = 1; r2 = 1 - C1 - +

� = 1; r2 =1 - C1 - +

� = 2; r2 = 0 + C1 - -

� = 2; r2 = 1 - C1 - -

� = 2; r2 =1 - C1 + +

Adaptive scale + C1 - +

4.4 Summary

We are given very reliable, but also very sparse feature matches. Based upon this situation we have

formulated 4 criteria for a displacement interpolation. Among standard regularization schemes

they cannot be ful�lled simultaneously. Using a formulation of the interpolation problem normally

applied in geo-statistics, Kriging, we may ful�ll all criteria simultaneously, having only one free

scale parameter. This has been applied to 3D growth analysis based upon crest line matches.



38 Chapter 4. Feature Displacement Interpolation

Figure 4.2: Crest lines and their matchings on two cubes of same orientation and position, but with

a relative size change of 1/3. Results are obtained automatically. Notice the erroneous matching

so that only the central part of the crest lines at the larger cube is used. This is made deliberately

so as to expose the interpolation properties.

Figure 4.3: Kriging, � = 1, � = 50, from left to right r2 = 0, r2 = 1, r2 � 1. The vertical lines

corresponds to data points with values corresponding to the height of the lines. The left �gure is

the only of all the interpolation techniques in this paper that satisfy all 4 criteria. When r2 > 0 the

approximation and asymptotic behavior are violated.

Figure 4.4: Kriging, � = 1, � = 5, from left to right r2 = 0, r2 = 1, r2 � 1. This �gure is

identical to the above with the exception of a smaller scale, which makes the solution go towards a

step function.
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Figure 4.5: Kriging, � = 2, � = 50, from left to right r2 = 0, r2 = 1, r2 � 1. Here, the left violates

the maximum principle and the asymptotic criterion, while the right violates the approximation

principle. The middle violates all three, but to a smaller extent.

Figure 4.6: Kriging, � = 2, � = 5, from left to right r2 = 0, r2 = 1, r2 � 1. The same as

the above, but width smaller scale. Here we run into numerical problems and in some points no

solution is given. Furthermore, the solutions are closer to a step function, making the above criteria

violations smaller.
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Figure 4.7: Reconstruction of the smaller cube at the size of the larger cube. Displacements are

computed on the basis of crest lines on the two cubes, matching and interpolation using � = 1,

� = 2, r2 = 10�3 (left), � = 2, � = 2, r2 = 10�3 (middle), � = 1, � = 2, r2 � 1 (right).

The leftmost corresponds to the only interpolation not violating any criteria. The central does not

satisfy the maximum principle, and the asymptotic behavior, while the rightmost does not satisfy

approximation criterion, hence the resulting cube is too small.

Figure 4.8: Crest line matches on the mandibular bone of the same patient scanned at age 21 month

and 7 years.
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Figure 4.9: Interpolated growth of the mandible based on 3 CT scans at age 9 month, 21 month,

and 7 years. Spatial interpolation based on the parameter free adaptive scale method, temporal

interpolation based upon a second order polynomial model.
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4D Shape-Preserving Modelling of

Bone Growth12

Per R�nsholt Andresen, Mads Nielsen, and Sven Kreiborg

Abstract

From a set of temporally separated scannings of the same anatomical structure we wish

to identify and analyze the growth in terms of a metamorphosis. That is, we study

the temporal change of shape which may provide an understanding of the biological

processes which govern the growth process. We subdivide the growth analysis into

growth simulation, growth modelling, and �nally the growth analysis. In this paper,

we present results of growth simulation of the mandible from 3 scannings of the same

patient in the age of 9 month, 21 month, and 7 years. We also present the �rst growth

models and growth analyzes. The ultimate goal is to predict/simulate human growth

which would be extremely useful in many surgical procedures.

5.1 Introduction

This paper presents a non-linear growth model which to a very good approximation interpolates

the growth as seen on the human mandible (the lower jaw). The results comply with the existing

2D theory on mandibular growth [BS83]. These experiments use a unique 4D data set containing

three Computerized Tomography (CT) scans3 of the same patient with Apert syndrome, but with

1This work is partly supported by the Danish Technical Research Council, registration number 9600452.
2Copyright by Springer-Verlag.
3The scans were performed for diagnostic and treatment planning purposes.
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normal mandibular development, taken at three ages (9 month, 21 month, and 7 years old). In many

situations, surgeons need information about the growth of the jaws, particularly when performing

pediatric craniofacial surgery. After surgery, the bones continue to grow, and therefore in order to

optimize the intervention, there is a need to predict/simulate growth. Also for basic understanding

and teaching, we have a need for these models. We subdivide the growth study into growth

simulation, growth modelling, and �nally the growth analysis. Growth simulation is the data

driven analysis, where we try to �t an (almost) arbitrary model to the data. In growth modelling,

we have a model and wish to evaluate if the data �ts the model. When we are doing growth analysis,

the process is reversed, and we try to extract information from the models, such as active areas,

spatial correlations, predicted changes, etc. In contrast to normal biological tissue growth, bone

grows only on the surface. The interior is rigid and does not change shape [BS83]. The growth of

a bone can be subdivided into deposition (adding bone) and resorption (removal of bone). Because

the deposition and resorption happen all over the surface of the bone at di�erent speeds, this

results in non-linear growth [BS83]. For the mandible the condyles are the most active areas, and

are therefore important to be followed over time. Homologous4 points followed over time, de�ne

a spatio-temporal vector �eld (the growth vector �eld or just vector �eld or ow �eld). The goal

of growth simulation is the identi�cation of the spatio-temporal vector �eld. Many di�erent vector

�elds will satisfy the constraints given by the data and the de�nitions of homologous points. Thus

a growth model (or interpolation model) must be used for the determination of a unique vector

�eld.

We distinguish between models having the same number of degrees of freedom as the data and

over-constrained models. We will use the �rst in the process of growth simulations, while over-

constrained models are used for growth modelling. The simulation is a mere data interpolation,

4Homologous = having the same relative position, value, or structure.
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Feature matching

Flow
interpolation

Growth
simulation

Model fitting

Volume N

Shape
feature

extraction
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Shape
feature

extration

…

Visualization Growth analysis

Figure 5.1: Flow chart of the algorithms involved in the growth analysis.

whereas the modelling will test whether data comply to a given model. In Figure 5.1 the information

ow is shown.

Finally, in the growth analysis, we will extract information from the simulated or modeled vector

�eld in order to identify local biological processes and/or physical conditions that govern the re-

modeling of the bone. In this paper, we estimate the resorption and deposition on the surface of

the mandibular bone.

In earlier work on simulating the growth of the mandibular bone [BNGK97] the interpolation

has been performed directly on the surface position. But the time steps are large, and a direct

surface position interpolation as carried out in that work will not preserve the overall shape. Thus,

intermediate steps will not necessarily look like mandibles. See �gure 5.2.

In Section 5.2, we will give one de�nition of homologous points in terms of the extremal mesh
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t=0 t=1 t=0 t=1

Figure 5.2: Surface interpolation illustration to the left is a linear interpolation in position of closest

point. The top at t = 0 will disappear and at the same time a new top will appear. To the right

is a linear interpolation of shape feature positions such as maximally curved points on the surface.

Here, the top moves to the right over time.

[Thi96] (which are lines) and the di�erent types of ridge lines. These homologous equivalent lines

are matched, as described in Section 5.3. Since this yields a very sparse vector �eld the interpolation

becomes crucial and is described in Section 5.4. In Section 5.5, we describe existing 2D models of

the growth of the mandible, and use these models for a 3D growth modelling. In Section 5.6, we

extract properties of the modeled ow �elds such as the local amount of resorption and deposition.

Section 5.7 discusses our results and describes future work.

5.2 Local shape features

The growth vector �eld links homologous points, or points of equivalent morphology. In this sec-

tion, we de�ne equivalence classes of points on a surface. The local shape of a surface is totally

characterized by the principal curvatures k1; k2 (k1 > k2) and their derivatives in the coordinate

system de�ned by the principal directions (t1; t2) [dC76]. Since the bone topology is not changing

in our studies, we may model the growth process by a 3D di�eomorphism (a one-to-one di�erential

mapping). This corresponds to D'Arcy Thompson classical methods of transformations [Tho17].

The principal curvatures and directions will in general change when exposed to this non-linear

di�eomorphism, and cannot directly be used for registration. However, certain shape singularities

are stable in the sense that they cannot be removed by an in�nitesimal perturbation [BG84]. Here,
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Figure 5.3: The crest lines on the three smoothed mandibles at 9 month (left), 21 month (middle),

and 7 years old (right). The surfaces are translucent.

we give a list of some stable shape features.

Shape feature De�nition Dimensionality

Umbilic point k1 = k2 0

Critical curvedness [Koe90] @t1C = 0 ^ @t2C = 0, def: C = k21 + k22 0

Extremal points @t1k1 = 0 ^ @t2k2 = 0 0

Parabolic line k1 = 0 _ k2 = 0 1

Ridge line (or extremal mesh) @t1k1 = 0 _ @t2k2 = 0 1

Crest line @t1k1 = 0 ^ @t21k1 < 0, def: jk1j > jk2j 1

Sub-parabolic line [BG84] @t2k1 = 0 _ @t1k2 = 0 1

Shape features with dimension � 2 will not be discussed in this paper.

