
H
ig

h-
P

er
fo

rm
an

ce
 C

om
pu

tin
g

Tools and more
for

 High-Performance Computing

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

202614 – High-Performance Computing

Overview

� Environment & account setup

� Compilers

� IDEs

� Libraries

� Make & Makefiles

� Version control

� Data analysis tools: awk & perl

� Visualization tools

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

302614 – High-Performance Computing

The DTU computer system
02

61
4

–
T

oo
ls

 a
nd

 m
or

e

IMM

402614 – High-Performance Computing

The DTU computer system
� Campus servers:

� 1 SF E25K (72 US-III 1050/1200 MHz)

� 2 SF E6900 (24 US-IV 1200 Mhz)

� 10 SF V440 (4 US-IIIi 1062 MHz)

� 1 SF 6800 (24 US-III 1200 MHz)

� 15000+ users (students + employees)

� HPC servers:

� 1 SF E25K (48 US-IV+ 1800 MHz)

� 1 SF 6800 (24 US-IV+ 1800 Mhz)

� 200 HPC users

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

502614 – High-Performance Computing

The DTU computer system

� most applications on the system are started
by a load-balancing system

� there are different CPU types, clock
frequencies, amounts of RAM, etc

� this is a multi-user system(!)

� if you want to compare performance numbers:

� make sure to be on the same system/machine

� check the load (uptime command) – and ...

� ... check the CPUs on-line (cpucount command)

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

602614 – High-Performance Computing

Access to the system

� On Campus:

� SunRay terminals in the computer rooms at DTU
(databars). Get a smart-card to be more flexible.

� Remote access:

� Secure SHell (ssh) connection.

� ThinLinc remote desktop session:

�download ThinLinc client from www.thinlinc.com

� connect to thinlinc.gbar.dtu.dk

�preferred way, if you work a lot with GUIs

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

702614 – High-Performance Computing

Account setup

� Special HPC setup on the G-bar computers

� add the line

 /appl/htools

 to your ~/.grouprc file and log out and in again

� This initializes the environment for you, such
that you get access to the compilers and
tools needed

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

802614 – High-Performance Computing

Compilers

� Sun Studio compilers & tools

� version 11 (default) – version 12 is coming soon

� version 8, 9 & 10 still on the system

� use init.ssN (N = 8,...,11) to change version

� GNU Compilers (C/C++)

� version 3.4.3(default)

� use init.gcc

� GCC for SPARC (version 4.0.2)

� use init.sungcc

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

902614 – High-Performance Computing

IDEs

� Sun Studio (sunstudio)

� Compilers (Fortran, C/C++)

� Debugger (dbx), analysis tools – more later

� Codeforge (codeforge)

� Graphical debuggers:

� Totalview (totalview)

� Data Display Debugger (ddd)

�GUI front-end to either dbx or gdb

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1002614 – High-Performance Computing

Libraries

� Available Scientific Libraries:

� Sun Performance Library (optimized)

�BLAS, CBLAS, LAPACK, FFT, ...

� GNU Scientific Library (GSL)

�CBLAS, LAPACK, FFT, ...

� NAG Library (Mark 20)

� see http://www.hpc.dtu.dk/~gnag/

� IMSL

� ...

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1102614 – High-Performance Computing

Make & Makefiles

A tool for building and
maintaing software projects

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1202614 – High-Performance Computing

Make – The ideas behind

� maintain, update and regenerate groups of
programs

� useful tool in multi-source file software
projects

� can be used for other tasks as well, e.g.
typesetting projects, flat-file databases, etc

� in general: every task that involves updating
files (i.e. result) from other files (i.e. sources)
is a good candidate for make

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1302614 – High-Performance Computing

Make – The ideas behind

intermediate level

result (executable)

Dependency graph:

source file level

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1402614 – High-Performance Computing

Make – The ideas behind

intermediate level

result (executable)

Dependency graph:

source file level

compile

link

change

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1502614 – High-Performance Computing

Make – The ideas behind

intermediate level

result (executable)

Dependency graph:

source file level

compile

link

change

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1602614 – High-Performance Computing

Make – The ideas behind

� Compiling by hand:

� error prone

� easy to forget a file

� typos on the command line

� There is a tool that can help you:

make

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1702614 – High-Performance Computing

Make – The ideas behind

Things 'make' has to know:

� file status (timestamp)

� file location (source/target directories)

� file dependencies

� file generation rules (compiling/linking)

� general rules (.c � .o)

� special rules (io.c � io.o)

� tools (compilers, etc.)

