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Vortex methods of high order accuracy are developed for inviscid, incompressible fluid flow 
in two or three space dimensions. The velocity kernels are smooth functions given by simple, 
explicit formulas. Numerical results are given for test problems with exact solutions in two 
dimensions. It is found that the higher order methods yield a considerably more accurate 
representation of the velocity field than those of lower order for moderate integration times. 
On the other hand, the velocity field computed by the point vortex method has very poor 
accuracy at locations other than the particle trajectories. ( 1985 Academic Press. Inc. 

INTRODUCTION 

Vortex methods offer a physically natural intuitively appealing means for 
simulating incompressible fluid flow at high Reynolds number. The use of a system 
of point vortices as a computational model for fluid flow began some time ago with 
the work of Rosenhead [17], who calculated the roll-up of a vortex sheet. Later, 
more refined calculations indicated that the point vortex method could lead to 
chaotic behavior rather than the expected roll-up. However, it was shown by 
Chorin and Bernard [7] and Kuwahara and Takami [13] that the roll-up was 
restored if the point vortices were replaced by vortices with finite cores or “blobs” 
of vorticity. (In the latter paper the blobs were allowed to expand in time to mimic 
viscosity.) A general vortex method for simulating high Reynolds number flow has 
been developed by Chorin and others over the last several years [S, 6, 141. The 
fluid is represented by a collection of vortex blobs in the interior and sheets near 
the boundary, all of which are advected according to a computed velocity field. 
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New vorticity is created at the boundary to satisfy the no-slip condition, and a ran- 
dom walk of the vorticity elements simulates the effect of viscosity. A survey of the 
different vortex methods in current use may be found in [ 141. 

We will be concerned here with the accuracy of vortex methods for smooth, 
inviscid flows in free space. In this case the velocity is determined from the vorticity 
by convolution with a singular velocity kernel. In the vortex blob algorithms the 
singular kernel is modified by convolution with a smooth approximation to the 
delta function. The discretization of the smoothed integral results in a system of 
ordinary differential equations for the paths of representative particles in the fluid. 

Recently, a complete, rigorous theory of the accuracy, nonlinear stability, and 
convergence of vortex methods has been developed for smooth fluid flow in either 
two or three space dimensions [ll, 2, 31. One of the implications of this theory is 
that the choice of the smooth delta function determines the accuracy of the vortex 
blob algorithm for smooth flows, and that higher order methods can be designed by 
proper choice of this function. In Section 1 of this paper we produce a class of 
modified kernels of high order accuracy in two or three space dimensions which are 
given by simple, explicit formulas. With these choices, the vortex blob method can 
be implemented with essentially no more computational effort than would be 
necessary if the original kernel were used. In the different context of plasma physics, 
similar finite cores, or shape factors, have been used for density distributions [8, 91 
and the significance of higher order kernels has been noted [lo]. 

In the same section we also describe two 3-D vortex algorithms which have been 
developed recently. Each method has some similarity to an earlier method of 
Chorin [6], but there are significant differences among all three versions. The 
explicit higher order kernels can easily be implemented in any of these algorithms. 

To test these methods we have performed a series of numerical experiments with 
exact solutions of the 2-D Euler equations. The examples used are steady flows 
generated by a radial distribution of vorticity. Since the vorticity function can be 
chosen so that substantial shearing takes place as time goes on, this class of 
problems seems to provide a significant test for a Langrangian method. 

The results of these experiments, reported in Section 2, verify the predicted order 
of accuracy for second or fourth order kernels for moderate integration times and 
also show that the higher order kernels can yield considerably smaller errors. For 
longer times the higher order accuracy deteriorates, but the errors do not grow 
catastrophically. The accuracy at later times is greatly improved by increasing the 
characteristic radius of the vortex blobs. In all cases the vortex blob methods 
produced comparable errors for the velocity on the particle trajectories or at 
regularly spaced locations. For the point vortex method the results were quite dif- 
ferent. The velocities along the particle trajectories were reasonable, although not as 
accurate as those given by the blob methods. However, the accuracy of the com- 
puted velocity at other locations was very poor and unpredictable. This is a serious 
defect of the point vortex method, since in practical problems it is important to 
represent the velocity accurately at arbitrary points. For example, if boundaries are 
present, the velocity will need to be computed at the boundary. 
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Earlier tests of vortex blob methods for radial patches of vorticity were con- 
ducted by Hald and Del Prete [ 123 and related experiments were reported in [ 151, 
C161. 

1. EXPLICIT SMCKITH KERNELS 

Vortex methods are based on the fact that, for incompressible flow, the velocity is 
determined from the vorticity by a convolution, 

u(z, t) = (K * oj)(z, t) = 1 K(z -I’) o(z’, t) dz’. (1.1) 

(We will use notation consistent with [2, 31. This formula is interpreted differently 
in two or three dimensions, see below.) In the methods of [2, 31, as in earlier work, 
the velocity kernel K is replaced by 

K,=K* t+hbr @d(Z) = 6-“l+qz/6). (1.2) 

Here N= 2 or 3 is the space dimension and 6 is a parameter to be chosen in con- 
junction with the inner spacing h of the particles introduced at time zero. The 
smoothing of the kernel by the function e6 can be interpreted as the approximation 
of the vorticity distribution by a sum of “blobs” of prescribed shape (see [ 111). 

