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use a 9-point difference equation for Poisson’s equation
(suggested by M. Greenberg) as given in Appendix A. TheA clouds-interacting-with-clouds, clouds-in-cells method (CIC) is

presented for many-body nonlinear plasma problems. Density and motion of the individual charged particles is obtained by
force are obtained by assuming that the particles have finite size, integrating the Newton–Lorentz equation,
are tenuous, and may pass through one another; the particles are
thus called clouds. They obey a Coulomb force (p1/r or 1/r 3 ) when
separated and a linear force (pr ) when overlapping, allowing simple
harmonic oscillations at small separation. CIC is contrasted with m

v
t

5 q(E 1 v 3 B).
the zero-size particle and nearest-grid-point approach, ZSP–NGP.
CIC appears to have substantially less unwanted noise than ZSP–
NGP and should be more useful in simulating dense plasmas. Initial
runs have been encouraging. The methods may find use in other The electric field E is 2=f. The magnetic field B is the
many-body simulations, such as with stars, or with particles in phase applied field, given analytically. This integration uses thespace. Q 1969 Academic Press

orbit fitting scheme given by Hockney [2].
The special problem addressed here is how to convert

charge positions into charge density, and then how to ob-INTRODUCTION
tain a consistent force on the particles.

A clouds-interacting-with-clouds, clouds-in-cells (CIC)
method is being used with some advantage over a zero-

2. ZERO-SIZE-PARTICLE DENSITY AND FORCEsize-particle approach, especially with regard to reducing
errors in the calculation of density and force. A major

In the zero-size-particle and nearest-grid-point methodapplication is to many-body, nonlinear effects in fusion
(ZSP–NGP), charge density is obtained by putting theplasmas, and initial results with a two-dimensional code,
charge and mass of a particle at the nearest grid point; theSQRPLA, have been encouraging [1].
force is evaluated as if the particle were at the grid point.
These choices produce zero self-force, as desired. The re-1. PROBLEM STATEMENT
sultant force law (in two dimensions) between two like

The problem is to obtain the motion of ions and electrons particles approximates a 1/r Coulomb law, in staircase fash-
in their own and applied fields. The electrostatic potential ion, down to separation of one cell where the force van-
f is obtained from the electric charge density r by solving ishes; the ZSP–NGP force law is shown in Fig. 1, from
Poisson’s equation, Hockney [2]. The stepped law is inaccurate and the zero

force region wipes out plasma oscillations for separations
between ions and electrons of less than one cell even for=2f 5 2

r

«0 long wavelengths. Hockney [5] proposes that these diffi-
culties can be reduced by using a very large number of

using a 48 3 48 grid, with f obtained at the grid points. We particles in a Debye circle, ND ; nfl2
D @ 1; n is the number

density of ions or electrons and lD is the Debye length,
Reprinted from Volume 3, Number 4, April 1969, pp. 494–511. vthermal /gp , where gp is the plasma frequency (simple har-
1 This work was performed under the auspices of the U.S. Atomic monic oscillation frequency for small perturbations from

Energy Commission.
equilibrium). However, with limited computer memories2 Permanent address: Electrical Engineering and Computer Sciences
and times, the number cannot be increased indefinitely,Department, University of California, Berkeley, CA. This author was

supported in part by A.E.C. Contract AT-(11-1)-34Proj. 128). limiting ZSP–NGP to low plasma densities.
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through H 5 2Dx. As the cloud size is increased beyond
cell size, resolution decreases because the cloud density
is held constant over a distance larger than the shortest
resolvable wavelength. Of course, the density could vary
within a cloud, which would be resolvable only if the cloud
is larger than a cell or, as H. Berk suggests, the cloud size
might vary during the problem. The method centers around
reducing the potential energy of the particles as we go from
a laboratory system of, say, 1015 particles to a computer
experiment with, say, 104 particles; the greatest improve-
ment comes with the greatest overlapping of clouds.

The potential energy is presently calculated by summing
rf. The r’s are the charge densities assigned to the grid
points and the f’s are the potentials at the grid points.
With this method, as an isolated cloud moves through the
mesh, the potential energy is not constant, but largest for
the cloud at a grid point and least in between. With many
charges, these variations are small, but still undesirable.

