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The accuracy of the vortex method depends on the choice of the cutoff function and of the 
cutoff length 6 and on the initialization of the vorticity distribution. The practical effect of 
these choices on the vortex method for mviscid flows in the absence of boundaries is 
invcstigatcd. In our examples the vorticity is radially symmetric and has bounded support. 
The consistency error and its components, the smoothing error and the discretization error, 
for high-order cutoff functions and several values of the cutoff length S are considered. The 
numerical experiments indicate that for smooth flows, high-order cutoffs improve the accuracy 
of the approximation. The best value of 6 is larger than h, the Initial distance between the vor- 
tices; it is time dependent in the sense that longer time integration requires a larger 6. In 
addition the optimal choice of 6 is insensitive to the smoothness of the flow. If 15 is close to h 
then the accuracy is lost in a relatively short time. This loss of accuracy is caused by the 
growth of the discretization error. 1 1985 Academx Presr. Inc 

INTRODUCTION 

The vortex method is a grid-free method that simulates incompressible fluid flow 
by approximating the vorticity by a finite sum of functions of small support and 
computing their evolution. These functions, called cutoff or core functions, are 
parametrized by 6 and approximate the delta function as 6 tends to zero. A general 
discussion of vortex methods is given by Chorin [9] and by Leonard [ 161. The 
vortex method as presented by Chorin in [S] has been successfully used to simulate 
high Reynolds number fluid flow. Applications of the vortex method include the 
calculation of unstable boundary Iayers (Chorin [9]), aerodynamic calcuIations 
(Cheer [7], Spalart [25], Leonard and Spalart [17]), flow through heart valves 
(McCracken and Peskin [is]), the simulation of turbulent mixing layers 
(Ashurst [3]), the modelling of turbulent combustion (Ghoniem, Chorin and 
Oppenheim [ 121, Sethian [24]), and flows of variable density (Anderson [ 11). 

The convergence of the vortex method has been established for two-dimensional 
inviscid flows in the absence of boundaries. Hald [ 131 showed that the vortex 
method can converge with second order accuracy to the solution of Euler’s 
equations as the number of vortices increases. Subsequently Beale and Majda 
[4. S] extended Hald’s results to obtain higher order methods in two and three 
dimensions. Recently Beale and Majda’s results were simplified by Cottet [ll]. A 
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simpler version of Beale and Majda’s and Cottet’s proofs is given by Anderson and 
Greengard [2]. The convergence proofs are based on consistency and stability 
estimates. 

In this paper we investigate the practical accuracy of the vortex method for 
inviscid flows in the absence of boundaries. We assume that the vorticity is radially 
symmetric and has bounded support. Thus the solution of Euler’s equations can be 
given explicitly. We look at the consistency error and its components: the 
smoothing error and the discretization error. 

The accuracy of the vortex method depends on how the delta function is 
approximated. Hald [ 131 presented several cutoff functions which give second 
order accuracy. Beale and Majda [6] suggest a class of infinitely differentiable 
cutoff functions which in theory provide high order accuracy. We examine the 
accuracy obtained with these cutoff functions for smooth and nonsmooth flows. 

Another factor that affects the accuracy of the approximation is the choice of the 
cutoff parameter 6. Theoretically S is chosen so that the smoothing error and the 
discretization error are of the same order. Chorin [8,9] chooses n8 equal to the 
average distance between the vortices created along a boundary. Chorin’s choice of 
6 is much larger than the average distance between the vortices. Hald [ 131 chooses 
6 = &, where h is the initial distance between the vortices. Beale and Majda [S] 
suggest that for sufficiently smooth flows we can choose 6 close to h and obtain an 
order of accuracy almost as high as the order of the cutoff function. Our numerical 
experiments indicate that with a suitable choice of 6 the vortex method converges. 
However, if 6 is close to h the accuracy in the velocity and vorticity approximations 
is lost in a relatively short time. The best choice of 6 is time dependent, in the sense 
that longer time integration requires a larger 6. In addition the optimal choice of 6 
is quite insensitive to the smoothness of the flow. The loss of accuracy is caused by 
the discretization error, which comes from approximating a convolution integral by 
the trapezoidal rule. Since the discretization error decreases as 6 increases while the 
smoothing error increases with 6 we can choose a larger value of 6 to preserve the 
accuracy over a fixed time interval. A possible explanation for the growth of the dis- 
cretization error in time is the disorganization of the computational points. 
However, we have not found an explanation to the observed decrease in the order 
of accuracy. 

The initial vorticity distribution can be approximated in two different ways. Hald 
[ 131 assigns to each computational point the vorticity contained in the blob 
surrounding it, while Beale and Majda [S] assign the value of the vorticity at the 
point times the area of the blob. Our numerical experiments indicate that Hald’s 
choice leads to second order accuracy for any cutoff function, while Beale and 
Majda’s approximation can provide high order accuracy. 

Earlier numerical experiments with radially symmetric vorticity distributions 
were presented by Hald and Del Prete [ 141. They used cutoff functions of the type 
introduced by Chorin [S] and observed second order accuracy. Nakamura, 
Leonard and Spalart [20] tested the accuracy of the vortex method for inviscid 
shear layers. Numerical experiments with high-order cutoff functions were presented 
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by Perlman [22]. Additional numerical experiments are given by Beale and 
Majda [6]. 

This paper is divided into four parts. In Section 1 we present the derivation of the 
vortex method and a summary of the existent convergence proofs. Section 2 con- 
tains our test problems and how we measure the errors. In Section 3 we present our 
numerical experiments. We study the behavior of the consistency error as a function 
of h, 6, and of the time t and look at its components: the smoothing error and dis- 
cretization error. In Section 4 we compare the two different approximations of the 
initial vorticity distribution. 