We will choose the function II/ subject to the conditions 

(i) II/ is smooth and rapidly decreasing, i.e.. 

ID”$(z)I < C,( 1 + 1Z12)-~’ 

for every multi-index b and every integer i; 

(ii) I G(z) d”z = 1; 

where m is an integer. 

The results of [2, 31 imply that vortex methods satisfying (i)-(iii) converge 
provided the relation between 6 and h is properly chosen. If d =h4 (q any fixed 
number with 0 <q < l), the error is of the order of 6” = hmy, i.e., the method is 
essentially mth order. Our object here is to choose II/ so that Kb has a simple 
expression consistent with these requirements. As we shall see, choices of II/ with 
m = 2 easily lead to choices with m 2 4. 

Condition (i) implies that the Fourier transform of $, as well as I,$ itself, is 
smooth and rapidly descreasing. We will always take + = e(r), r = 1~1. In this case 
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(iii) holds by symmetry for I/Q odd, so that m may be assumed even. For radial +, 
(iii) is always satisfied with m = 2. This set of conditions is more stringent than 
those in the general theory of [2, 33. (In the earlier language we are assuming tj to 
be in the class Fe S- m,m. ) Condition (i) can be relaxed somewhat to allow a $ 
which is not very smooth at z = 0. Indeed, our simplest choice in three dimensions 
has this property. With a weaker condition replacing (i), a similar convergence 
result holds, but q is restricted to an interval 0 < q < q,, for some q. < 1. (See [2] for 
precise statements.) 

Two-Dimensional Flows 

In the 2-D case the vorticity is the scalar function o = u~,.~ - ui..,.. The dis- 
tinguishing property of two-dimensional flows is that the vorticity is conserved 
along particle paths, 

o,+u~vo=o. (1.3) 

Suppose an initial velocity field is prescribed with vorticity o0 nonzero only within 
a bounded set. To simulate the flow, we cover this set with a square grid of size h 
and introduce a particle at the center of each square. We take the coordinates of a 
typical particle to be ih. where i= (i,, i2) is a pair of integers; the ith particle is 
assigned the vorticity oi = w,(ih). To compute approximate paths of particles, we 
discretize (1.1 ), with K replaced by K,, remembering (1.3), and arrive at the system 
of ordinary differential equations 

2; = c K,(Z,- Tj) cojh2, Zi(0) = ih. (1.4) 

The area-preserving property of incompressible flow is used implicitly here. Once 
the 2,‘s have been determined, an expression for the velocity can be obtained by 
setting 

c’(z, f) = 1 K& - 2j) ajh2. 

To apply this method it is best to have an explicit formula for K,. If G is the 
Green’s function for -V2, G(Z) = -(27r-’ log r, then with z = (x, JT) 

K(z)&, -&)G=$$% 

A natural choice of $ is the Gaussian cl/“‘(r) = ePr’/rc. The necessary conditions 
(it(iii) are satisfied with m = 2. If K6 = K * tja, then 

& = (a,., -8,) Gcj, G,=G* I)&. (1.5) 
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Since $ is radial, G, is also, and 

V2G6 = V’(G * Gs) = -I,!J~ or ; D,(rD,Gdj = -~)~(r) = --$ epr2!“‘. 

After integration we have 

D,G,=-& (,-r2!62- 1). 

The constant of integration is determined by the fact that Gd must be smooth. The 
corresponding velocity kernel K6 may now be found from (1.5): 

Ka’@)- (-;:) (1 -,-r’:“j, 

The superscript (2) has been inserted to indicate the order of the kernel. 
Next we will obtain a fourth order kernel by choosing $ = $‘“’ as a combination 

of two Gaussians with different scalings, 

lp4’(r) = c, lp2’(r) + cpp(r/a) 

where a is arbitrary except that a # 1. To satisfy condition (ii) we must have 

c, + a2c2 = 1. 

This leaves us with one constraint to impose conditions. Because of symmetry, con- 
dition (iii j will hold with m = 4 provided 

This in turn holds if 

s t)‘“‘(r) r2. r dr = 0. 

c-1 + u4c2 = 0, 

and the two equations determine I,+ “’ in terms of a. We can now find KL4) just as in 
the previous case: 

For example, the choice u2 = 2 leads to 
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It should be clear that higher order kernels can be constructed by adding further 
terms with Gaussians of different scalings in the expression for $. A typical sixth 
order kernel is 

Of course, care must be taken in evaluating any version for r small, since the factor 
due to the smoothing vanishes at z = 0. 

Even simpler high order kernels can be obtained by choosing JI in the form 
l)(r) = P(r) e-f where P is a polynomial in even powers of r. Then as in the 
argument above 

rD,Gs(r) = -C2 j rP(r/h) e-r2/a2 dr 

= (27~~’ {Q(r/d) e-r”d2 - Q(O)}, 

where Q is another even polynomial of the same degree. For condition (ii) to hold 
we must have rD,G, -+ --1/2x as r + co, so that Q(0) = 1. Finally 

D,G,(z)=& (Q(r/s) epr2/“- l), 

and according to (1.5) 

&(z) = K(z)( 1 - Q(r/6) e-“!6’). 