The ridge lines (or extremal mesh) can be partitioned into four types corresponding to respectively

maximum or minimum in k1 and k2. We use the maxima in (the absolute value of) both k1 and

k2.

The above mentioned shape features are all structurally stable, but even though they can not be

removed by in�nitesimal perturbations, they will in general change topology under �nite perturba-
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tions.

We work with the extraction and matching of ridge lines in a scale-space setting [Koe84] (see

the following section). Also the scale-space evolution of ridge lines is not totally understood even

though some aspects are covered in the literature [Dam93, EGM+94, Fid97]. Thus, theoretical

issues are still to be clari�ed. However, by making a matching which only accepts good matches

(see the following section), we obtain satisfying results. The crest lines of the mandibles can be

seen in Figure 5.3.

5.3 Feature matching

As features we will only consider the lines with maximally k1 (crest lines) and maximally k2 (here,

called k2-max lines) in the extremal mesh. The overall framework follows the ideas of [STA98].

First we extract the crest lines and k2-max lines for each dataset at scale 3.0 (matching scale) and

1.0 (localization scale). The crest lines at scale 3.0 are registered pairwise (here, it means only the

temporally neighboring data-volumes), and initial vector �elds are calculated. The k2-max lines

are then deformed according the initial vector �elds and registered. From the two sets of matches

(one from the crest lines, the other from the k2-max lines) �nal vector �elds are calculated. This

procedure is repeated for scale 1.0, but the lines are initially deformed according to the the �nal

vector �elds for scale 3.0.

The steps in the registration are always the same. First moment-registration, then two �rst order

polynomial deformations, followed by two second order polynomial deformations. Lastly a totally

non-rigid deformation is applied (all points on the lines move freely). For all the registration

methods (including the non-rigid) they must satisfy the restriction that the deformation must be

a 3D di�eomorphism. See Figure 5.6 for an example of matches between two set of crest lines at
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scale 3.0.

5.4 Flow interpolation

The matching provides us with a very sparse set of vectors. This vector �eld must be interpolated

such as to yield a di�erentiable spatially dense �eld of spatio-temporal deformation vectors: a

di�eomorphism (that its, spatial the Jacobian is nowhere vanishing).

We wish the interpolation to satisfy the following constraints: (i) approximation, (ii) regularity,

(iii) shadowing, (iv) maximum principle. (i) The interpolated vector �eld must approximate the

data values well since localization of the features are assumed relatively precise. (ii) In regions of

missing features a smooth solution must be created. We do assume a regular growth. (iii) The data

must be able of shadowing each other. That is, in a given direction only the nearest data must be

weighted. In this way, we avoid that features from the \other side" of a thin structure inuence

the local solution. (iv) The solution must not extend the solution to values larger than the largest

data value or smaller than the smallest data value. We assume that the ridge lines also correspond

to lines of extreme growth.

We address this as a statistical inference problem. Assume that the covariance function C(x; x0)

is known. The covariance function expresses the covariance of the vector �eld values in two points

x and x0. Typically, the closer the points are, the more correlated their data values are assumed

to be. An interesting aspect is that if this covariance de�nes a distribution of functions, and if

C(x; x0) = exp(�(jx � x0j=�)�), some well-known function classes appear with probability 1, for

di�erent choices of �: � = 0 yields white noise, � 2]0; 2[ yields fractional Brownian motions with

� = 1 as the classical Brownian motion [MN68], while � = 2 (the Gaussian) yields C1 functions.

Given the covariance function C(x; x0) and an expression of the belief in data as the assumed
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variance of data values r2, we can make a maximum likelihood estimation of f(x) as [WR96]

f(x) =
w(x; ~x)Q�1g(~x)

w(x; ~x)Q�1~1
(5.1)

where w(x; ~x) is a vector containing wi = C(x; xi), and Q is a matrix containing Qij = C(x1; x2)+

r2Æij . The intuitive interpretation of the introduction of Q�1 is that, prior to the regularizations

based on the covariance function, an inverse �ltering is performed to make the samples uncorrelated.

In terms of scale-space, we might say that we have data given at some scale �. To interpolate, we

�rst perform a de-blurring to scale zero, then interpolate and then blur back to the current scale.

This method satis�es all criteria when � = 1 and r = 0 [NA98]. � can be chosen freely, so as

to adjust the smoothness of the interpolated vector �eld. In Figure 5.4, the deformation of the

mandible is shown as it is transported along the deformation vector �eld.

5.5 Growth modelling

We have the general model ~g(~�(x; y; z); t), ~g : R3 7! R3 (for �xed t), and the 3D volumes vi(x; y; z),

where ~�(x; y; z) is the parameters for ~g, and (x; y; z) de�nes a point in R3. t is the time. i =

f1; : : : ; ng. n is the total number of volumes. ti is the time at the ith scan. We need to pick a

reference volume, let's say vn. All deformations will then be applied to this set, i.e. a simulated

volume at time t is given by ~vn(~g(~�(x; y; z); t); vn(x; y; z)) or ~vn(x; y; z; t) for short. We want to

solve the problem

�̂ = arg min
�

nX
i=1

"X
x;y;z

f~vn(x; y; z; ti)� vi(x; y; z; ti)g2
#

(5.2)

Note, when having ~g(~�(x; y; z); t), the actual deformation on the volume vn from time tn to t, can

always be made by a linear deformation (we just pick the straight line between two homologous

points in ~vn(x; y; z; t) and vn(x; y; z)). In general, this leads to a non-linear optimization problem,
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Figure 5.4: Result of deformations on the 7 years old mandible using a second order polynomial

model (see section 5.5). The top left and right images are the deformation at 9 month and 21

month, respectively. The bottom right image is the original 7 years old mandible.
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Figure 5.5: Left: mandibular tracing at three age stages (this is not the same patient as for the CT

scans) superimposed in a reference line in the corpus with reference to natural structures. Middle:

curve for yearly rate of condylar growth. Both plots are data from the same patient with a normal

mandibular growth. Right: mandibular growth tracing superimposed by means of metallic implants,

illustrating the yearly growth and remodeling of the mandible and the eruption if the teeth, as seen

in pro�le view. From [BS83].

but if we pick models, linear in the parameters, regression analysis [KPK90] can be used. Linear

models

~g(~�(x; y; z); t) = ~�(x; y; z) � t (5.3)

have been used in previous work [BNGK97]. This model has the drawback that a point, ~p, can

only grow in the direction of the vector ~�(~p). From Figure 5.5, it is obvious that the growth of the

mandible is not linear. The simplest non-linear model is a polynomial model (with k � 2)

~g(~�(x; y; z); t) = tk~�k + � � �+ t2~�2 + t~�1 + ~�0; ~� =
h
~�k � � � ~�2 ~�1 ~�0

i
(5.4)

As seen from Figure 5.5, the growth speed is not constant, but this can be handled by the model

by re-parameterizing the time variable, t.
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Figure 5.6: The �nal matches (lines in black) between two sets of crest lines. The crest lines on

the 21 month and 7 years old mandible are red and green, respectively. It is seen that the condyles

on the two mandibles are matched together. For visual clarity only every eighth match is shown.

Because we only have three scans of the same patient, we can not go above the second order model5

(k=2). A second order polynomial model is estimated using the matches between scan one and two,

and scan two and three. Interpolation of the volumes is carried out by deforming the last scan (see

Figure 5.4). Because the calculation of the deformation �eld from one scan to the next scan is not

perfect, we have some model errors (even though the model itself doesn't have any error) which are

seen in Figure 5.7. Other possible models include logarithmic spirals and power functions, known

from the theory of growth [Tho17] or spatially constrained models.

5.6 Growth analysis

The growth modelling is on its own also a growth analysis since residuals to an over-constrained

model may be used for validating the model. The growth simulations, as we obtain it in Figure 5.4,

5This leads to a model error equal zero, because the number of parameters equals the number of volumes.
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Figure 5.7: The plots in the middle and right shows the frequency and accumulated distribution of

the distance errors (the distance errors are measured as the minimal distances from the deformed

surface to the original surface) between the 9 month old mandible and the 7 years old mandible

deformed to 9 month. The mean error is 0.57mm, and 95% of the errors are less than 1.46mm.

The maximal error is 2.79mm. This should be compared to the size of the 7 years old mandible

which is approximately (X;Y;Z) = (80mm; 100mm; 40mm). The left surface is colored red when

the error > 1:46mm, else white. When the surface changes a lot the matching algorithm does not

match with lines in the \holes" of the surface, but are more likely to match with a line on the

\top", therefore we see the errors located at places with a lot of changes in the shape. If we applied

a surface to surface registration afterwards, the errors would be minimal.

can be used for a local characterization of the growth. The model errors at 9 month are shown in

Figure 5.7. Using anatomical structures which are also spatially stable, a rigid registration of the

di�erent time instances of the bone can be obtained. In the mandible, the nerve canal is known to

be spatially stable, and can serve as an anchor for a rigid registration. In this coordinate system, the

spatio-temporal growth simulation vector �eld can be used directly for estimation of the amount of

surface resorption and deposition. In Figure 5.8 we show the surface remodeling in terms of a color

coding of the mandible as respectively the remodeling (the local velocity vector projected to the

surface normal) and the speed of the homologous points. The remodeling is consistent with earlier
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Figure 5.8: First row: the 7 years old mandible colored with the local velocity vector projected to the

surface normal (left) and the length of the velocity vector (right). The next row shows X (�rst two

images), Y (next two images), and Z (last two images) components of the velocity vector (projection

and length, respectively). Read text in \Growth Analysis" for further explanation.