1. THE VORTEX METHOD IN Two DIMENSIONS 

Consider the vorticity-stream function formulation of Euler’s equations in the 
(x, y) plane: 

u,+(u~v)u=o, (1.1) 

A’P= -co, (1.2) 

u, = Y,., u2= -Y,, (1.3) 

where u=(u,, u2) is the velocity vector, z = x ( , y) is the position vector, w is the 
vorticity, and Y is the stream function. 

By solving the Poisson equation (1.2) we obtain 

Y(z) = j G(z - z’) u(z’) dz’. 

where G(z) = -(1/2x) log Iz(, with lz\’ = x2 + y2, is the fundamental solution of 
the Laplace equation (see [ 15, p. 751) and dz’ = dx’ dy’. The velocity u is obtained 
by differentiating the stream function with respect to y and x, and is given by the 
integral 

u(z, t) = 5 K(z - 2’) u(z’) dz’, (1.4) 

where 

K(z)= -& 
In the Lagrangian description of the flow, we follow the motion of material 

points of the fluid. Thus if a = (a,, a*) denote the Lagrangian coordinates, then the 
path of a particle starting at the point z = a is determined by 

z(cc, 0) = a. (1.5) 
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It follows from Eq. (1.1) that the vorticity is conserved along particle paths. More 
precisely, (do/dt)(a, t) = 0 or equivalently o(z(a, t), t) = o(c1,0), see Chorin and 
Marsden [I lo]. By using this fact and the fact that the flow is incompressible we can 
write the right-hand side of Eq. (1.5) in the following way: 

u(z(a, t), t) = 1 K(z - z’) o(z’, t) dz’ 

= 
1 

K(z - z(a, t)) w(z(a, t), t) da (1.6) 

= 
I 

K(z - z(a, t)) ~(a, 0) da. 

We will now describe the discretization of the system of ordinary differential 
equations (1.5). Assume that at time t = 0 the support of the vorticity is contained 
in the region 52. We introduce a square grid in the c1 plane. The squares Bj are cen- 
tered at the grid points jh = (j,, j,) h and have length and width h. We denote by 
zj(t) = z(ih, t) the position a time t of a fluid particle starting at the point jh at time 
t = 0. Let u,(t) = u(z,(t), t) be the velocity at the point zj. By using the grid points z, 
that are contained in the support 52 of the initial vorticity distribution, we 
approximate the right-hand side of (1.6) by 

Uh(Z, t)=C K(Z-Zj(t)) Cj, (1.7) 

where the cys have one of the following two forms: 

Cl = s 4~) 4 (1.7a) 
4 

c, = w(jh) h2. (1.7b) 

One possible numerical method consists of replacing Eq. (1.5) by the system of 
ordinary differential equations 

dz”i( t) 
-= ii?(t), 

dt 
Zi(O) = ih, 

where 

zq t) = c K(Zi( t) - 2,( t))c,. (1.9) 
j#i 

Thus we expect that the 5;s will approximate the particle positions. The algorithm 
(l.S), (1.9) is called the point vortex method. It was introduced by Rosenhead [23] 
to study the behavior of vortex sheets. Since ah(z, t) = K * C 6(z -zi(t)) ci we see 
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that U” is the velocity corresponding to a collection of point vortices with 
strength c,. 

Since the kernel K is singular at the origin the velocity tends to infinity as the dis- 
tance between two particles tends to zero. To overcome this difficulty, Chorin [S] 
replaced the kernel K by a kernel Ks, which is bounded at the origin. The kernel K, 
can be obtained by convolving K with a smooth cutoff function $s 

KJz) = K * Il/Jz) = j. K(z -z’) $Jz’) dz’, (1.10) 

where I,+& is a radially symmetric function and satisfies I,+~(z) =S-*1c/(z/6) and 
{lc/(z) dz = 1. Thus $ 6 approximates the Dirac delta function as 6 -+ 0. The velocity 
for the point vortex method is then replaced by 

uh(z, t) = c K,(z - zi(t)) c,. (1.11) 

We can then compute the particle trajectories by solving the system of ordinary dif- 
ferential equations 

&I? 
dt ” 

Zi(0) = ill, (1.12) 

where 

iif’ = c K,(Zi(t) - Fj(t)) ci. 
ifi 

13) 

The algorithm (1.12) (1 .13) is called the vortex blob method. Since u”(z) = 
K * C@Jz - zj(t)) cj, we see that uh is the velocity field corresponding to the vor- 
ticity distribution &(z, t) = Cll/Jz - zj(t)) cj. Thus we arrive at Chorin’s inter- 
pretation of the vortex method [S], namely that the vorticity is approximated by a 
sum of vortex blobs of common shape t+Ga centered at z,(t) and with strength cj. 

The accuracy of the vortex method depends on the smoothness of the flow, on 
the initial approximation of the vorticity, and on the choice of cutoff function $. 

Numerical experiments by Hald and Del Prete [ 141 indicate that the rate of con- 
vergence for the vortex method with Chorin’s cutoff functions is essentially second 
order. Hald [13] showed that the vortex method can converge with second order 
accuracy in the L* norm, for arbitrarily long time intervals. Hald’s cutoff functions 
$ are twice continuously differentiable, have support in the disk IzI < 1 and are 
constructed so that the first three moments of K - Kb vanish. In addition Hald [ 133 
uses (1.7a) to define cj, i.e., he lets c, be the vorticity contained in the square B,. 
Our numerical experiments, presented in Section 4, and Cottet’s results [ 11, 
Theorem 4.11 show that by using Hald’s vorticity approximation and cutoff 
functions the rate of convergence for the vortex method can never be larger than 
quadratic. 
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Beale and Majda [S] have improved Hald’s results by showing that the vortex 
method can converge with arbitrarily high-order accuracy, provided the initial vor- 
ticity o is sufficiently smooth and that the velocity and vorticity are approximated 
using the c,‘s defined in (1.7b) and finally that the cutoff function $ satisfies 

(i) +C*(R’). (1.14a) 

(ii) j$(z)dz = 1, 

s zYl)(z) dz = 0, Y=(Y1,Y*), ldlYlGP--. 