4. CIC FORCE

FIG. 1. Zero-size-particle, nearest-grid-point force between two posi-
The CIC method uses the electric force on a cloud astive particles. Force is zero in region 2Dx/2 , x , Dx/2. Adapted from

that averaged over the cloud, as given byFig. 10 of Hockney [2].

E(x, y)effective 5 O
cloud

aij Ep .

3. CIC DENSITY

The aij are the fractional areas as before; the Ep are the
In the CIC method the particle coordinates (x, y) are fields at the grid points where the parts of the cloud are

taken to be at the center-of-mass-and-charge of charged assigned. For example, for that part of the cloud placed
clouds of finite extent. The clouds are tenuous and may at the point i 1 1, j 1 1, the x-field is given by
pass through one another. The approach was first suggested
to us by J. A. Byers; a similar interpretation was mentioned 2(f(i 1 2, j 1 1) 2 f(i, j 1 1))/2Dx.
by Hockney [2]. The charge density to be assigned to points
in a spatial grid is obtained by sharing the charges at several It is obvious that in an infinite net (walls well removed)
points. For example, using a cloud the same size as a grid the partial cloud produces no force on itself; A. B. Langdon
cell, Dx by Dy , as shown in Fig. 2, the charge in the area has shown us that partial clouds, taken pairwise, produce
shaded (———) is assigned to grid point (i, j), that shaded equal and opposite forces, explosive in nature, producing
(u u u u) to (i 1 1, j), that shaded ( ) to (i 1 j, j 1 1), and no net self (translational) force since the cloud has an
that shaded (////) to (i, j 1 1). For a large number of clouds,
the charge density at (i, j) is obtained by summing over
the clouds as

r(i, j) 5 O
clouds

aij rc (x, y),

where rc (x, y) is the density of the cloud at x, y and aij is
the area of the cloud appearing in the cell centered at i, j
divided by the area of the cell; see Appendix B.

The cloud size need not be that of a cell. As the cloud
size is increased from zero, the force law begins to be
smoothed out and the zero force region shrinks; the stair-
casing and zero-force region are absent for cloud size equal
to cell size. The density appearing at i, j for a cloud moving FIG. 2. Cloud located in a grid, with shading showing assignment of

density to grid points for CIC method.along x is shown in Fig. 3 for square clouds of side H 5 0
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density is 1, otherwise, 0. In contrast, the density contours
for CIC, Fig. 6, show a smooth transition from 0 to 1 over
the whole region. For both models, in the region shown
(i 6 1, j 6 1) the average density at point (i, j) is 1/4,
assuming that the particle has uniform probability of being
in this region. For CIC, the figure of 1/4 can also be inter-
preted as meaning that a particle is equally shared with
four points, on the average.

6. SPATIAL SPECTRA

Let us look at the spectra of charge density to see what
errors are produced in the electric field because of the
sampling in space.

As a charge moves from cell i to cell i 1 1, the densities
assigned in ZSP–NGP to the grid points in the center of
these cells vary as shown in Fig. 7a; as the particle position
x passes halfway between i and i 1 1, the density at i jumps
to zero and the density at i 1 1 to full value. Hence, pointFIG. 3. Sketch of charge density assigned to (i, j) as particle moves

past this grid point. The size of the cloud in the x direction (cloud side) i senses a thick particle which is Dx on a side. For a rough
varies from 0 to 2Dx. measure of the apparent wavelengths produced, or spatial

spectrum, we take the Fourier transform of this apparent
density, which is simply sin(kDx/2)/kDx/2), as sketched in
Fig. 7b. Note that the grid does not respond correctlyimplicit binding force. Thus, the CIC choices of charge
to information for kDx . f ; such information is falselyand force sharing also produce no self force. The CIC force
translated to longer wavelengths (aliased).law is sketched in Fig. 4.