2D studies on larger statistical material [BS83]. Especially we see the expected large movement of

the condyle.

5.7 Summary

We have simulated the growth of the mandible from 3 CT scans of the same patient at ages 9 month,

21 month, and 7 years. The intermediate interpolated time instances also exhibit shapes that clearly

are \mandible shaped". This is due to the strategy of interpolating in shape feature position instead

of a simple surface position interpolation [BNGK97]. The major errors in the simulations are found
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in the region where teeth are appearing. In principle, they should a priori have been removed from

the mandible surfaces, as they are not part of the mandible but separate objects, and the shape

change can not be contributed to a surface remodeling. The shape modelling in this paper has

used simple second order polynomial temporal models. They exhibit some inexpedient features

inherent for polynomial approximations. An example is a tendency to a contraction of the two

condyles towards each other if a time extrapolation is attempted. Since the ultimate goal of a

growth analysis and modelling is a prediction of the shape of the craniofacial complex. Future

work will be devoted to examination of superior temporal models and validation on more datasets.

Extension of the feature matching from ridge lines to iso-surfaces, as mentioned in Figure 5.7, may

reduce errors. Also development of a skeletal growth atlas, which contains growth models for all

bones would be interesting.
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Non-rigid Registration by

Geometry-Constrained Di�usion1

Per R�nsholt Andresen and Mads Nielsen

Abstract

Assume that only partial knowledge about a non-rigid registration is given so that cer-

tain points, curves, or surfaces in one 3D image map to certain certain points, curves,

or surfaces in another 3D image. We are facing the aperture problem because along the

curves and surfaces, point correspondences are not given. We will advocate the view-

point that the aperture and the 3D interpolation problem may be solved simultaneously

by �nding the simplest displacement �eld. This is obtained by a geometry-constrained

di�usion which yields the simplest displacement �eld in a precise sense. The point

registration obtained may be used for growth modeling, shape statistics, or kinematic

interpolation. The algorithm applies to geometrical objects of any dimensionality. We

may thus keep any number of �ducial points, curves, and/or surfaces �xed while �nding

the simplest registration. Examples of inferred point correspondences in a longitudinal

growth study of the mandible are given.

Keywords: aperture-problem, automatic landmark detection, di�usion, kD-tree, non-rigid regis-

tration, simplest displacement �eld, homology.

1Copyright by Springer-Verlag.
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6.1 Introduction

In a registration, we wish to establish the spatial correspondence of points in two images. Cor-

respondence is de�ned through the concept of homology except in pathological cases. In general,

homologous points will, dependent on the medical task, reect similar anatomy, functionality, or

geometry, etc. In this paper, we assume that homologous objects have been de�ned a priori.

Therefore, we seek an automatic method for establishing point correspondences based on object

correspondences. Pursuing this, we presume that: 1) the optimal registration is a mapping be-

tween homologous points, 2) the underlying biological process is smooth and homologous points

do not \change place" i.e., the ordering of the anatomical structures is preserved. Formally: the

registration �eld must not fold or be torn apart. It is then a homeomorphism.

In other words, within the objects, a solution to the generalized aperture problem must be chosen. In

this paper, we introduce the concept of geometry-constrained di�usion for solving the interpolation

and aperture problems simultaneously.

When performing shape statistics or analyzing (longitudinal) shape development, the tools from

shape statistics (see e.g., [Boo97]) require point matches. That is, to perform a statistical analysis

of the variation of shapes we must identify homologous points on the shape samples. When having

only a few landmarks the registration may be performed manually, but for thousands of points

it becomes tedious and practically impossible. In many cases punctual landmarks are hard to

establish in images, and the process requires considerable prior anatomical knowledge.

Automated methods using geometrical features such as crest lines [Thi96] are powerful, but do not

provide a dense �eld, and may give problems in regions where shape features change topology so

that correct matching is not possible. We propose using geometry-constrained di�usion for inferring

the locally simplest non-rigid object registration.
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Figure 6.1: The images show schematically how the di�usion algorithm works on the deformation

�eld. The Cartesian components of the initial deformation �eld (arrows in the left image) are

Gaussian smoothed. Some of the links have now diverged from the surface (middle image) and

must be projected back on to the surface (right image). The fold (the two crossing arrows) is

removed by repeating the steps until the �eld does not change.

The result of geometry-constrained di�usion is a dense, continuous, invertible displacement �eld

(a homeomorphism). Many �elds may ful�ll the geometrical constraints given by the objects.

The di�usion process gradually simpli�es an initial registration �eld. In general, di�usion is a

gradient ascent in entropy. That is, locally it changes the registration �eld so as to remove its

structure as fast as possible. An unconstrained di�usion in this way leads to an aÆne registration.

The geometry-constrained di�usion also simpli�es the registration �eld as fast as possible, but is

limited locally so as to preserve the object mappings (see Fig. 6.1).

In section 6.3, the theory of geometry-constrained di�usion is summarized. Section 6.4 describes the

implementation. Examples of the simpli�cation of an initial crest line based non-rigid registration

are shown in section 6.5.
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6.2 Related work

In the literature, many algorithms for non-rigid registration exist. In this paper, we address the

equally important problem of measuring the complexity of the geometrical deformation in a non-

rigid registration. This measure may be introduced either by having only a �nite number of

semi-local low parameter registrations, or a viscous uid or elasticity constraint, or a deformation

energy of which the thin-plate spline energy is the canonical example (see [LA99] for a survey).

Feldmar and Ayache's approach[FA96] resembles ours the most.

Feldmar and Ayache[FA96] perform a surface registration based on a distance measure including

local geometrical properties of the surfaces. The surface registration is a collection of local aÆne

registrations. The parameters of these registrations are spatially blurred so as to construct a

smoothly varying registration. A di�erence to our approach is that we do not make a collection

of local aÆne frames, but a global registration �eld. Secondly, and most importantly, we do not

exploit any metric properties of the surfaces, but look for a globally simple registration �eld. This

also creates a tendency to match points of similar geometry since the �eld otherwise must be more

complex.

In principle, the geometry-constrained di�usion could also have been formulated as a geometry-

constrained gradient descent in displacement energy [Boo96]. Hence, we here present a general

technique for handling under-determined geometrical constraints in conjunction with variational

approaches for non-rigid registration.

6.3 Geometry-constrained di�usion

A registration �eld may be di�used simply by di�using the Cartesian components independently.

The geometry-constrained di�usion is constructed such that it preserves certain �ducial mappings
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during the di�usion. Assume that the identi�cation of some �ducial points, curves and/or surfaces

is given a priori. In order to handle this partial geometrical knowledge in the general non-rigid

registration problem, we propose geometry-constrained di�usion which in a precise sense simpli�es

the displacement �eld while preserving �ducial points, curves, and/or surfaces.

Given two images I1 : IR
3 7! IR and I2 : IR

3 7! IR, we de�ne the registration �eld R : IR3 7! IR3.

Along the same line we de�ne the displacement �eld D : IR3 7! IR3 such that R(x) = x + D(x).

We may then de�ne:

De�nition 1 (Displacement di�usion) The di�usion of a displacement �eld D : IR3 7! IR3 is

an independent di�usion in each of its Cartesian components:

@tD = 4D

where the Laplacian, 4 = @2

@x2
+ @2

@y2
+ @2

@z2
, is applied independently in the x-, y-, and z-component

of D.

The only di�erence between the registration and displacement �eld is the addition of a linear

term. This term does not inuence the di�usion so that registration di�usion is identical to the

displacement di�usion.

This vector-valued di�usion has some obvious and important symmetries:

Proposition 1 The displacement di�usion is invariant with respect to similarity transforms of any

of the source or target images.

Proof. The translational part of the similarity transform only adds a constant to the displacement

�eld, and the di�usion is invariant to this. The displacement y = D(x) + x is (up to a translation)

similarly transformed such that x0 = s1R1x and y0 = s2R2y where R1 and R2 are 3 � 3 rotation
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matrices. Under s1R1 the displacement is mapped to D1(x
0) = D(s�11 R�1

1 x0) � x0 + s�11 R�1
1 x0.

Applying s2R2 also we �nd

D0(x0) = s2R2[D(s�11 R�1
1 x0)� x0 + s�11 R�1

1 x0]

The latter terms leave the di�usion unaltered since they only add terms of �rst order, and the

di�usion depends only on terms of second order. Since the di�usion is linear, it is invariant to

s2R2. By re-mapping t the di�usion is known to be independent of similarity transforms of the

base manifold. �

Applying the displacement di�usion without further constraints, it reaches a steady state which

is an aÆne registration. This is easily seen since only linear functions are in the null-space of the

di�usion equation.

In the case where the same geometrical structures have been identi�ed in both images we wish to

make certain that the di�usion of the displacement �eld reects these structures. Assume that a

surface S1 : IR
2 7! IR3 in the source image is known to map on to the surface S2 : IR

2 7! IR3 in the

target image. We thus de�ne

De�nition 2 (Surface-constrained di�usion) The surface constrained di�usion of D : IR3 7!