- filesystem - Makefile - environment

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1802614 – High-Performance Computing

Makefile – rulesets...and more

� make needs a set of rules to do its job

� rules are defined in a text file – the Makefile

� standard names: Makefile or makefile

� non-standard names can be used with the '-f'
option of make: make -f mymf ...

� preview/dryrun option: make -n ...

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

1902614 – High-Performance Computing

Makefile – rulesets...and more

There are two major object types in a Makefile

� targets

� definition by a “:”

� followed by the dependencies (same line)

� followed by lines with the commands to execute

� macros

� definition by “=”

� single line (use “\” to extend lines)

� ... and comments: (lines) starting with #

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2002614 – High-Performance Computing

Makefile – rulesets...and more

project1: data.o main.o io.o

cc data.o main.o io.o -o project1

data.o: data.c data.h

cc -c data.c

main.o: data.h io.h main.c

cc -c main.c

io.o: io.h io.c

cc -c io.c

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2102614 – High-Performance Computing

Makefile – rulesets...and more

project1: data.o main.o io.o

cc data.o main.o io.o \

-o project1

echo “Done.”

data.o: data.c data.h

cc -c data.c

the main program

main.o: data.h io.h main.c

cc -c main.c

 target dependencies

 command(s) to execute
 TAB !!!

 comment line

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2202614 – High-Performance Computing

Makefile – rulesets...and more
Sample Makefile

CC = gcc

OPT = -g -O3

WARN = -Wall

CFLAGS = $(OPT) $(WARN) # the C compiler flags

OBJECTS = data.o main.o io.o

project1 : $(OBJECTS)

$(CC) $(CFLAGS) -o project1 $(OBJECTS)

clean:

@rm -f *.o core

realclean : clean

@rm -f project1

file dependecies

data.o : data.c data.h

main.o : data.h io.h main.c

io.o : io.h io.c

 Macro definitions

 Macro reference

Where are my rules
for compiling the .o files?

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2302614 – High-Performance Computing

Makefile – rulesets...and more

bohr $ make

gcc -g -O3 -Wall -c -o data.o data.c

gcc -g -O3 -Wall -c -o main.o main.c

gcc -g -O3 -Wall -c -o io.o io.c

gcc -g -O3 -Wall -o project1 data.o main.o io.o

Running make:

How did make know how to build data.o, ... ?

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2402614 – High-Performance Computing

Makefile – rulesets...and more

 built-in data base of “standard rules” and
“standard macros”:

� known rules:

� compile .o files from a .c/.cpp/.f/... source file

� link executables from .o files

� pre-defined macros:

� CC, CFLAGS, FC, FFLAGS, LD, LDFLAGS

� view with make -p -f /dev/null
(long listing!)

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2502614 – High-Performance Computing

Makefile – rulesets...and more

GNU Make 3.80

Variables

...

default

OUTPUT_OPTION = -o $@

makefile (from `Makefile', line 3)

CC = gcc

environment

MACHTYPE = i686-suse-linux

makefile (from `Makefile', line 6)

CFLAGS = $(OPT) $(WARN)

makefile (from `Makefile', line 4)

OPT = -g -O3

makefile (from `Makefile', line 5)

WARN = -Wall

default

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) -c

makefile (from `Makefile', line 8)

OBJECTS = data.o main.o io.o

...

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2602614 – High-Performance Computing

Makefile – rulesets...and more

...

Implicit Rules

.c.o:

commands to execute (built-in):

$(COMPILE.c) $(OUTPUT_OPTION) $<

...

data.o: data.c data.c data.h

Implicit rule search has been done.