In CIC, the corresponding behavior is shown in Fig. 8,One peculiarity of the square clouds in the square net
the Fourier transform being the square of that above. Byis that the force between two charged particles is not wholly
spreading out the charge, the spectrum is narrowed so thata central force. Because of the four-pole nature of the cloud
the amount of information that can be aliased is greatlythere is a small azimuthal force which varies periodically
reduced. One may choose to use larger clouds in order toaximuthally (as does the central force). This causes two
reduce the spatial spectrum; or, if in the process of analysisoverlapping clouds which are oscillating in simple har-
the Fourier spectrum of the density is available, the spec-monic (gp ) motion to have an added azimuthal precession,
trum can simply be narrowed to make small clouds appearfirst seen by D. Wong in our 3D program, CUBic PLAsma.
larger (suggested by A. B. Langdon). If we take the infor-C. Leith points out that this will tend to produce some
mation aliased to be related to the energy, then we shouldangular squeezing, in our model, about a grid rotated f/4

from the x, y grid. Remedies are to use larger clouds (more
poles, more rapid decay of multipolar terms) or, more
radically, a ‘‘rounder’’ grid (e.g., hexagonal); use of circular
clouds with the square grid does not appear too promising,
as the grid effect remains.

CIC is essentially a sharing rule for finding density and
force, and proceeds just as in ZSP–NGP once the sharing
is found.

5. DENSITY CONTOURS

The step from ZSP–NGP to CIC goes in the direction
of particle to fluid mechanics. The ZSP–NGP density as-

FIG. 4. Force between a fixed positive charged cloud at a grid pointsignment is that the particle is either in or out of a given
and a negative cloud with the same y coordinate. The force approximatesregion. A way of illustrating this is by a contour plot of
by straight line sections the Coulomb 1/r force down to small separation

density as a particle with coordinates x, y moves in the where the law becomes linear; the clouds have simple harmonic plasma
region i 6 1, j 6 1, shown in Fig. 5. If the ZSP–NGP oscillation for small separation. For other cloud locations in the grid, the

details differ slightly.particle is within half a cell from the point i, j then the
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electric field; from E, the velocity v is advanced, and from
the new value of v, the particles are advanced, each of the
two steps being time-centered. Thus, given the position,
the charge density is assumed constant for Dt about time t.

For ZSP–NGP, the magnitude of charge will be too
small by q for dt and then T later, too large by q for dt.
The range of dt is 0 , dt , Dt and the average value would
appear to be d > Dt/2. One viewpoint is to say that the
measured value of ri (t) is the sum of the ‘‘true’’ value
(Dt R 0) plus an error term. For ZSP–NGP, the magnitude
of the error term is q and its frequency spectrum will be
quite broad, extending well beyond the time resolution
available. This extension is a measure of information lost
or noise added to the computation.

For CIC, a similar diagram can be made (Fig. 11). The
peak error is less and the frequency spectrum of the error

FIG. 5. ZSP–NGP density at (i, j) for a particle at x, y ; (i 2 1)
is narrower, as the error is nearly periodic with period Dt;Dx , x , (i 1 1)Dx, ( j 2 1)Dy , y , ( j 1 1)Dy.
hence there is less lost information or noise. One other
point is that the peak value of the charge for CIC (b) will
in general be less than that for ZSP–NGP (a), (the whole

look at the square of the spectrum, in Fig. 8b, the solid charge) because the cloud on the average is shared with
curve is r2

i (k) for ZSP–NGP and the dashed curve is four grid points. Hence, using
r2

i (k) for CIC. If we let the information aliased be propor-
tional to the area under each curve for kDx . f, then

c > bDt/2
T

and b > a/4ZSP–NGP has an area almost an order of magnitude
greater than CIC in this region.

we estimate7. TIMING ERRORS

The errors in time may be thought to occur because the
c > SDt

8TD a,particle arrives and leaves early or late at a given cell
position because of the discrete sampling in time. These
errors are aggravated by the size of the particle (as con-

which is a decrease in the direct error of at least an order oftrasted with a smooth fluid). This effect is shown in Fig. 9
magnitude, possibly much more in the mean square error.for ZSP–NGP. With an average velocity v, the average

time used in crossing a cell of side h is called T(vT 5 h),
the transit time. As time advances in steps Dt, a charge
may depart late by dt from one cell, hence arriving late by
the same amount in the next cell, dt , Dt. If there are
many particles in a cell on the average, there will be about
as many arriving late as there are leaving late so that these
errors will tend to cancel and produce the correct value
of total charge in a given cell. The corresponding error in
the vector direction of E, an error which occurs in two
and three dimensions, may not be compensated this way.
Unfortunately, we may not always have many particles per
cell; indeed, we are more likely to average less than ten,
with incomplete compensation between entering and leav-
ing particles. For purposes of estimating the size of the
error, we will use only one particle.