(iii) For some L > 0, and for any multi-index /I the Fourier 
transform tJ([) satisfies 

(1.14c 1 

The second condition is called the moment condition. Beale and Majda’s results 
are summarized in 

THEOREM (Beale and Majda [S]). Assume that the cutoff function $ satisfies 
(l.l4a)-( 1.14c)for some 2 <L < CO andfor some p > 2. Choose 6 = hY, with 0 < q < 1 
if L = co and q < (L - l)/(L + p) if L if finite. If the velocity field u(z, t) is suf- 
ficiently smooth for z E R2 and 0 < t < T and the initial vorticity has bounded support, 
then for any 1 < p < 00 and T > 0 there exists an h, > 0 such that for all h < ho 

max IlZj(t) -Z,(t)ll,;< Chp9, 
OSf<T 

max IIuj(t)--~(t)llLf:~ChPY. 
OGIGT 

The convergence proofs for the vortex method by Hald [13], Beale and Majda 
[S], Cottet [ 111, and Anderson and Greengard [2] are based on consistency and 
stability estimates. The convergence is proved by estimating the distance between 
the exact velocity u defined in (1.4) and the computed velocity iih defined in (1.11). 
By using the triangle inequality we can estimate the distance by 

llu(t) - et111 6 II4t) - Uh(t)ll + IluhW - ii”(f)ll. 

Here uh is evaluated by using the exact particle positions zj in Eq. (1.7). The first 
term Ilu- ahI1 is called the consistency error. It is the distance between the exact 
velocity u and the discrete velocity uh obtained by replacing the continuous vor- 
ticity distribution by a collection of vortex blobs $a centered at zj(t) and with 
strength wjh2. The second error term lluh-z?ll is called the stability error. It 
measures how the computed particle paths differ from the exact ones. 
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In their proof, Beale and Majda further estimate the consistency error by the sum 
of two terms: 

Ilu(r)-uh(t)ll= pqz-z’)w(z’,t)dz’-~K,(z-zi(t))o,h2 
II i 

d K(z - z’) w(z’) dz’ - 1 K,(z - z’) o(z’) dz’ 
II 

+ {&(z-zWz’)dz’-C&(z-zi(t))wjh2 
II i il 

The first error term 11~ - zP/l is called the smoothing error. It arises because the ker- 
nel K is replaced by the kernel Ka = K * $a. The smoothing error depends on the 
cutoff parameter 6 and on the time t, but does not depend on the grid size h. The 
second term I/U’ - uhll is called the discretization error. It represents the error in the 
numerical integration of the function KJz - z’) o(z’) by the trapezoidal rule. The 
discretization error depends on the mesh length h, on the cutoff parameter 6 and on 
the time t. 

Beale and Majda have shown that if the flow is smooth then the smoothing error 
is of order dp, where p measures the number of moments of the cutoff function that 
vanish. The discretization error is of order S’&-‘-‘, where E > 0 and L depends 
on the rate of decay of the Fourier transform of $. Thus, the consistency error can 
be bounded by C, hp + C,(h/6) L 6 ~ ’ ~ ‘, where C, and C2 are independent of 6 and 
h. For a fixed mesh length h we would like to choose 6 so that the consistency error 
is as small as possible. Beale and Majda choose 6 = h4 with q = (L - 1 - E)/(L + p). 
With this choice the smoothing error and the discretization error are of order hpy. 
For smooth cutoff functions L may be arbitrarily large. Thus we can choose 6 close 
to h and obtain in principle a pth-order method. 

The last choice is valid only for smooth flows. If the flow is not infinitely differen- 
tiable, then the exponent L in the estimate of the discretization error cannot be 
larger than the number of derivatives of the vorticity, see Lemma 2.5 by Cottet 
[ 1 l] or the Discretization Lemma by Anderson and Greengard [a]. The estimate 
of the smoothing error also depends upon the smoothness of the flow. Thus a 
higher order cutoff does not always lead to more accurate results. 

2. CHOICE OF TEST PROBLEMS 

In this section we describe the various test problems we have used in the 
numerical experiments to check the accuracy of the vortex method. We consider the 
radially symmetric initial vorticity distribution 
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o”‘(Z) = 
i 

(1 - b12)’ IZI < 1 
0 IZI > 1. 

The corresponding velocity field is given by 

where 

121 < 1 

IZI > 1. 

The velocity field ~(2, t) is in C’(R*) and is C” for IzI # 1. The flow is radially sym- 
metric and rotates about the origin. Fluid particles at different radii move at dif- 
ferent speeds. The particles near the origin complete one rotation at time r = 471, 
while the particles on Izj = 1 complete one rotation a t = 32~ 

At time t = 0 we place the particles at the points j/r = (j,h,j,h) on a square grid 
on the (x, y) plane. Since w = 0 outside the unit circle all our computational points 
lie inside the unit circle. 

Our second test problem is a C” radially symmetric vorticity distribution 

ow(z) = e - m2& 

The corresponding velocity field is given by 

uqz 7 t) = - &(l-e-‘*‘z’*)( yx). 

The flow is radially symmetric and rotates about the origin. The vorticity dis- 
tribution does not have compact support, but decays rapidly at infinity. To prove 
convergence of the vortex method Cottet Cl1 1 assumes that the vorticity and its 
derivatives decay rapidly at infinity. Thus our choice of o is within the range of 
validity of his theory. As in the previous test case we place the particles at the 
points jh = (jr/z, j,h) on a square grid on the (x, y,) plane. We neglect those par- 
ticles zj for which wc2’(zj) < 10e6. Our numerical experiments indicate that this does 
not affect the qualitative behavior of the error. 