Implicit/static pattern stem: `data'

Last modified 2004-08-27 10:08:56.008831584

File has been updated.

Successfully updated.

commands to execute (built-in):

$(COMPILE.c) $(OUTPUT_OPTION) $<

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2702614 – High-Performance Computing

Makefile – rulesets...and more

Practical hints:

� preview/dryrun option: make -n ...

� switch off built-in rules/macros:
 make -r ...

� check the known suffixes (.SUFFIXES) and
implicit rules for your source files, e.g. does
gmake still fail for .f90/.f95

� add suffixes needed: .SUFFIXES: .f90

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2802614 – High-Performance Computing

Makefile – rulesets...and more

Practical hints (cont'd):

� be aware of timestamps (Network-FS)

� override macros on the command line:
bohr $ make

gcc -g -O3 -Wall -c -o data.o data.c

gcc -g -O3 -Wall -c -o main.o main.c

gcc -g -O3 -Wall -c -o io.o io.c

gcc -g -O3 -Wall-o project1 data.o main.o io.o

bohr $ make CFLAGS=-g

gcc -g -c -o data.o data.c

gcc -g -c -o main.o main.c

gcc -g -c -o io.o io.c

gcc -g -o project1 data.o main.o io.o

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

2902614 – High-Performance Computing

Makefile – rulesets...and more

Special variables/targets:

� the first target in Makefile is the one used
when you call make without arguments!

� automatic variables:

� $< - The name of the first prerequisite.

� $@ - The file name of the target of the rule.

� for more information:

� man make

� info make (usually gmake)

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3002614 – High-Performance Computing

Makefile – rulesets...and more

Makefile design – Best practice:

� start with the macros/variables

� call your first target “all:” and make it depend
on all targets you want to build

� have a target “clean:” for cleaning up

� avoid explicit rules where possible, i.e. use
redundancy

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3102614 – High-Performance Computing

Makefile – rulesets...and more

Makefile design – Best practice (cont'd):

� check your dependencies:

� by hand

� most C/C++ compilers can generate Makefile
dependencies (see compiler documentation)

� Sun Studio: cc -xM1

� Gnu C: gcc -MM

� external tool: makedepend -Y

� Note: the options above ignore /usr/include

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3202614 – High-Performance Computing

Makefile – rulesets...and more

Common mistakes:

� missing TAB in “command lines”

� wrong variable references:

$VAR instead of $(VAR)

� missing/wrong dependencies

� remember: each command is carried out in a
new sub-shell

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3302614 – High-Performance Computing

Makefile – rulesets...and more

Makefiles – and Makefiles (from IDEs)

� Most IDEs create their own Makefiles

� ... which are often not very smart

� ... which are often not compatible

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3402614 – High-Performance Computing

Make and Makefiles: Labs

� There are five short lab exercises

� download from Campusnet

� unzip the file

� the exercises are in the directories lab_N

� read the README files for instructions

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3502614 – High-Performance Computing

Make and Makefiles: Labs

� makedepend:

� if man makedepend does not work, use

 man -M/usr/openwin/man makedepend

� Hints:

� M_PI is a definition from <math.h>

� sin() is a function from libm.so, so you have to
link with that library (use -lm the right place)

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3602614 – High-Performance Computing

Version control

� Larger – but also simple – software projects
need to keep track of different versions

� This is very useful during development, e.g.
to be able to go back to the last working
version

� Versioning Tools:

� RCS – single user, standalone

� CVS – multi-user, network based

� Subversion – multi-user, network based

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3702614 – High-Performance Computing

Version control

� DTU has a central CVS server

� nice tool to share and control source files

� request access on http://cvs.gbar.dtu.dk/

� basic introduction:
http://www.gbar.dtu.dk/index.php/CVS

� simple CVS exercise (in Danish):

�http://www.gbar.dtu.dk/opgaver/cvs.pdf

� there will be a Subversion server in the
“near” future as well

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3802614 – High-Performance Computing