The early–late arrival depends on the integration
scheme for the equation of motion. We use the method
as given by Hockney [2], with time steps shown in Fig. 10. FIG. 6. CIC density contours at (i, j) for a cloud at x, y ; (i 2 1)

Dx , x , (i 1 1)Dx, ( j 2 1)Dy , y , ( j 1 1)Dy. Cloud 5 cell size.The charge positions give the charge densities and the
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lD . Thus, even for a laboratory plasma we might write
something like

dn2

n2 5 R2 S1
nD .

R2 is the dynamical fluctuation (or shot noise) reduction
factor, generally expected to be less than unity and depen-
dent on frequency, wavelength, and the volume in ques-
tion, i.e., R2 5 R2(g, k, n/ND ). From the physics of labora-
tory plasmas, one should be able to obtain the g, k
dependence of R2 ; such answers may be quite complex
and obtained after considerable effort, as exemplified by
similar calculations of diode noise [4]. Answers for simula-
tion noise may be expected to be somewhat more difficult
to extract. Hockney [2, 5] has offered some values which

FIG. 7. ZSP–NGP density spatial assignment and Fourier spatial
may be applicable to ZSP–NGP but which may over-spectrum.
estimate the noise in CIC.

Some answers are available. A 1/n dependence has been
observed by Barnes and Dunn [3] for shot noise using a
one-dimensional electron model, about lD in length, with

8. SHOT NOISE, FLUCTUATIONS zero-size particles; from their work we find that R2 >
3 3 1024 is implied, showing considerable interaction. The

A classical approach can be used to estimate a collision arguments given earlier imply that short-wavelength, high-
rate or diffusion due to computational discreteness in time frequency fluctuations should be reduced as H is increased
and space. Let us again make rough estimates. For a gas from zero; the reduction in fluctuations, kE2(k)l, at large
of independent and noninteracting particles, the dispersion k has recently been shown in theory and experiment by
about the mean value of the number in some volume is Dawson, Hsi, and Shanny [6] for Gaussian density slabs

and by McKee [7] for uniform density slabs. The total
fluctuation level is also reduced by the use of clouds, withdn2

n2 5
1
n

.
appreciable reduction coming as the cloud is made larger
than a Debye volume, i.e., H . lD . For such large clouds,
the shielding length changes from lD to H, as originallyIf we choose the volume in question to be the least volume
suggested to us by J. M. Dawson and shown explicitlydiscernible, roughly one cell, then n will generally be on
recently by H. Okuda for a special cloud [7].the order of 1 to 10 and the dispersion will be large indeed.

H. Berk suggests that the volume in question should have
sides on the order of (1/k), where k is the largest wave-
number of interest.

A special volume for plasmas is that bounded by lD on
a side. For smaller volumes there can be appreciable charge
separation with correspondingly large electric fields; for
larger volumes, the charge separation and E fields will be
smaller. Hence, one might expect the dispersion to be
about 1/n for volumes up to n 5 ND but to be much smaller
than 1/n (or 1/ND ) for larger volumes.

If we take the dispersion to be the fluctuations in charge
density due to discreteness and let these fluctuations pro-
duce a fictitious electric field, E2

f , then we obtain an effec-
tive collision frequency which is proportional to E2

f p
dn2 . This collision frequency would overestimate the effect
of fluctuations because the particles interact dynamically
in such a way as to smooth out fluctuations rather com-

FIG. 8. CIC density spatial assignment and spatial spectrum.pletely at low frequencies and at distances greater than
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of the grid transit time, the mass ratio was mi/me 5 16.
Low-density runs such as these provide little test in trying
to distinguish among various methods. These runs were
made on the Univac Larc essentially in Fortran II.