In the third and last test case all the fluid particles inside the unit circle rotate at 
constant speed. The vorticity distribution is given by 

w”‘(Z) = 1 1 I4 G 1 
0 Izl > 1 

581/59/2-3 
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and is discontinuous at Izl = 1. The corresponding velocity field is given by 

where 

To test the accuracy of the vortex method we have used Gaussian cutoff functions 
of different orders: 

ti) P=& ** =& e-‘2l262, (2.1) 

(2.2) (ii) p=4, 

(iii) p= 6, ~~=~(~e~.21”:-e~‘.‘bl+ilIu’l’d:). 

(iv) p=8, 

where r2 =x2 + y2. These cutoff functions have L = cc and are suggested by Beale 
and Majda in [6]. 

The numerical experiments by Hald and Del Prete [14], Anderson [ 11, and 
Nakamura, et al. [20] have shown that the vortex method is stable. In this paper 
we will therefore investigate the consistency error in detail. As suggested by the 
numerical results presented in Section 4 and by Cottet’s observation [ 11, 
Lemma 4.11 we assign to each particle zj the vorticity value cj = cejh2. Here 
wj= w(zj) and h2 is the area of the square Bj centered at zj. Thus we approximate 
the vorticity and the velocity by 

uyz, t) = c K,(z -z,(t)) Wjh2, 

d(z, t) = C t+b6(z - zj(t)) cojh2. 

The behavior of the consistency error for the velocity and for the vorticity as a 
function of h, 6, and t will suggest a choice of the cutoff parameter 6 for a fixed time 
interval [0, T]. 
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We measure the consistency error for the velocity and the vorticity in the discrete 
L* norm: 

u* 
E, = c lu(z,, t)- uh(zj, t)12 h* (2.5) 

i 
1/* 

E,= 1 lW(Zj, t)-Wh(zj, t)I*h* . 
i 

We also compute the relative errors E,/llull and Eo/~~o~~, where Ilull and ~~o~~ are the 
discrete L* norms of the velocity and the vorticity. Similarly we measure the 
smoothing error and the discretization error for the vorticity in the discrete L* 
norm: 

( 
1/* 

Ez= C lO(Zj)-W'(Zj, t)l*h* 9 
i 

w 
Et:= C Iw’(z~, t)-Wh(Zj, t)l*h* 1 

j 

(2.7) 

where w6 = tis * w. 
By using the cutoff functions (2.1)-(2.4) we compute the velocity uh and the vor- 

ticity wh with 0.05 <h < 0.2 and 6 = hq, 0.5 < q < 1, and in the time interval [0,20]. 
This corresponds to 60 to 950 vortices. We compute w’ = tja * w by numerical 
integration. Specifically we use the routine DOlDAF of the NAG library [ 191 with 
an error tolerance of lo-‘. The method in this routine is described by Patterson in 
[21]. Finally we estimate the rate of convergence of the vortex method by using 
two successive values of h: 

rate of convergence = 
lo&%,/E,,) 
logh/M . 

(2.9) 

3. NUMERICAL RESULTS 

For a fixed time interval [0, T] we will consider the approximations to the 
velocity and the vorticity to be accurate if the rate of convergence is constant over 
the time interval. The accuracy of the vortex method depends on 

(i) the approximation of the initial vorticity distribution, 
(ii) the choice of cutoff function + for some L and p, 
(iii) the cutoff parameter 6 = hq, for some 0 <q < 1. 

We present now the results of the numerical experiments for the first test 
problem. Our numerical experiments show that the consistency errors E, and E, 
are qualitatively similar for the three cutoff functions (2.2)-(2.4) and differ from 
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FIG. 3.1. Velocity and vorticity consitency errors in the time interval [0, 203, with o =&‘I, p=4 
and 6 =IP5. h: (-) 0.2, (...) 0.14, (-.-) 0.10, (---) 0.07, (---) 0,05. 

those of (2.1). Hence, we contrast the results obtained with these higher order cutoff 
functions with those obtained for the second order cutoff (2.1). 

Consider one of the higher order cutoff functions. We find that for a fixed 
6 = h’ -’ with E small and 0.05 6 h < 0.2 both E, and E, increase sharply in time. 
However, E, and E, do not increase without bound; they reach a local maximum 
at time T, and oscillate around it later on. The time T, increases as h decreases. 
We can observe this behavior of E, and E, for the cutoff function (2.2) with 
6 = ho.95 in Fig. 3.1. 

In addition to the sharp increase of the error as a function of t, we find that as a 
function of h and with 6 = h’ -’ with E small, neither E, nor E, decrease uniformly 
as h decreases. The rate of convergence is kept constant for a short time interval 
and then decreases sharply. This can be seen in Fig. 3.2 for the cutoff function (2.2) 
and 6 = h”.g5. This time interval becomes shorter as h decreases and as p, the order 
of the cutoff function, increases (see Fig. 3.3). We also find that for this choice of 6 
and some T > 0, the errors do not decrease with h. We observe in Fig. 3.1 that this 
effect is more pronounced in the consistency error of the vorticity than in the con- 
sistency error of the velocity. 

We consider now the error as a function of 6, with h fixed and set 6 = h4, with 
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FIG. 3.2. Order of convergence of the velocity and vorticity approximations in the time interval 
[0, 203, with o = o(‘), p = 4, and 6 = Iz’.~‘. h: (-) 0.2, (...) 0.14, (-.-) 0.10, (---) 0.07. 

0.5 <q < 1. The theoretical estimates by Beale and Majda [S] and Cottet [ 111 
show that if 6 = hY with q < 1, then the consistency error is of order I$“‘, where p is 
the order of the cutoff function. Hence the errors should increase as q decreases. We 
find that this holds for a short time interval [0, P]. This time interval becomes 
shorter as h descreases and as p increases. Table 3.1 shows the consistency errors E, 
and E, for p = 4, h = 0.07 (465 vortices), and 6 = h9 with 0.5 < q < 1. We observe 
that at time t = 0 the errors increase as q decreases. This agrees with the theoretical 
estimates. However, at time t = 10, the velocity error is the smallest for q = 0.85, 
while the vorticity error is the smallest for q= 0.75. At time t = 20 the smallest 
velocity error is obtained when 6 = II’.~, while the smallest vorticity error is 
obtained when 6 = !I’.~. 