IR3 mapping S1 : IR
2 7! IR3 onto S2 : IR

2 7! IR3 is given by

@tD =

8>><
>>:
4D � nS2

nS2 �4D

knS2k
2 if x 2 S1

4D if x 62 S1

where nS2 is the unit surface normal of S2(D(x) + x).

This corresponds to solving the heat ow equation with certain boundary conditions. In this case,

however, we do not keep the solution �xed at the surface, but allow points to travel along the

surface. This is a dual approach to the geometry-driven curve and surface di�usion by Olver,
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Sapiro, and Tannenbaum [OST97] and others. We keep only the tangential part of the di�usion

along the surface whereas they di�use the geometry of the surface maintaining only the normal

ow. The surface normal nS2 may simply be obtained as a length normalization of nS1 + JnS1

where J is the Jacobean of D. In this way the formulation is no longer explicitly dependent on S2.

That is, given an initial (guess of the) displacement �eld and a surface in this source image to be

preserved under di�usion, we may still apply the above equation without explicitly referencing to

S2.

Curve constraints and point constraints can be handled in a similar manner. For the curve problem,

we project onto a curve by only taking the part of the di�usion which is along the curve tangent.

Point constraints simply disregard the di�usion at these points. The three types of geometry-

constrained di�usions may be combined in any fashion as long as the boundary conditions (the

matches) do not contradict one another.

We make the following proposition:

Proposition 2 (Similarity Invariance (II)) The geometry-constrained di�usion is invariant to

similarity transforms of the source or target image.

Proof. We have already shown that the unconstrained di�usion is similarity invariant. Both the

surface normal and the curve tangent are also invariant under the similarity transform. �

We will conjecture that the geometry-constrained di�usion removes any fold in the initial dis-

placement. This means that, the steady state solution to the geometry-constrained displacement

di�usion creates an invertible mapping.

Conjecture 1 (Invertibility) A geometry-constrained di�used displacement �eld induces a one-

to-one mapping of IR3.
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The steady state displacement �eld will be a homeomorphism assuming the above invertibility-

conjecture is valid since the constrained di�used displacements are continuous. It will also be

smooth except on the constrained objects where it will generally not be di�erentiable across object

boundaries, but will be di�erentiable along smooth objects.

It is evident that the scheme is not symmetric in the images. This is due to the change in local

metric by the non-linear displacement �eld. This makes the ordering of the two images important.

It is, however, not obvious (to us) that the steady states will di�er.

The geometry-constrained di�usion can be implemented simply by applying an numerical scheme

for solving a space and time discretized version of the di�usion. It is well known that the di�usion

equation is solved by Gaussian convolution. That is, an unconstrained di�usion can be updated an

arbitrarily long time-step, by applying a Gaussian of appropriate size. The geometry-constrained

di�usion cannot be solved directly in this manner due to the constrains. In general, the �nite

time step di�usion (Gaussian convolution) makes the displaced source surface diverge from the

target surface, so that it must be back-projected to the target surface. The back-projection may

be performed to the closest point on the target surface (see Fig. 6.1). In this way, the algorithm

resembles the iterative closest point algorithm [BM92, Zha94] for rigid registrations.

6.4 Implementation

A time and space discretized solution the the geometry-constrained di�usion may be obtained by

iterative Gaussian convolution and back-projecting the constrained surfaces.

The crux of the algorithm then becomes (see Fig. 6.2 for a ow chart):

1. Initial displacement. Construct an initial guess of the displacement �eld.
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Figure 6.2: Flow diagram for the di�usion algorithm. See section 6.4 for details.

2. Di�usion step. Convolve the displacement �eld with a Gaussian kernel.

3. Deform source. Deform the source surface with respect to the displacement �eld.

4. Matching (Projection onto the target surface). For all points on the deformed surface:

�nd the closest point on the target surface.

5. Update displacement �eld. For all points on the deformed surface: change the displace-

ments according to the match.

6. Convergence. Is the displacement �eld stable? If not, go to 2.

Some of the steps are explained in greater detail below.
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Figure 6.3: Iso-surface and crest lines for a 3 (left) and 56 (right) month old mandible. The

mandibles are Gaussian smoothed (� = 3mm) in order to capture the higher scale features. The

dimensions of the left and right mandibles are (H�W�L) 18�57�53mm and 31�79�79mm, re-

spectively. Surfaces are translucent.

6.4.1 Di�usion step

We use the normalized Gaussian convolution [NA98]. For each of the Cartesian components of the

displacement �eld, a Gaussian weighted average is constructed and divided with the sum of the

weights. The standard deviation of the Gaussian � is the only parameter in the numerical scheme

(see section 6.4.4).

6.4.2 Matching

As in [Zha94] we use a 3D-tree for �nding the closest point on the target surface. As reference

points on the triangulated target surface we use the center of mass (CM point) for each triangle.

The three corners of the triangles are used for calculating a plane. Using also the surface normals,

we construct the following algorithm for �nding the closest point: �rst, �nd the closest CM point

using the kD-tree. Secondly, calculate the closest point on the surface as the intersection of the

corresponding triangle-plane and the line given by the deformed point and the normal at the CM
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point.

6.4.3 Convergence

The di�usion is stopped when

X
pi

kDn(pi)�Dn�1(pi)k2 < �; (6.1)

where pi is the points on the source surface, Dn is the displacement in the nth-iteration, and � is a

user-chosen parameter. Alternatively, a �xed number of iterations could be chosen. 5-10 iterations

is normally enough.

6.4.4 Choice of time step �

The Gaussian kernel size, �, is the only parameter in the di�usion algorithm. It determines the

time discretization step. A too large value of �, may tear apart the surface since we di�use too far

before back-projecting. This problem occurs in regions of high surface curvature. A too small value

of � also gives problems since we have chosen a fast but imprecise back-projection algorithm. The

error in the back-projection introduces some arti�cial \bumps" in the path along which we di�use.

This may be overcome by a more precise back-projection algorithm or in practice by choosing �

suÆciently large (see Fig. 6.4-6.6). Identical solution are obtained for an interval of �'s.

In practice, we choose a small � and increase it on the y if folds persist.

6.5 Results

The method has been applied for registration of 31 mandibles from 6 di�erent patient in a longitu-

dinal growth study of the mandible. One mandible is chosen as the reference mandible. In order to
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propagate the landmarks, all mandibles are registered with the reference mandible and geometry-

constrained di�usion is applied. The reference mandible is shown in Fig. 6.3-right. Fig. 6.3-left

displays the target surface for all the subsequent �gures, except for Fig. 6.6, which shows an exam-

ple where the di�usion algorithm gives an erroneous result. The prior estimate of the displacement

�eld is obtained by crest line matching [ANK98]. See Fig 6.7 for match between two sets of crest

lines.

As seen in Fig. 6.4 (top images) the initial deformation contains folds. Applying the di�usion

algorithm removes almost all the folds, but some persist. By increasing � (see section 6.4.4), these

are removed (Fig. 6.5). As seen in Fig. 6.6, too large a value of � will eventually tear apart the

surface.

Very convincingly, Fig. 6.8 shows that the crest lines are useful anatomical landmarks but only

in areas where their topology stays �xed. Teeth eruption changes the crest line topology of the

mandible. We see two lines before teeth eruption on top of the mandible (Fig. 6.3 - left image)

but only one after teeth eruption (Fig. 6.3 - right image). A pure (crest) line matching algorithm

is not able to handle such changes. Introducing the di�usion algorithm, the single crest line (the

green line on top of the mandible in Fig. 6.8) is able to perform correctly - i.e., be registered in

between the two other lines (the two red lines on top of the mandible in the same �gure) as seen

in Fig. 6.8-right.

The same phenomenon is seen on the bottom of the mandible. A single line on the young mandible

is split in two on the older mandible.
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6.6 Conclusion

In the present paper we have proposed an algorithm for �nding the simplest displacement �eld,

which is conjectured to be a homeomorphism (1-1 continuous mapping).

The geometry-constrained di�usion in this paper serves to simplify the non-rigid registration of

surface models. The result is a much smoother displacement �eld. Volume registration is achieved

by having more than one surface. It turns out that the algorithm itself is also very simple.

In theory, the method is parameter free, but implementations include parameters of space- and

time-discretization and convergence threshold.

We are currently using the method for registering a longitudinal growth study of the mandible

in order to extract more than 14000 homologous points which again are used for inference of the

growth. In that study, applying the geometry-constrained di�usion results in a very signi�cant

increase in the explained variance by the growth model.
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Figure 6.4: Result of running the di�usion algorithm (� = 2mm) on the displacement �eld. De-

formation of the 56 month old mandible to the 3 month old mandible (see Fig. 6.3). The surface

and wire-frame of the deformed surface are shown to the left and right respectively. The initial

displacement, one iteration with the di�usion algorithm, and the last iteration are shown from top

to bottom, respectively. The foldings are a result of the imperfect initial registration (extremal-mesh

registration extended to the whole surface by Gaussian regularization as in [ANK98]). The �nal

result is almost perfect, but some folds still exist, owing to the discretization of the surface and

displacement �eld.
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Figure 6.5: Converged di�usion algorithm with a high value of � (� = 10mm). The surface and

wire-frame of the deformed surface are shown to the left and right respectively. We have forced the

displacement �eld to be more smooth, by increasing �.