In order to compare CIC with ZSP–NGP, computer
runs were made on a medium-density warm plasma with
identical initial conditions. The plasma had (gp/gc )2

i > 14,
was cylindrical in shape bounded by zero potential walls,
in a uniform magnetic field, with equal numbers of ions
and electrons, mass ratio mi/me 5 16, with equal kinetic
energies for electrons and ions; no particles were lost to
the walls. The first pair of runs used 250 electrons with
ND > 3; the second pair used 5000 electrons (with the
charge per cloud decreased in order to keep the plasma
frequency constant) with ND > 60. The results for the 500FIG. 9. ZSP–NGP density assignment in time with error term.
charges are shown in Fig. 12 in the form of energy (total,
kinetic, potential) and potential (on two probes in the
plasma) versus time. Energy grows in both runs (about
500 times steps) although more slowly for CIC. The fluctu-For cold plasmas, lD 5 0, ND 5 0, the physical model
ations observed in ZSP–NGP do not appear in CIC andhas no randomness and, hence, no dispersion. In order to
are considered spurious. Results for 10,000 charges areobserve plasma oscillations, we gave the electron clouds a
shown in Fig. 13. ZSP–NGP energy increases more slowlysmall velocity modulation at long wavelength and held the
(about the same as CIC for 20 times fewer particles). Theseion clouds fixed, in two dimensions, H 5 h. With the veloc-
runs were made on a CDC 6600 using Fortran 400. Oneity amplitude about one-sixth that needed for the first cloud
CIC time step was about twice as long as that for ZSP–crossing, we observed almost perfect exchange between
NGP. As most of a step was used in moving the particles,potential and kinetic energy for several cycles; at smaller
this timing would indicate that ZSP–NGP could use aboutvelocity, the exchange was imperfect by a few percent.
twice as many particles in the same time. R. Hockney (byThis defect is partially due to the deviation of the force
letter to us) has noted the same difference in times, alsoon individual clouds from the correct force which is depen-
using Fortran, on a gravitational problem (where, inciden-dent on the way the clouds are placed in the grid; Langdon
tally, the equivalent ND is the total number of particles).and Wong made this explanation more explicit in one-
As yet, we have little quantitative data on fluctuationsdimensional theory and experiments [7], with H 5 Dx
relative to theoretical estimates.(large effect) and H 5 10Dx (vanishingly small grid effect,

even out to kH 5 2f).
10. OTHER APPLICATIONS

9. EXPERIENCE WITH CODE
Many-body simulation of 1/r, 1/r 2 forces with stars uses

essentially the same equations given here with a signOur experience with the CIC method in two-dimensional
change in Poisson’s equation. Hence, star calculations ofplasma problems with code SQuaRPLA has been very

good [1]. In initial trial runs we found an appreciable
decrease in fluctuations of potential energy as ND was
increased through unity. In subsequent runs, at low density
(g2

p/g2
c of ions & 1), we found no direct evidence of large

angle particle deflections and little or no evidence of parti-
cle heating or cooling over hundreds of cyclotron and
plasma periods. Perhaps the best measure of confidence
has come in the constancy of total energy with no special
energy conserving methods used. In spot checks during a
plasma build-up run, energy was conserved to within 0.3%
for 8000 steps; in another run with 1600 clouds, hot ions
and cold electrons in a nonuniform magnetic field, the
energy remained constant to within 60.1% for 5000 steps.
Typically, the time step was 1/15 of an electron cyclotron

FIG. 10. Equation of motion integration steps.period, 1/40 of an electron plasma period, and about 1/10
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type equations, collision cross sections and frequencies,
dispersion relations, and so on. Such descriptions are being
developed [6, 7].

APPENDIX A: POISSON SOLVER

The difference equation used for Poisson’s equation is
the stencil given by Collatz [8], as follows (h 5 Dx 5 Dy):

8h2=2u0,0 1 h2=2u1,0 1 h2=2u0,1 1 h2=2u21,0 1 h2=2u0,21

140u0,0 28(u1,0 1u0,1 1?1?)22(u1,1 1u1,21 1?1?)

5 0 1
h6

60S3
6u
y6 1 3

6u
x6 2 5

6u
x2 y4 2 5

6u
x4 y2D1 ? ? ? .

FIG. 11. CIC density assignment in time with error term.

We replaced the =2u by the (2r/«0 ) at that grid point.
Comparing the error term with the Laplacian terms, for
harmonic densities and potentials, shows that this 9-point

density and force may also use the CIC approach to similar form produces 1 to 2 orders of magnitude less error at
advantage. Each cloud becomes a tenuous collection of large wavelengths relative to the widely used 5-point form.
stars. The method of solution, for zero potential walls bounding

The Vlasov equation using a distribution function, f (r, a 48 3 48 grid, was to Fourier analyze (r/«0 ) in x, assume
v, t) 5 N/d 3xd 3v, could also be solved in a gridded system that this could also be done for f, following Hockney (and
(in r, v) with clouds of N particles (fixed number) moving Buneman [2]), but then to solve the 47 difference equations
about phase space. Use of sharing, CIC, should also help for each of the 47 harmonics by Gauss elimination; the
to reduce noise due to computational discreteness.