As 6 increases the sharp increase of the error in time is gradually attenuated and 
we observe a more uniform behavior of the error as h + 0 over the time interval 
[0, 203 (compare Fig. 3.1 with Fig. 3.4). 

One could think that the behavior of the error for 6 = II’-’ with E small, is due to 
the fact that the flow in our test case is not infinitely differentiable. Therefore to 
choose 6 close to h may not be consistent with the theoretical estimates, and a 
larger 6 has to be chosen. 
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FIG. 3.3. Order of convergence of the velocity and vorticity approximations in the time interval 
[0,20] for 0 = u#‘), p = 4, (-), 6 (..,), 8 (-. -); h = 0.07; and 6 = /I’-~~. 

We consider now the second test problem to check how the smoothness of the 
flow will affect the choice of 6 and as a consequence the behavior of the error. Since 
the flow is infinitely differentiable, in the estimates of the consistency error we can 
take L to be arbitrarily large. This allows us the choice of 6 = hi-& with .s small, in 
accordance with the theory. Since we are interested only in the qualitative behavior 
of the error we computed the consistency errors E, and E, using only the 4’h order 
cutoff function (2.2). It follows from Fig. 3.5 that the behavior of the error as a 
function of h and t is similar to the behavior of the error observed in the previous 
test case. 

In contrast to the first two test problems, we observe that for the third test 
problem the consistency errors E, and E, are constant in time. This is not surpris- 
ing since the particles rotate as a rigid body and therefore the distance between the 
computational points is constant in time. We observe that the errors decrease with 
h and for a fixed h the smallest errors are obtained for 6 close to h. It follows from 
Tables 3.2a and 3.2b that the errors are reduced by a factor slightly higher than two 
when we increase the order of the cutoff function from p = 2 to p = 4, however, for 
p > 4 the accuracy is not improved by increasing the order of the cutoff function. 
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TABLE 3.1 

Velocity and Vorticity Consistency Errors at r = 0, 10, 20 with o = UP’, p = 4, and h = 0.07 

6=h“ r=O r=lO t=20 r=O r=lO I=20 

q= 0.95 1.628-4 1.252-3 2.809-3 1.173-3 4.729-2 9.122-2 
q = 0.90 2.694-4 8.873-4 2.158-3 1.946-3 2.933-2 6.103-2 
q=O.85 4.427-4 7.009-4 1.647-3 3.179-3 1.732-2 3.969-2 
q=O.80 7.211-4 7.932-4 1.348-3 5.136-3 1.076-2 2.558-2 
q = 0.75 1.161-3 1.178-3 1.411-3 8.189-3 9.709-3 1.787-2 
q = 0.70 1.844-3 1.848-3 1.927-3 1.284-2 1.318-2 1.657-2 
q=O.65 2.880-3 2.881-3 2.907-3 1.976-2 1.983-2 2.106-2 
q=O.60 4.410-3 4.410-3 4.418-3 2.971-2 2.972-2 3.018-2 
q=o.55 6.598-3 6.598-3 6.601-3 4.348-2 4.349-2 4.366-2 

E” 

0.0127 

0.0113 

0.0099 

0.0085 
. . 0.0070 . . . . . . . 

. . . . . .._....._....................................... . ,._...... 
. . . _~~~~~.._._....... 

0.0056 

0.0042 
0.0028 .-.-.-.-.-__________~~.~~~.~~-.~.-~ 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

TIME 

0.0880 

0.0792 

0.0704 

0.0616 

0.0528 

E&J 0.0440 

0.0352 

0.0264 

0.0176 

0.0088 

0.0000 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

TIME 

FIG. 3.4. Velocity and vorticity consistency errors in the time interval [0,20] with III=&‘), p =4, 
and 6 = h"75. h: (-) 0.2, (...) 0.14, (-.-) 0.10, (---) 0.07, (---) 0.05. 
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E” 

0.828E-02 

0.746E-02 

0.663E-02 

0.580E-02 

0.497E-02 

0.414E-02 

0.331E-02 

0.249E-02 

0.166E-02 

0.828E-03 

O.OOOE+OO 

0.101 

0.091 

0.081 

0.071 

0.061 
E 

w 0.050 

0.040 

0.030 

0.020 

0.010 

0.000 

0.0 2.0 4.0 6.0 8.0 lo.0 12.0 14.0 16.0 18.0 20.0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

TIME 

FIG. 3.5. Velocity and vorticity consistency errors in the time interval [O, 201 with w = ot2), p = 4, 
and 6 = h”.95. h: (-) 0.2, (...) 0.14, (-.-) 0.10, (---) 0.07, (---) 0.05. 

TABLE 3.2a 

Relative Velocity errors for o = ot3) and 6 = ho.95 

h p=2 p=4 p=6 p=8 

0.20 
0.14 
0.10 
0.07 
0.05 
0.03 

0.2 1.682-1 1.354-1 1.319-1 1.304-l 
0.14 1,382-l 1.113-1 1,082-l 1.068-l 
0.10 1.113-1 8.771-2 8.485-2 8.362-2 
0.07 9.303-2 7.306-2 7.044-2 6.929-2 
0.05 7.553-2 5X06-2 5.579-2 5.481-2 
0.03 6.477-2 5.030-2 4.834-2 4.748-2 

(a) Relative velocity errors 

2.621-2 1.267-2 1.180-2 
1.561-2 6.984-3 6.401-3 
9.271-3 4.344-3 4.051-3 
5.520-3 2.331-3 2.126-3 
3.291-3 1.511-3 1.415-3 
2.018-3 8.549-4 7.834-4 