Figure 6.6: The deformation vectors are moved too far away from the surface (The value of � is

too high) resulting in a wrong projection back onto the surface.
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Figure 6.7: Match (lines in black) between the two sets of crest lines (before applying the di�usion

algorithm). The crest lines in red and green are from the mandibles shown in Fig. 6.3. Only

every 11th link is shown for visual clarity. We see that the matches to a very good extent connect

homologous points.
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Figure 6.8: Left and right images show the deformed (in green) and the original (in red) crest lines

before and after applying the di�usion algorithm (� = 2mm), respectively. In the initial registration

crest lines are registered with crest lines. Where the topology does not change and away from umbilic

points we see (almost) no movement of the green crest lines. Teeth eruption changes the topology

on \top of the surface" (see Fig. 6.3) therefore the green crest lines move.
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Surface-bounded Growth Modeling

Applied to Human Mandibles1

Per R�nsholt Andresen, Fred L. Bookstein, Knut Conradsen,

Bjarne Kj�r Ersb�ll, Je�rey L. Marsh, and Sven Kreiborg

Abstract

From a set of longitudinal three dimensional scannings of the same anatomical structure,

we have accurately modeled the temporal shape and size changes using a linear shape

model. On a total of 31 CT-scans of the mandible from 6 patients, 14851 semi-landmarks

are found automatically using shape features and a new algorithm called geometry-

constrained di�usion. The semi-landmarks are mapped into Procrustes space. Principal

component analysis extracts a one dimensional subspace, which is used to construct a

linear growth model. The worst case mean modeling error in a cross validation study is

3.7 mm. It occurs when modeling the shape of a 12 years old mandible based on the 3

month old scan. When using successively more recent scans as basis for the model the

error drops to 2.0 mm for the 11 years old scan.

Keywords: geometry-constrained di�usion, principal component analysis, non-rigid shape-preserving

registration, morphometrics

7.1 Introduction

Pediatric craniofacial surgeons need insights into expected facial growth. This paper is concerned

with the mandible, a particularly complex bony structure both in its shape and in its growth process,

1Copyright by IEEE.
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as two sets of teeth erupt asynchronously while the direction of the condylar process changes by a

considerable angle.

Our data set here comprises 31 mandibular surfaces extracted from CT scans of a total of six children

diagnosed with Apert syndrome. The analysis falls under two major headings: the representation

of the set of mandibular surfaces by one vector of 14851 points that can be considered to be semi-

landmarks (to correspond under a reasonable model of di�eomorphism); and the summary of these

31 point sets in linear statistical spaces of surprisingly low dimension, a�ording the possibility of

cross validated growth prediction to an accuracy of 3.7 mm of mean error over intervals of 141

month.

The organization of the remainder of this text is as follows. Section 7.2 sets the stage for our

algorithm by reviewing the literature of nonrigid registration by deformable models. Section 7.3

introduces the patients to which we have access, their CT images, and the mechanism by which we

produced the 31 mandibular surfaces of the data set. Section 7.4 describes the initialization of our

di�eomorphism by detection and matching of crest lines, and Section 7.5 shows how we proceed

to a full surface-constrained di�usion. In Sections 7.6 and 7.7, the (31-1)-dimensional sample

subspace of the full (3*14851-7)-dimensional space of semi-landmark shape is subjected to certain

conventional multivariate biometric analyses that yield powerful predictors of unobserved (future)

form. We assess their accuracy using measures of mean and standard deviation surface-to-surface

discrepancy. Section 7.8 is a retrospect over all these tactics, emphasizing the surprising power

of the di�usion methodology to uncover commonalities in the six independent growth processes of

this sample. We close with a plea for corresponding studies of normative samples.
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7.2 Related work

The literature treating registration methods is very extensive (e.g. [LA99, MV98] for surveys).

This section therefore mainly concentrates on the literature covering both registration and de-

formable models (for reviews, e.g. [JZDJ98, MT96]) or morphometrics (e.g. [MCL+96, Boo97]).

We will accentuate the registration method of Feldmar and Ayache [FA96] as it resembles the

geometry-constrained di�usion method [AN99] most. Feldmar and Ayache [FA96] perform a sur-

face registration based on a distance measure which includes the local geometrical properties of

the surfaces. The surface registration is a collection of local aÆne registrations. The parame-

ters of these registrations are spatially blurred so as to construct a smoothly varying registration.

Geometry-constrained di�usion (Section 7.5) does not make a collection of local aÆne frames, but

a global registration �eld. Secondly, and most importantly, we do not exploit any metric properties

of the surfaces, but look for a globally simple registration �eld. This also creates a tendency to

match points of similar geometry since the �eld otherwise must be more complex.

Deformable models have been widely studied [JZDJ98, MT96]. When using landmarks for making

the correspondence between objects one main drawback is the manual location of them. A lot of

researchers have worked on this. Bookstein has reported a method were the semi-landmarks are

placed on contours automatically [Boo96]. Note, a landmark is a point that can be identi�ed by

verbal characterization on the single case [Boo91]. Semi-landmarks are points that do not have

names. but correspond across all the cases, so one can carry out statistics on them [Boo96].

Fleute and Lavall�ee [FL98] extrapolate a small number of range data to obtain a complete surface

representation. Principal Component Analysis (PCA) is used to reduce the dimensionality. Data

sets are registered together using an elastic registration method of Szeliski and Lavall�ee [SL96] based

on octree-splines. Szeliski and Lavall�ee [SL96] perform a least squares minimization of the distances
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between a sparse and unorganized set of points and a dense set used to build a 3D octree-spline

distance map. The result is a smooth deformation �eld.

A registration technique based on thin-plate splines that takes landmark errors into account is

reported by [Roh98]. The semi-landmarks are located semi-automatic or manually.

The present work has been greatly inspired by the seminal work of Cootes and colleagues ([CT99]

for an overview) and Dean et al. [DHBS99] (see below). Previous, manually detected landmarks

have been used for Cootes and colleagues' analysis [CT99]. Automatic landmarking for both 2D

and 3D is reviewed in [CT99]. Principal components are calculated from the Procrustes analysis

and an active shape model is made. The deformation of the active shape model is restricted by the

principal components. For segmentation, gray level information near the object boundaries is also

modeled.

Kelemen et al. [KSG98] have used the same method as in [CT99], but in order to automate the

landmark generation, Fourier-descriptors [SD96, BGK95] are found very powerful. Restrictions on

the topology of the surfaces are the main drawback when using Fourier-descriptors.

In the present paper the registration method of Subsol et al. [STA98] gives the object correspon-

dence (Section 7.4). Crest lines [Thi96] are registered together taking into account the constraints

inferred by lines and an heuristic algorithm based on the Iterative Closest-Point (ICP) algorithm

[BM92].

Grenander and Miller [GM98] have formalized the Brown/Washington University model of anatomy

in which anatomies are represented as deformable templates, collections of 0, 1, 2, 3-dimensional

manifolds. They have three principal components in computational anatomy: 1) computation of

large deformation maps. Joshi [Jos97] have proved that the resulting mapping between given

anatomies is a di�eomorphism. 2) computation of empirical probability laws which represent
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anatomical variation reected by the observed population. 3) computational inference on pop-

ulation and disease testing and classi�cation.

Dean et al. [DHBS99] analyze plain head x-ray stereo-pairs2 from 32 individuals (16 males and

16 females) ages 3-18 years old. The objective is to investigate 1) which 3D landmarks could be

collected with high precision; 2) to identify ontogenetic trends in landmark con�guration shape

change; and 3) to detect patterns of sexual dimorphism. The 32 landmarks are transformed in

to two Procrustes shape spaces (one for each gender). Relative warps are then used to search

for trends in ontogenetic shape change. It is interesting that the result of the analysis is almost

identical to the present work even though the 32 landmarks are placed mostly o� the mandible.

We are not aware of any other growth studies where longitudinal 3D acquisitions from humans have

been used for growth modeling except in [Sub95, BNGK97, ANK98] where the growth was modeled

for one patient3. Subsol [Sub95] modeled the craniofacial growth using a linear model between a

set of the controlling points. Bro-Nielsen et al. [BNGK97] used a non-rigid registration method to

model the growth of the mandible. The method was a surface interpolation which did not preserve

the mandibular shape, e.g. the condyles disappeared for intermediate interpolated time instances.

Andresen et al. [ANK98] used the same object registration technique as in Section 7.4 to register

the mandibles. A second order polynomial was used to interpolate the longitudinal displacement.

Unfortunately the modeled mandible shrinks when trying to extrapolate. This is due to the chosen

polynomial model which is not well suited for modeling the mandibular growth.

2frontal and lateral head x-rays.
3All three studies used the scannings of patient 6 (Table 7.1).



7.3 Data material 89

7.3 Data material

The data consisted of Computerized Tomography (CT) scans of six subjects with Apert syndrome, 3

Danish (patient 6) and 28 American (patient 1-5) scans; four males and two females. All scannings

were performed using Siemens scanners and employing the same protocol. The subjects were

scanned for diagnostic, treatment planning, and follow-up purposes at the craniofacial clinics. The

individual subjects were scanned between three and seven times, and age range is 1 month to 12

years (Table 7.1).

A Previous 2D roentgencephalometric study has shown that the mandible in Apert syndrome has

relatively normal morphology except for some adaptive changes [KAC99].

The mandibular data for the two sexes are pooled in the present study, since all scannings were

carried out before puberty, and because the total sample size is relative small.