11. CONCLUSIONS

Contrasts between zero-size-particle, nearest-grid-point
and clouds-in-clouds, clouds-in-cells methods of obtaining
density and force have been offered. Arguments have been
put forth to show that CIC should have substantially less
noise or spurious effects than ZSP–NGP, resulting in lower
noise for the same ND if care is used in choosing cloud
side H relative to grid side h and lD . The transition from
ZSP–NGP to CIC coding requires the addition of simple
sharing calculations for density and force, adding some
time to each step. However, in working with denser and
denser plasmas, meaning plasma diameters of more and
more lD , will put demands on using the least tolerable ND ,
to keep the number of particles within computer capacity.
Thus CIC should aid in simulating higher density plasmas.

R. L. Morse (Los Alamos Scientific Laboratory) has
pointed out that hydrodynamic calculations in their labora-
tory use their well-known particle-in-cell method (PIC)
with ‘‘area weighting,’’ analogous to our charge and force
sharing, to achieve smoothing. If we claim anything at all,
it is that we are among the early users and strong advocates FIG. 12. Comparison runs with 500 particles, (a) for CIC and (b) for

ZSP–NGP, in a uniform magnetic field. At t 5 0, the electron and ionof CIC for simulation of charged particles and plasmas.
kinetic energies were equal, mi/me 5 16, tpe > 6.7, tpi > 26.9, tci 5 6.28,We are aware that what is presented here is only a
tci 5 100, ND > 3. Run goes to T > 100. The most prominent frequencybeginning, some initial persuasion and evidence that CIC
appears to be the electron hybrid with calculated period tH 5 4.6. The

may be useful. It will be necessary to obtain more rigorous ZSP–NGP growth in electron kinetic energy causes the total energy
theoretical physical description for clouds interacting with growth—which should not occur physically. There is initial potential

energy as the ions and electrons were not overlaid at t 5 0.clouds, with and without grids, such as Boltzmann, Vlasov-
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last step is to Fourier synthesize in x to produce f(x, y).
In the Fourier sine analysis–synthesis, the amplitudes of
like-valued sines were gathered together to reduce multi-
plications; the running times appear comparable with those
of more formal fast Fourier transform methods.

For a doubly periodic system with a 32 3 32 grid, we
Fourier analyze the density in both x and y and obtain the
Fourier amplitudes of potential directly and then synthe-
size. We use a FFT routine.

In three dimensions, for zero potential walls bounding
a 36 3 36 3 36 grid (>50,000 points), using a 19-point
difference equation [8], the density is Fourier sine analyzed
in x and y, then the difference equations are solved for
the harmonics of the potential by Gauss elimination, fol-
lowed by synthesis. Starting with charges on the mesh
points, the time for solving for the potential is about 6
seconds, using a Fortran program on the CDC 6600. No
attempt has been made to reduce this time, yet it is com-
parable to that of Hockney’s two-dimensional 256 3 256
(>65,000 points) highly refined machine code Poisson
solver [9].

APPENDIX B: CHARGE SHARING FIG. 13. Same as Fig. 12 but for 10,000 particles and somewhat shorter
total time, ND > 60. The charge per particle was reduced to maintain
the same plasma frequency; the cyclotron frequencies were also the same.The charge sharing expression in Section 3 is written
The ZSP–NGP spurious effects are much smaller, but total energy still in-out here for the rectangular cloud shown in Fig. 2, Hx 5
creases.

Dx , Hy 5 Dy. The origin for x, y is taken as i, j ; x and y
must fall within the four grid points named on the figure,
accomplished in the code by determining the lower-left- CA. J. Dawson is at Princeton University, Princeton, NJ. We are also

indebted to R. von Holdt (LRL), for mathematical insight in solvinghand grid location (by truncation for Dx 5 Dy 5 1). rc is
Poisson’s equation.the charge density of the cloud:
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