(b) Relative vorticity errors 

1.151-2 
6.209-3 
3.957-3 
2.059-3 
1.384-3 
7.605-4 
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TABLE 3.3 

Relative Velocity and Vorticity Errors for u = u(r) with 
the Optimal Values of 6 at Time t = 10 and t = 20 

h=0.07 h=0.05 

EJllull &Al4 K,Alull Em/ll4l 

p=2, 6=h." 5.009-2 8.691-2 
p = 4, 6 = h.80 5.407-3 2.351-2 
p = 6, S = h.l= 2.563-3 1.398-2 
p = 8, b = h.l” 2.181-3 8.795-3 

p=2, ~?=h-~ 5.044-2 8.964-2 
p = 4, 6 = h.6s 1.981-2 4.603-2 
p=6, ~3=h.~ 1.385-2 3.527-2 
p=8, ~5=h.~ 2.870-3 2.546-2 

(a)t=lO 

2.764-2 
2.030-3 
7.626-4 
5.056-4 

(b)t=20 

2.869-2 
9.866-3 
6.001-3 
3.935-3 

4.865-2 
1.351-2 
6.270-3 
2.540-3 

6.976-2 
3.123-2 
2.042-2 
1.823-2 

2.00 . . ..1..............,....,....,...1,....,....,.”. 

1.80 -------------------------~~~~.-,-.~~' 
,’ '\ 

'\ 
, .60 _'-.-.-.- .-.-. -.-___-.-' ______ .\ '\ .......... .._.,............_.._........... . ..__ 1.40 -'--.. .._....,,~_I_,____. . ..' ,......'.'.‘."""..........~ ?.;... 

1.20 
'1 / 7 

'W_./ ,' \ 

1.00 

0.80 
0.60 
0.40 
0.20 
0.00 . . ..~....'....'....'....'....'.-~~~'~~~~'~~~~ 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 
TIME 

, . 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~.~.. 

1.20 

1.00 

0.80 

0.60 
0.40 
0.20 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 

TIME 

FIG. 3.6. Order of convergence of the velocity and vorticity approximations in the time interval 
[0, 201 with o=o(‘), p=2, and S=how. h: (-) 0.2, (...) 0.14, (-.-) 0.10, (---) 0.07. 
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We conclude that the qualitative behavior of the consistency error is quite insen- 
sitive to the smoothness of the flow and that the optimal choice of 6, a 6 that will 
preserve a uniform accuracy over a finite time interval [0, r], depends on the final 
time. For the first test problem the optimal choice of 6 in the time interval [0, lo] 
is 6 = ho.’ for p = 4, 6 = ho.‘5 for p = 6 and 6 = ho7 for p = 8 while in the time interval 
[0, 203, the optimal choice of 6 is 6 = ho.65 for p = 4 and 6 = ho,6 for p = 6 and p = 8. 
Tables 3.3a and 3.3b show the relative errors EJllull and E,//lwll for h = 0.07 and 
h = 0.05 with the optimal choice of 6 for p = 4,6, 8 at times t = 10 and t = 20. We 
find that the errors are substantially reduced as we increase the order of the cutoff 
function. For p = 4 and h = 0.05 the velocity error at t = 10 is 0.2 % while for p = 8 
it is reduced to 0.05 %. At t = 20 the error for p = 4 and h = 0.05 is 0.99 % and for 
p = 8 the velocity error is 0.39 %. 

In contrast to the higher order cutoff functions, we find that if we use the second 
order cutoff function (2.1) and 6 = /z’.~, we do not observe a loss of accuracy in the 
time interval [0,20] and the errors do not have the sharp increase in time that is 
observed when we used higher order cutoffs. We therefore obtain essentially second 
order accuracy with a relative velocity error of 2.9% at time t = 20 and with 
h = 0.05 (see Tables 3.3a and 3.3b). Although we are able to choose 6 close to h in 
the time interval [0,20] and obtain second order accuracy, we observe from 
Fig. 3.6 that to preserve the accuracy over a longer time interval 6 will have to be 
larger, as in the case of the higher order cutoff functions. 

To understand the behavior of the consistency error, and the time dependency of 
the cutoff parameter 6, and following the spirit of the proof in [S], we look at the 
components of the consistency error, the smoothing and discretization error, 
defined in (2.7) and (2.8). 

The smoothing error Ez is the difference between the exact vorticity o and 
o6 = Ic/s * o. Since w and wd do not change in time, Ez remains constant for all 
time. It is therefore enough to look a Ei at time t = 0. Table 3.4 contains the 
smoothing error for the first test problem. We observe that Ez is asymptotically of 
order dp, for a pth order cutoff function and a smooth enough vorticity. 

The discretization error Et is the difference between w6 = Il/a * o and its 

TABLE 3.4 

Smoothing Error for w = w(” and p = 2, 4, 6, 8 

6 p=2 p=4 p=6 p=8 

0.2 1.415-1 2.810-2 1.415-2 9.430-3 
0.15 9.186-2 1.118-2 3.915-3 2.055-3 
0.1 4.485-2 2.646-3 5.109-4 1.641-4 
0.075 2.695-2 8.954-4 1.060-4 2.307-5 
0.05 1.237-2 1.858-4 1.068-5 1.268-6 
0.04 7.994-3 1.125-4 2.850-6 2.460-7 
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FIG. 3.7. (a) Discretization error EE in the time interval [0,20] with w = o(‘), p = 2, and d = /I”~‘. 
(b) Discretization error Et m the time interval [0,20] with IIII=CU(‘), p=2, and 6= h”65. 
(c) Discretization error E,” m the time interval [0, 201 with w =w’l), p =4, and 6 = h”.95. 
(d) Discretization error Et in the time interval [0, 201 with w = o(I), p = 4, and 6 = h”.65. h: (-) 0.2, (...) 
0.14, (-,-) 0.10, (---) 0.07, (---) 0.05. 
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trapezoidal rule approximations oh. EE is of order (/~/6)~, (see Lemma 2.5 by Cottet 
[11] or the Discretization Lemma by Anderson and Greengard [2]), where L 
depends on the smoothness of the flow and of the cutoff function $. Thus if we 
choose 6 = hY, with q < 1, the error should decrease for any q < 1. 