The mandibles are extracted from the CT scans by thresholding and manual segmentation (the

areas around the condyles were manually segmented). Holes inside the object are �lled and lastly

the mandibles are trilinearly resliced to 0.5 mm cubic voxels (originally 2 mm slices and 0.26 - 1.0

mm voxels in the plane).

7.4 Registration: object correspondence

In order to establish object correspondence, we search for features that match areas with equiva-

lent morphology. Since the topology is not changed dramatically for the mandible when growing,

features reecting the \stable" geometry are used. The local shape of a surface is totally charac-

terized by the principal curvatures k1; k2 (k1 > k2) and their derivatives in the coordinate system

de�ned by the principal directions (t1; t2) [dC76]. A list of some derived shape features is found in
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Patient Scan Sex Age in

number number month

1 1 M 3

2 16

3 21

4 23

5 34

2 1 M 1

2 7

3 23

4 54

(5) 56

6 60

7 72

3 1 M 1

2 5

3 17

4 32

5 36

Patient Mandible Sex Age in

number number month

4 1 F 3

2 27

3 46

4 62

5 131

6 132

7 144

5 1 M 3

2 4

3 21

4 72

6 1 F 9

2 21

3 84

Table 7.1: The table shows the data material used in the present study. Each of the six groups

(between the horizontal lines) represents CT scans from a single Apert patient (three to seven scans

of each patient). CT scan for patient 2 scan #5 is the reference mandible from which all the

semi-landmark points are propagated.
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Figure 7.1: The crest lines on the three Gaussian smoothed (kernel size, � = 3mm) mandibles at 9

month (left), 21 month (middle), and 7 years old (right). Mandibles are from patient 6, scan #1,

#2, and #3, respectively). The surfaces are translucent.

[ANK98].

We work with the extraction and matching of ridge lines [Koe84, Thi96, ANK98]. Satisfactory

results are obtained, by making a matching which only accepts good matches. The crest lines on

three mandibles are seen in Figure 7.1.

The ridge lines (or extremal mesh) are partitioned into four types corresponding to maximum

or minimum in k1 and k2, respectively. As features we only consider the lines with maximally

k1 (crest lines) and maximally k2 (here, called k2-max lines) in the extremal mesh [Thi96]. The

overall framework follows the ideas originally proposed in [STA98] and also used in [ANK98]. First,

the crest lines and k2-max lines for each dataset are extracted at a high scale, in order to get the

more global features (Figure 7.1). The crest lines are registered and an initial deformation �eld is

calculated by adaptive Gaussian smoothing [NA98]. The k2-max lines are then deformed according

to the initial deformation �eld and subsequently registered. From the two sets of matches (one from

the crest lines, the other from the k2-max lines) a combined deformation �eld is calculated. Another

iteration is done at a �ne scale, but using the high scale deformation �eld as initial displacement.

The resulting �eld is used as an initial guess in the point matching algorithm (Section 7.5).
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Figure 7.2: Matches (lines in black) between two sets of crest lines at scale 3. The crest lines on

the 21 month and 7 years old mandible (patient 6, scan #2 and #3, respectively) are red and green,

respectively. For visual clarity only every eighth match is shown.

The steps in the registration are always the same. First moment-registration, then two �rst order

polynomial deformations, followed by two second order polynomial deformations. Finally, a totally

non-rigid deformation (all points on the lines move freely) is applied (see [STA98] for details).

7.5 Registration: point correspondence

A detailed description of the algorithm used in this section may be found in [AN99]. The main

idea of the algorithm is Gaussian smoothing4 the Cartesian components of the displacement �eld

independently. In general, this means that the links are moved away from the surface (Figure 7.3 -

middle image). Then, they are projected back to the closest point on the surface (Figure 7.3 - right

image). In this way, our algorithm resembles the iterative closest point algorithm [BM92, Zha94] for

4with re-normalization so the �lter weights become unity [NA98].
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Figure 7.3: The images show schematically how the di�usion algorithm works on the deformation

�eld. The Cartesian components of the initial deformation �eld (arrows in the left image) are

Gaussian smoothed. Some of the links have now diverged from the surface (middle image) and

must be projected back on to the surface (right image). The fold is removed by repeating the steps

until the �eld does not change.

rigid registrations. The steps are repeated until the �eld is converged to steady state. Figures 7.6

and 7.7 show how the di�usion algorithm works on the displacement �eld (see Figure 7.5 for images

of the mandibles).

The crux of the algorithm then becomes (see Fig. 7.4 for a ow chart):

1. Initial displacement. Construct an initial guess of the displacement �eld.

2. Di�usion step. Convolve the displacement �eld with a Gaussian kernel of size �D.

3. Deform source. Deform the source surface with respect to the displacement �eld.

4. Matching (Projection onto the target surface). For all points on the deformed surface:

�nd the closest point on the target surface.

5. Update displacement �eld. For all points on the deformed surface: change the displace-

ments according to the match.

6. Convergence. Is the displacement �eld stable? If not, go to 2.
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Figure 7.4: Flow diagram for the di�usion algorithm. See Section 7.5 for details.

Figure 7.5: Iso-surface and crest lines for a 3 (left) and 56 (right) month old mandibles (patient 1,

scan #1 and patient 2, scan #5), respectively. The mandibles are Gaussian smoothed (� = 3mm)

in order to capture the higher scale features. The dimensions of the left and right mandibles are

(H�W�L) 18�57�53 mm and 31�79�79 mm, respectively. Surfaces are translucent.
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Figure 7.6: Result of running the di�usion algorithm (�D = 2mm) on the displacement �eld. The

surface shows the deformed 56 month old mandible to the 3 month old mandible (Figure 7.5). The

surface and wire-frame of the deformed surface are shown to the left and right, respectively. The

initial displacement, one iteration with the di�usion algorithm, and the last iteration are shown

from top to bottom, respectively. The foldings are a result of the imperfect initial registration (the

extremal-mesh registration is extended to the whole surface by Gaussian regularization [ANK98]).

The �nal result is almost perfect, but some folds still exist, owing to the discretization of the surface

and displacement �eld. The last folds are removed in Figure 7.7 by increasing �D.
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Figure 7.7: Converged di�usion algorithm with a high value of �D (�D = 10mm). The surface and

wire-frame of the deformed surface are shown to the left and right respectively. The displacement

�eld is forced to be more smooth, by increasing �D.

Figure 7.8: Left and right images show the deformed (in green) and the original (in red) crest

lines before and after applying the di�usion algorithm (�D = 2mm), respectively. In the initial

registration crest lines are registered with crest lines. Where the topology does not change and away

from umbilic points, (almost) no movement of the green crest lines are seen. Erupting teeth change

the topology on the \top of the surface" (see Figure 7.5), therefore the green crest lines move in

this area.
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Some of the steps are explained in greater detail below.

7.5.1 Regularization

We use the normalized Gaussian convolution [NA98]. For each of the Cartesian components of

the displacement �eld, a Gaussian weighted average is constructed and divided with the sum of

the weights. The standard deviation of the Gaussian �D is the only parameter in the numerical

scheme. It regulates the time steps between projections onto the surface. For simple surfaces it

may be large. For surfaces including regions of high curvature �D must be smaller in order not

to tear the surface apart (see Figures 7.6, 7.7, and 7.9). Theoretically, small values of �D should

yield the same result as larger values of �D (when the surface is not teared apart), because of the

additive nature of the Gaussian smoothing, but the discretization of the displacement �eld and

surface means that the algorithm could hang before satisfactory results5 are obtained. A good

approach is:

1. Set �D to a small number, say 1.

2. Run the algorithm.

3. If the result is satisfactory then stop.

4. Increase �D, say �D = �D + 1, go to 2.

7.5.2 Matching

As in [Zha94] kD-tree is used for �nding the closest point on the target surface. As reference

points on the triangulated target surface we use the center of mass (CM point) for each triangle.

5in the present study, a satisfactory result is a surface without folds.
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Figure 7.9: The deformation vectors are moved too far away from the surface (The value of �D is

too high) resulting in a wrong projection back onto the surface.

The triangle's three corners are used for calculating a plane. Using also the surface normals, we

construct the following algorithm is constructed for �nding the closest point: �rst, �nd the closest

CM point using the kD-tree. Secondly, calculate the closest point on the surface as the intersection

of the corresponding triangle-plane and the line given by the deformed point and the normal at the

CM point.

7.5.3 Convergence

The di�usion is stopped when

X
pi

kDn(pi)�Dn�1(pi)k2 < �; (7.1)

where pi is the points on the source surface, Dn is the displacement in the nth-iteration, and � is a

user-chosen parameter. Alternatively, a �xed number of iterations could be chosen. 5-10 iterations

is normally enough.
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7.6 Statistical description: geometric morphometric analysis

The shapes (here mandibles) are aligned into a common coordinate frame by Procrustes Analysis

[Goo91, Boo97]. A simple iterative approach is as follows (Xi is the k � 3 matrix for the k 3D-

semi-landmarks in shape i. �X is the mean shape):

1. The center of mass (the centroid) for each shape is translated to the origin.

2. The centroid size for each shape is scaled to 1. When the centroid is 0, the centroid size equals

the Frobenius norm. The centroid size is also the square root of the summed squared distance

between the landmarks and their centroid (here the origin). kXikfro =
q
trace(XT

i Xi) = 1.