Data analysis tools

� Scientific software usually produces lots of
data/datafiles

� There are good tools to do (a quick) analysis:

� awk – standard UNIX/Linux tool

� perl – available on many platforms

� Both tools can be used

� from the command line

� with scripts

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

3902614 – High-Performance Computing

Data analysis tools – awk

� awk operators:

Field reference: $

 $0: the whole line - $n: the n-th field

Increment or decrement: ++ --

Exponentiate: ^

Multiply, divide, modulus: * / %

Add, subtract: + -

Concatenation: (blank space)

Relational: < <= > >= != ==

Match regular expression: ~ !~

Logical: && ||

C-style assignment: = += -= *= /= %= ^=

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4002614 – High-Performance Computing

Data analysis tools – awk

Examples:

� Print first two fields in opposite order:

 awk '{ print $2, $1 }' file

� Print column 3 if column 1 > column 2:

 awk '$1 > $2 {print $3}' file

� Print line (default action) if col. 3 > col. 2:

 awk '$3 > $2' file

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4102614 – High-Performance Computing

Data analysis tools – awk

Examples (cont'd):

� Add up first column, print sum and average:

 awk '{s += $1}; END { print "sum
is", s," avg is", s/NR}' file

� Special keywords/variables:

BEGIN do before the first record

END do after the last record

NR number of records

NF number of fields

$NF the value of the last field

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4202614 – High-Performance Computing

Data analysis tools

� Other useful standard Unix tools for data
analysis:

� sort

� uniq

� head, tail

� wc

� sed

� ...

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4302614 – High-Performance Computing

Data analysis tools – perl

� Perl is a very powerful tool, that combines
the features of awk, grep, sed, sort, and
other Unix-tools into one language

� Good tool for more complex data analysis
tasks

� Web-site: http://perl.org/

� Archive of perl programs:

� Comprehensive Perl Archive Network – CPAN

� http://www.cpan.org/

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4402614 – High-Performance Computing

Data analysis tools – perl

Perl example script:

#!/usr/bin/perl

while (<>) {

 next if /^#/; # skip comment lines

 @fields = split(); # split the line

 if ($#fields == 2) { # 3(!) elements

 print "$fields[0] $fields[2]\n";

 }

 else {

 print;

 }

}

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4502614 – High-Performance Computing

Visualization

 Visualization is an important part of Scientific
Computing

 Motivation: What's that?

 A (-17, -6)

 B (-14, -7)

 C (-13, -8)

 D (-10.5, -10)

 E (-6, -11)

 F (-7, -13)

 G (-10, -12)

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4602614 – High-Performance Computing

Visualization

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4702614 – High-Performance Computing

Visualization

� Simple tools to visualize data:

� Gnuplot (gnuplot)

� command based, flexible

�good for scripting, batch analysis

� limited graphics (not always suitable for publishing)

� Grace (xmgrace)

�GUI-based

�difficult to do scripting, batch analysis

� very good graphics (publication-ready)

� ... or whatever tool you like/prefer

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4802614 – High-Performance Computing

Visualization

Gnuplot example:

gnuplot> set xlabel "time/secs"

gnuplot> set ylabel "Signal/V"

gnuplot> set title "Wave"

gnuplot> set timestamp

gnuplot> plot 'wave_good.dat' with linespoints

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

4902614 – High-Performance Computing

Visualization

Grace example:

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

5002614 – High-Performance Computing

Visualization

� Best practice:

� label the axes

� use legends (and titles)

� use the right scaling

�a plot of a circle should be a circle

� don't overload figures with information – use
more figures instead

� colors are useful – but can also be confusing

02
61

4
–

T
oo

ls
 a

nd
 m

or
e

IMM

5102614 – High-Performance Computing

Data analysis – lab exercise

� download the file wave.zip from Campusnet

� follow the instructions in wave.readme

� Goal:

� get used to awk (choose perl, if you like or know
it already)

� get used to either Gnuplot or Grace (or the tool
you know/like)