Our numerical experiments indicate that the discretization error E,D has the same 
qualitative behavior for all functions, including the second order cutoff function. 
Hence, we will now describe the discretization error for these cutoff functions as a 
function of h, 6, and t. The numerical experiments relate to the first test problem. 
Partial runs for the second test problem, not presented here, indicate a similar 
behavior of the discretization error. 

We find that EE behaves in an unexpected fashion both as a function of h and of 
the time t, while Ez has the expected behavior as a function of 6, i.e., the error 
decreases as 6 increases. 

Consider a fixed h and 6 = hY with 0.5 < q < 1. We present in Figs. 3.7a-d the dis- 
cretization error for p = 2 and p = 4 with 6 = ho.95 and 6 = h”.65. We find that the E,D 
increases sharply in time, however, it does not increase without bound. The rate at 
which the error increases, decreases in time. For example, for p = 4 and h = 0.05, 
with 6 = ho.95 the error at t = 2 is 8 times larger than the error at time t = 1, while 
the error at t = 20 is only 1.05 times larger than the error at t = 19. The major dif- 
ference in the approximation of a6 by mh is the position of the computational 
points. When one observes the flow, one can see that as time increases, there is a 
rapid decrease in the degree of organization of the flow. At time t = 0, when the 
computational points are equally spaced, the approximation is extremely accurate; 
but as soon as the points become disorganized, there is a sharp increase in the 
error. On the other hand further disorganization of the computational points does 
not affect the approximation drastically. This is seen in the small increase of the 
error from time t = 19 to t = 20, and in longer time computations. It would seem 
that the accuracy of the approximation depends on the organization of the com- 
putational points. 

As a function of h and for any 6 = hY, with 0.5 <q < 1, we observe a loss of 
accuracy over time in the approximation of o6 by uh. This loss of accuracy is more 
pronounced for 6 close to h, 6 = hY with 0.75 < q < 1. For 0.05 < h < 0.2 we observe 
that for any 6 and for some T > 0 the error does not decrease as we increase the 
number of vortices, (see Figs. 3.7a-d). For h < 0.05, which corresponds to more 
than 900 vortices, we find that while the errors do not decrease for S close to h and 
some T> 0, they do decrease for larger 6 over the time interval [0,20]. 

If h is fixed then EE decreases as 6 increases (see Fig. 3.8). This agrees with the 
negative powers of 6 which occur in the theoretical estimates of E,D, see Beale and 
Majda [S], Cottet [ll], Anderson and Greengard [2]. The decrease of E,” as 6 
increases allows us to create a balance between the smoothing and discretization 
errors, to obtain accurate results over a fixed time interval. 

If we compare the discretization error for different cutoff functions, with a fixed h 
and 6, we find that the discretization error for p = 2 is substantially smaller than the 
discretization error for higher order cutoff functions. The latter are of comparable 



ON THE ACCURACY OF VORTEX METHODS 219 

0.0729 
0.0638 

0.0547 

0.0365 

0.0273 

0.0182 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

TIME 

FIG. 3.8. Discretization error E,D, with o = o(l), p = 4, h = 0.07, and 6 = h4, 0.75 < q Q 0.95. g: (-) 
0.95, (-.-) 0.90, (---) 0.85, (---) 0.80, (-) 0.75. 

size. On the other hand the smoothing error decreases as we increase the order p of 
the cutoff function (see Table 3.4). Because of these two facts we need to choose a 
larger 6 as p increases. This is not consistent with the theory for L = co, i.e., for 
infinitely differentiable flows, but is qualitatively consistent with the theory if L is 
finite. 

Having observed the behavior of the smoothing and discretization errors, we can 
understand how the consistency error develops as a function of h, 6, and t. Consider 
the second order cutoff function. As we mentioned above, the discretization error 
E,” increases in time and for some T> 0 does not decrease as h decreases, however, 
it is small relative to the size of the smoothing error, which is of order 6’. Thus the 
behavior of E,D is not felt in the consistency error and we obtain an accuracy of 2q, 
with q < 0.9. 

For higher order cutoff functions and 6 = hY, with 0.75 < q < 1, the sharp increase 
of the consistency error in time and its behavior as h decreases is caused by the dis- 
cretization component. We observe that for some T> 0 the consistency error is 
almost equal to its discretization component. This indicates that except for a short 
initial time, the dominant term in the consistency error is the discretization error. 
This neutralizes the advantages provided by higher order cutoff functions. Because 
Ei increases with 6, while E,” decreases as 6 increases, by choosing 6 larger we are 
able to eliminate the sharp increase of the consistency error as a function of t and 
we obtain a more uniform decrease of the error as a function of h. In doing so, we 
lose some of the increased accuracy provided by the higher oder cutoff functions. 

We conclude this section with a summary of the results of our numerical 
experiments: 

If the flow is smooth enough, the accuracy of the vortex method is improved by 
increasing the order of the cutoff function. This is not the case for nonsmooth flows, 
as we showed in the numerical experiments with the third test problem. 

Our numerical experiments indicate that for the values of h tested, the choice of 6 
is quite insensitive to the smoothness of the flow. We find that if 6 is close to h, as 
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suggested by Beale and Majda [S], then the accuracy is lost in a relatively short 
time, even for infinitely differentiable flows. By increasing 6 we are able to preserve 
the accuracy of the method over longer time intervals. Thus the predicted pth order 
accuracy is reduced to pq, with q closer to t than to 1. In addition we observe that 
the discretization error does not grow without bound. Therefore by choosing 6 
large enough so that the smoothing error is larger than the discretization error we 
can obtain accurate results over long time intervals. 