3. Use one shape as the initial estimate for the mean shape �X.

4. Align all shapes with the mean shape. The optimal rotation required to superimpose Xi on

�X is V UT (a 3� 3 matrix), where UDV T is the singular-value decomposition of �XTXi with

all elements of D positive.

5. Re-estimate the mean shape as the average of the �tted locations landmark by landmark.

�X = 1
n

Pn
i=1Xi.

6. Return to 4 until converged. Convergence is reached when the mean shape only changes very

little, usually after a few iterations.

We are not using the standard Procrustes space for the growth modeling, but the space where the

mean shape for each patient has been subtracted. Having all the patients aligned, the mean shapes
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are calculated as (for indices cf. Table 7.1):

�Xpatient 1 =
1

5

5X
i=1

X1;i

... (7.2)

�Xpatient 6 =
1

3

3X
i=1

X6;i

Let ~Xp;i be the mandible where the mean mandible is subtracted:

~Xp;i = Xp;i �

8>>>>>>>>><
>>>>>>>>>:

�Xpatient 1 p = 1; i = 1; : : : ; 5

...

�Xpatient 6 p = 6; i = 1; : : : ; 3

(7.3)

~Xp;i is rearranged in to a column vector (dim(~xp;i) = 3k � 1) called ~xp;i . Let

D = ((~x1;1 � ~̂x)j : : : j(~x6;3 � ~̂x)); (7.4)

were ~̂x is the grand mean

~̂x =
1

n

X
~xp;i;

and n = 31 is number of data sets.

The covariance matrix can be written (DT is the transpose of D) as

S =
1

n� 1
DDT ; dim(S) = k � k (7.5)

When k > n (here k = 14851 and n = 31), it is more feasible to calculate the PC from the matrix

T =
1

n� 1
DTD ; dim(T) = n� n (7.6)

Let ~ej be the eigenvector of T with corresponding eigenvalue �j , sorted in descending order. It

follows from Eckart-Young's theorem [Joh63] that the n vectors

ej =
1p
�j
D~ej (7.7)

are all eigenvectors of S with corresponding eigenvalues �j. The last k�n eigenvectors are all zero.
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� = 3; k = 9087 � = 1; k = 14851

no di�usion di�usion di�usion

�̂i � 10
5 p.var c.p.var �̂i � 10

5 p.var c.p.var �̂i � 10
5 p.var c.p.var

0.3134 45.19 45.19 0.3107 67.59 67.59 0.1897 62.18 62.18

0.0496 7.15 52.35 0.0294 6.39 73.98 0.0222 7.27 69.45

0.0415 5.99 58.33 0.0233 5.06 79.04 0.0164 5.33 74.78

0.0373 5.39 63.72 0.0197 4.28 83.33 0.0151 4.95 79.73

Table 7.2: Principal component analysis of the landmark data (see text for further explanation). The

table shows the �rst four Eigenvalues, �i; i = 1; � � � ; 4. \p.var" and \c.p.var" are the percentage and

cumulated percentage of the total variation. k is the number of semi-landmarks. \no di�usion" and

\di�usion" means before and after applying the di�usion algorithm (Section 7.5). The di�usion

algorithm increases the percentage of the total variation in the �rst eigenvalue by as much as

67:59% � 45:19% = 22:40%. Decreasing � = 1 (size of the Gaussian smoothing) results in a more

locally changing topology which is \harder to capture" in a few eigenvalues, hence \c.p.var" also

decreases as expected.

7.7 Shape evaluation and prediction

Table 7.2 shows the result of the principal component analysis.

Any summary of an ostensibly homogeneous sample of biological material, in this case observed

growth in six children with the same diagnosis of synostosis, is persuasive to the extent that that

categorization \explains" the quanti�cations: the extent to which the extracted measurements are

homogeneous over the class. From Figure 7.10 it is clear that the six cases span an angular range

of nearly 90 degrees in this projection; after di�usion, the alignment is far tighter. As shown in

Table 7.2, there is far less variation around the common direction of these growth trajectories after

di�usion than before (68% vs. 45%).
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Figure 7.10: Scatterplots of the �rst and second principal component for the six cases before (left)

and after (right) the geometric-constrained di�usion is applied. For visual clarity, each patient's

mean is kept. Numbers are age in month. It is clear that the six cases span an angular range of

nearly 90 degrees in this projection (left image - upper dotted line versus dashed line, �rst pair of

age intervals); after di�usion, the alignment is far tighter.

From this display (Figure 7.10-right image), it appears that the three to seven forms of each case

lie reasonably close to a line in Procrustes space. We can thus summarize each by its �rst principal

component [Roh93], and then examine the resulting six vectors to see how they may be ordinated.

Figure 7.11 indicates the distribution of these six vectors in the six-dimensional subspace they

span. Each principal component is normalized for its actual Procrustes variance explained, and

the presentation here preserves that metric. We see a strong central tendency in these six growth

vectors, closest to the observed trend for patient 3 or patient 4. The variation around this mean

trajectory looks spherical.

A cross validation study is performed in order to evaluate the quality of the growth model.
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Figure 7.11: The distribution of the six vectors (�rst principal component for each patient) in

the six-dimensional subspace they span. Each principal component is normalized for its actual

Procrustes variance explained, and the presentation here preserves that metric. We see a strong

central tendency in these six growth vectors, closest to the observed trend for patient 3 or patient

4. The variation around this mean trajectory looks spherical.
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7.7.1 Cross validation

We demonstrate the power of this procedure by a series of growth predictions that, in all cases,

predict the oldest form for each of the six patients by altering each of the earlier forms for that

patient according to the regression on Centroid Size and the �rst principal component given by the

other �ve patients.

The model is built as described above except that one patient at a time, m 2 f1; : : : ; 6g, is excluded

totally from the analysis. Eigenvector e1;m is found by the PCA. Subscript 1 and m means the �rst

eigenvector where patient m is excluded from the generation of the model. Patient m's scans are

then aligned with the grand mean shape (calculated from the scans in the model). Notice, normally

the mean shape for given a patient which you wish to model is not known. However, subtracting

a constant shape, like the patient's mean shape, is just a pure translation in the Procrustes space,

and one scan gives a �x-point in Procrustes space. Hence, we do not have to worry about the

patient's mean shape.

A new shape is modeled by

xfuture = xi + t � e1;m ; t 2 R (7.8)

where t is the \time" parameter and xi is the initial mandible. For evaluation, t is found by

minimizing the Euclidian norm

t̂ = argmin
t
kxj � (xi + te1;m)k2 (7.9)

where xj is the shape to be approximated.

For prediction, extra information is needed in order to estimate t. The high correlation between age,

centroid size, or mandibular length and the �rst principal component (PC1) (see Figure 7.12-7.14)

shows that it is possible to estimate t from one of the three variables. Here, we only use centroid
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Patient Percentage Variance explained �

excluded in model (= 100% � �1=(
P

i
�i))

none 62.2 0

1 64.5 4.1

2 65.8 5.8

3 62.1 6.5

4 62.3 8.3

5 60.8 5.9

6 61.1 3.9

Table 7.3: This table shows the stability of the generated growth models in the cross validation

study. The second column (Percentage Variance explained) is very constant (mean=62.69, standard

deviation=1.82). � is the angle in degrees between the �rst eigenvectors in the full model, e1, and the

reduced model where one patient is excluded, e1;m. The two columns (column two and three) shows

that none of the patients individually \controls" the variability of the data. It is a bit surprising as

the last three scans of patient 4 is much older than any of the other scans (cf. Table 7.1), but it

shows the stability of the model. Our analysis have shown that especially the \trick" of Equation 7.3

enhances the stability of the PCA analysis.

size, CS (Figure 7.13). The slope, � in the model

PC1 = � � CS + � (7.10)

is estimated using linear regression (note, � is found for the reduced model). Then

t = (CSfuture � CSi) � � (7.11)

thus, we have the model

xfuture = xi + (CSfuture �CSi) � � � e1;m (7.12)
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Patient Predicted shapes Optimal shapes

number scan mean std mean std

1 1 2.4196 1.2681 2.3972 1.2827

2 1.8005 0.7700 1.6775 0.6694

3 1.7475 0.7186 1.6879 0.7347

4 1.3569 0.5837 1.3320 0.5512

2 1 3.4783 1.4310 2.8138 1.2819

2 2.3849 1.1488 2.2581 1.2569

3 2.2891 1.2738 2.2891 1.2697

4 1.5070 0.7303 1.4869 0.7241

5 1.6217 0.7708 1.5092 0.7353

6 1.3683 0.6278 1.3610 0.6244

3 1 2.7568 1.2746 2.6646 1.2016

2 2.4617 1.1608 2.3899 1.1456

3 2.0740 0.9360 2.0734 0.9322

4 0.9720 0.4141 0.8287 0.4404

4 1 3.6691 1.5971 3.6217 1.6345

2 3.1307 1.5646 2.8192 1.4632

3 2.7982 1.4229 2.7007 1.3033

4 2.8315 1.3991 2.7633 1.2584

5 2.0300 0.9833 2.0049 1.0257

6 2.0289 0.9239 1.9238 0.9318

5 1 2.6153 1.0301 2.6152 1.0326

2 3.0812 1.2174 3.0721 1.2107

3 2.1441 1.0378 2.0707 1.0054

6 1 2.8292 1.0440 2.5427 0.9922

2 2.8013 1.2309 2.6239 1.0537

Table 7.4: Table shows the mean (\mean") and standard deviation (\std") for the prediction errors.