4. THE APPROXIMATION OF THE INITIAL VORTICITY DISTRIBUTION 

The initial vorticity distribution can be approximated by one of the two forms, 

co:’ = c $,(z - Zj) J’, w(z) dz 
/ 

or 

0’; = 2 l+bs(z - z,) o,hf 

(4.1) 

(4.2) 

where the z,‘s are the grid points and h2 is the area of the square Bj centered at zi. 
The corresponding velocity approximations are given by u: = K * OF, for 1= 1,2. 
The approximation (4.2) is the approximation of the convolution integral $6 * o by 
the trapezoidal rule. The error is of order P+ (h/6)L, where p is the order of the 
cutoff function and L depends on the number of derivatives of the vorticity (see 
Anderson [ 1 ] ). Cottet has shown that if the vorticity is approximated by (4.1) there 
is an additional error of order h’. Thus if the cutoff function is of order p 2 4 and 
& < 6 dh, the approximation (4.1) is only second order accurate. On the other 
hand, for sufficiently smooth flows and 6 close to h the vorticity 
approximation (4.2) is, at least at time t = 0, pth order accurate for a pth order cutoff 
function. 

The numerical experiments presented in Section 3 indicate that to preserve the 
accuracy of the velocity and vorticity approximation over a fixed time interval 
[0, r] the smoothing error should be larger than the discretization error. This is 
always the case at t = 0. As our initial vorticity is radially symmetric the smoothing 
error is independent of time. Thus we compare the velocity and vorticity 
approximations at time t = 0. We use the first test problem of Section 2 and com- 
pute the discrete velocity and vorticity approximations U: and w: (I= 1,2) at time 
t = 0 for the cutoff functions (2.1)-(2.4), 0.03 < h < 0.2 and 6 = hq with 0.5 < q < 1. 
We measure the consistency errors t = 0 in the discrete L2 norm 

> 
112 

2 lu(zi) - u;(zJ* h* 
i 
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TABLE 4.1 

Velocity Errors Obtained with Approximations (4.1) and (4.2) and 6 = ho.95 

p=2 p=4 p=6 p=8 

h E! E: Ef, Et E: Et E: E: 

0.2 3.394-2 3.219-2 7.885-3 5.333-3 5.156-3 2.607-3 4.301-3 1.731-3 
0.14 2.006-2 1.894-2 3.209-3 1.821-3 1.999-3 6.002-4 1.735-3 2.989-4 
0.1 1.123-2 1.058-2 1.286-3 5.621-4 8.565-4 1.132-4 7.985-4 3.811-5 
0.07 6.065-3 5.71 l-3 5.343-4 1.628-4 4.022-4 1.877-5 3.919-4 3.984-6 
0.05 3.210-3 3.025-3 2.348-4 4.547-5 1.970-4 2.903-6 1.954-4 5.113-7 
0.03 1.680-3 1.585-3 1.083-4 1.245-5 9.793-5 4.685-7 9.768-5 1.979-7 

and 

1 lo(zj) - w#J2 h* , 
i 

where I= 1,2. We estimate the rate of convergence by using two successive values of 
h in Eq. (2.9). 

With both approximations the velocity and vorticity errors decrease as h -+ 0 for 
any 6 = hq, with 0.5 < q < 1, and for a fixed h the errors increase as 6 increases. For 
a fixed h and q both E’ and E2 decrease as the order of the cutoff function increases. 

We find that for any 0.03 < h < 0.2 and for any 6 = hY, with 0.5 < q < 1, the errors 
EA and Et, are larger than the errors E2 and E i. Table 4.1 compares the velocity 
errors obtained with both approximations. For the second order cutoff 
function (2.1) E’ and E2 are of the comparable order. Both approximations are 2q 
order accurate for 6 = h”. For higher order cutoff functions and 6 = hY, with 
0.75 6 q < 1, there is a significant difference between the two approximations. For 

TABLE 4.2 

Velocity Errors Obtained with Approximations (4.1) and (4.2) and 6 = ho.65 

p=2 p=4 p=6 p=8 

h El Et E.t Et Et Et EL Et 

0.2 6.224-2 6.114-2 1.814-2 1.941-2 1.567-2 1.368-2 1.341-2 1.146-2 
0.14 4.703-2 4.634-2 9.687-3 1.110-2 7.895-3 6.785-3 6.287-3 5.221-3 
0.1 3.241-2 3.378-2 6.490-3 5.865-3 3.538-3 2.954-3 2.555-3 1.999-3 
0.07 2.403-2 2.377-2 3.209-3 2.880-3 1.429-3 1.129-3 9.277-4 6.400-4 
0.05 1.640-2 1.625-2 1.504-3 1.336-3 5.405-4 3.876-4 3.270-4 1.745-4 
0.03 1.095-2 1.087-2 6.785-4 5.935-4 2.007-4 1.222-4 1.247-4 4.164-5 
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example, with h = 0.05, 6 = h.9s and p = 6, Ef, is approximately lop4 while Ef, is 
approximately 10P6. In addition we find that for these values of 6 and p = 6 and 
8 U; and cut are quite insensitive to the order of cutoff function and to the choice of 
6. With these values of 6 the rate of convergence of the approximation (4.1) 
decreases to 2, while the rate of convergence obtained with (4.2) increases as h + 0. 

Our numerical examples show that for 6 = hY, with 0.5 <q < 0.75, the difference 
between E’ and E* is not so drastic, although E’ > E2 still holds (see Table 4.2). We 
find that for a fixed q in the range specified above, the rate of convergence of (4.1) 
increases up to approximately 3 and decreases again for smaller values of h, 
however, it does not decrease to 2. This can be explained by the fact that these 
values of 6 are not in the region where the asymptotic estimates are valid. 
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