Prediction error is calculated as the Euclidian distance between the same semi-landmark in the

observed and predicted mandible. \Predicted shapes" is the shapes calculated from Equation 7.12.

For \Optimal shapes", t is calculated using Equation 7.9. The di�erence between the two shape

models show how much the regression model (Equation 7.10) inuences the prediction. It is seen

that the additional error from the regression model is small.
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Figure 7.12: The plot shows
p
age versus the principal component for the full model (all patients

are used to construct the model). It is seen that there is a clear relation between shape and age.

The colors refer to the individual patients. The numbers on the lines are ages. The correlation

coeÆcient equals 0.80 (for all mandibles). See Section 7.7.1 for further discussion.

It is seen that only one scan of the patient and the future centroid size is needed to make the

prediction.

The explained variance in the model and the angle between e1 (full model) and e1:m (reduced

model) is almost constant as seen in Table 7.3. This indicates that the model in not controlled by

a single patient which could have been the case for patient 4, since the three latest scans all belong

to patient 4.

The last scan for each patient is predicted by altering each of the earlier scans for that patient.

The results are shown in Table 7.4. A subset of the predicted mandibles are shown in Figures 7.16-
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Figure 7.13: The plot shows centroid size (before rescaling - see Section 7.6) versus the principal

component for the full model. It is seen that there is a clear relation between shape and size. The

colors refer to the individual patients. The numbers on the lines are ages. The correlation coeÆcient

equals 0.83 (for all mandibles). See Section 7.7.1 for further discussion.

7.21. The histograms of the errors for the �gures are shown in Figure 7.22. The left images in

Figures 7.16-7.21 represent the last observed scan for each patient. The right images show the

modeled mandibles. The rainbow color coding (from blue to red) shows the errors. The colors

are \linear" from blue (0 mm) over green (5 mm) to red (10 mm). The error is calculated as the

Euclidian distance between the two same semi-landmarks in the observed and modeled scan. The

modeled shape is resized to match the size of the observed scan.

When segmenting the scans at 1-3 month of age, large cavities are erroneously introduced because

of the very low x-ray absorption (Figure 7.15). As seen from Figure 7.18, these errors are not

removed by the growth model, as expected. For that reason, the largest errors (> 7 mm) are seen
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Figure 7.14: The plot shows the length of the mandible (calculated as the length between the midpoint

of the most posterior superior point on the condylar heads and gnathion as done in [RMJH74]-

Variable 79) versus the principal component for the full model. It is seen that there is a clear

relation between shape and the length. The colors refer to the individual patients. The numbers on

the lines are ages. The correlation coeÆcient equals 0.85 (for all mandibles). See Section 7.7.1 for

further discussion.

at the cavities. Also, removal of a tooth is obviously not modeled, as seen in Figure 7.19. Besides

these very speci�c errors, we do not see errors larger than approximately 5 mm, except for patient

4, scan #7 (Figure 7.19). This patient has a very prominent chin compared to the model, which is

not seen on the other patients.

The ability to model patient 4, scan #7 accurately is a bit surprising. None, of the other patients

have been scanned at that age, the oldest scan (when patient 4 is excluded) being 7 years old

(patient 6, scan #3), but patient 4, scan #7 is 12 years old. This also indicates that the growth is
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Figure 7.15: The raw dataset of patient 3, scan #1 (1 month scanning). The mandibular bone and

teeth have low density, therefore cavities and holes are introduced when segmented.

modeled correct.

From a clinical point of view, it may not be that important to simulate the growth from a 3 month

old child to 12 years old, but the exercise shows the strength of the growth model. Figures 7.23-7.24

are included to show how the errors decrease as successively older scans are used. Notice, how small

the errors are when patient 4, scan #6 (11 years old) is used as the basis for the model. 12715 of

the 14851 semi-landmarks (85.6%) have an error less than 3 mm. Figure 7.25 shows the histograms.

7.8 Conclusion

In the present paper, a linear 3D growth model has been developed by means of Procrustes analysis

and principal component analysis. The model is capable of predicting the temporal shape change,

as seen on the mandible, accurately. The shape change, predicted by the model, is independent of

the actual patient (seen by subtracting xi from Equation 7.12).



7.8 Conclusion 111

Figure 7.16: Modeled last scan (scan #5) based on the �rst scan (scan #1) for patient 1. The large

errors are located at the cavities as described in the text. The left images being the observed scan

seen from two di�erent viewpoints. The right images are the modeled mandible seen from the same

two viewpoints. The surface is rainbow color coded from blue (0 mm) to red (10 mm) with the error,

calculated as the Euclidian distance between the same semi-landmarks in the observed and modeled

scan. The mean error is 2.4 mm.
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Figure 7.17: Modeled last scan (scan #7) based on the �rst scan (scan #1) for patient 2. The large

errors are located at the cavities introduced by the segmentation of the 1 month old scan. The mean

error is 3.5 mm. The staircases on the observed scan #7 is due to errors in the original volume.
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Figure 7.18: Modeled last scan (scan #5) based on the �rst scan (scan #1) for patient 3. The mean

error is 2.8 mm. By looking at the �rst scan (Figure 7.15) it is not surprising to �nd the large

errors at the cavities. The notch in the side of the modeled mandible is related to the hole found at

the same place on the �rst scan.
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Figure 7.19: Modeled last scan (scan #7) based on the �rst scan (scan #1) for patient 4. The mean

error is 3.7 mm. The quality of the model is surprising. Non of the scans in the model is as old

as scan #7 (12 years old). The oldest scan in the model is 7 years old (patient 6, scan #3). This

indicates the stability of the growth. The red area shows a missing tooth, which has been extracted.

The prominent chin is not modeled very well. Using older scans solves the problem (Figures 7.23

& 7.24).
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Figure 7.20: Modeled last scan (scan #4) based on the �rst scan (scan #1) for patient 5. The mean

error is 2.6 mm. An almost totally blue surface shows the high accuracy of the model.
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Figure 7.21: Modeled last scan (scan #3) based on the �rst scan (scan #1) for patient 6. The mean

error is 2.8 mm. The model is very accurate, only a slight twist of the condyles are seen.
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Figure 7.22: Histogram of the prediction errors (Euclidian distance between the two same semi-

landmarks in the observed and modeled scan) for the six predicted mandibles shown in Figures 7.16-

7.21 (starting top left and ending bottom right). The larger error is mainly due to cavities coming

from the segmentation of the very young scans (1-3 month) as seen in Figure 7.15. See Table 7.4

for mean and standard deviation. See also text for more details.
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Figure 7.23: This �gure and the next (Figure 7.24) show the predicted shape of the most recent

scan of patient 4 (scan #7) using successively more recent scans of the child. Starting at top left

and ending at bottom right, scan #1 to #6 are used as the basis mandible for the model. It is seen

that we do not have the same problems with the cavities when using scans older than the �rst. As

expected, the modeled shapes becomes better and better as the basis mandible is increased in age.

This is also reected in the histograms seen in Figure 7.25. Notice, the model itself - the �rst

eigenvector in Equation 7.12 - stays the same.
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Figure 7.24: The same mandibles as in Figure 7.23 but seen from a di�erent viewpoint. See caption

in Figure 7.23 for explanation.
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Figure 7.25: The histograms of the prediction errors seen in Figures 7.23 & 7.24. The histograms

are ordered the same way as the predicted shapes. It is evident from the histograms that the errors

decrease by increasing the age of the mandible used for the prediction. See Table 7.4 for mean and

standard deviation. See also caption in Figure 7.23 for further explanation.
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The huge increase of the percentage of the total variation in the �rst eigenvalue by applying the

geometry constrained di�usion (Table 7.2) is surprising and should be investigated further. Also

inclusion of 0D and 1D constrains would be interesting.

Other studies, like [BS83], show that the growth of the mandible is non-linear, when using a

\biological coordinate system". The present study does not reject that hypothesis, but indicates

that the growth is linear if modeled in Procrustes space. This also complies very well with the

result of [DHBS99]. A combination of the two \frames" might be very fruitful. Procrustes space

could be used for the growth modeling and the \biological space" for the visualization. Among

other, this would allow for extraction of biological knowledge and simulation of the development in

the craniofacial complex.

Figures 7.23-7.25 show the accurate model of the 12 years old mandible, based on a growth model

where non of the patients were older than 7 years (Table 7.1). The ability to extrapolate the growth

period by 5 years strengthens our hypothesis about linear growth.

The strong correlation between the shape feature (PC1) and age (Figure 7.12) or length of the

mandible (Figure 7.14) indicate that it should be possible to make an accurate prediction of the

mandible (size and shape) based on one scanning of the patient and a future age or length (of the

mandible).

At present, we can only obtain the closely spaces CT scans that allow this kind of analysis from

clinical cases with various types of craniofacial growth disturbances. As mentioned above, in Apert

syndrome the mandible is not a�ected by the primary anomaly [KAC99]. Other craniofacial syn-

dromes also show fairly normal mandibular development e.g. Crouzon syndrome and achondropla-

sia. It will be interesting, if these groups come up with the same mean growth trajectories.
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