To satisfy the moment conditions (iii) we need to have 

r”P(r) e-“r dr = 0, 1 <j<(m-2)/2, 

or after integrating by parts, 

The moment conditions are thus reduced to linear equations for the coefficients of 
Q. For a kernel of order m there are (m -2)/2 conditions, and a polynomial of 
degree m - 2 is sufficient. The first few such kernels are 

Jpyz) &&9 { 1 - Q@“(r/d) e-“@} 
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Q’“‘(r) = 1 - r’, 

Q’6’(r)= 1 -2r2+r4/2, 

Q(“‘(r) = 1 - 3r2 + 3r4/2 - r6/6. 

The polynomials which appear are Laguerre polynomials of r’, normalized so that 
the constant term is 1. 

Three-Dimensional flows 

In the three-dimensional case the vorticity o =V x u is a vector quantity, and the 
velocity is expressed in the form (1.1) by the Biot-Savart law. We will approximate 
the particle paths by an analogue of (1.4), but now the vorticity must be updated as 
well as the position. There are two naural ways to describe the evolution of vor- 
ticity, and convergent methods can be based on either. The more familiar form is 
the direct generalization of (1.3), 

wr+u~vo=o~vu. (1.6) 

The method of [Z], however, uses a Lagrangian expression for the vorticity due to 
Cauchy. Let a be the Lagrangian position and @‘: a + z the coordinate mapping 
induced by the flow. Then 

w(z, t)=V@f(a).~O(a) (1.7) 

where oO is the initial vorticity and z = @‘(a j. Thus the vorticity is carried along 
particle paths but distorted by the Jacobian matrix of the flow. The gradient with 
respect to the Lagrangian variable a of the Jacobian matrix can easily be implemen- 
ted by a difference operator on the initial grid applied to Z. We are thus led to the 
system of ordinary differential equations for the particle trajectories {Z,}, 

zl=CKd(Zi-~i)~j(t)h3, -;,(O)=jh (1.8) 

with 

cGj = Vfii. o,(ih). (1.9) 

Here Vh is an anti-symmetric difference operator whose order is at least the inten- 
ded order of accuracy. (See [2] for details.) In [2] we evaluated the vorticities c3i 
by solving a spatially discretized version of the time derivative of (1.7). 
C. Greengard has pointed out that the simpler formulation just described is 
equivalent to our original one. 

An alternative method can be based on (1.6). In this case we solve a coupled 
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system of ordinary differential equations for the {Ti} and {Gi}, consisting of (1.8) 
and a discrete version of (1.6): 

!$! = &i. 1 VK,(z’, - Zj) Gjh3. 

Here the gradient is to be computed analytically once an explicit expression for K6 
is known. Such a method was proposed by C. Anderson. It can be shown to con- 
verge provided the order of accuracy of the smooth kernel is at least 4. The con- 
vergence proof will be given in [4]. The first method has the virtue of simplicity 
and requires less computation than the second. However, the second has the impor- 
tant advantage that it does not make explicit reference to the initial grid, i.e., no 
information has to be carried along about the original particle configuration. Thus 
the second method could more easily be combined with methods for representing 
boundary effects. The method used by Chorin [6] is similar to these two but not 
identical with either. 

The three-dimensional realization of (1.1) is 

u=K*o=Vx(G*o), 

where G is the Green’s function for -V2, G = l/4711., and the convolution is com- 
ponentwise. As before we set Gs = G * ea and K6 = K * tis. It is easy to see that 

or more briefly 

Thus K6 will have a simple expression provided aGd/ar does so. 
In this case it is less clear how to choose $ than in the two-dimensional case, and 

it is best to proceed in the opposite direction from before. For simplicity we assume 
at first that 6 = 1. We suppose that 

aG, f(r) -= _- 
dr 4w2 

with f to be determined; this form is convenient since we expect 

aG, dG 1 -w-z= 
dr i3r -iz 

as r-00. 

Then 

-tj =V’G, = rp2D,(rZD,G,} 
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(1.10) 

We can now list the conditions which must be satisfied by f so that conditions 
(i)-(iii) hold for $. Since $ should be smooth we require 

(Cl) f’(r) is a smooth function of r2; 

(C2) f(r)=O(r3) as r+O. 

It is easily seen that the total weight of + is f(s)), and our last condition is 
therefore 

(C3) f(r) + 1 as r + co, and f’ is rapidly decreasing. 

If (Cl)-(C3) hod, then II/, defined by (l.lO), satisfies (it(iii) with m=2. Two 
choices off meeting our requirements are 

f(r) = 1 -e-‘), f(r) = tanh r3, 

corresponding to $(r) = (3/47r) e-” and #(r) = (3/47r) sech’ r3, respectively. The 
first choice is simpler and is analogous to the Gaussian function in two dimensions. 
Actually, in this case (Cl) does not hold in the strictest sense at the origin because 
f(r) has terms r6 and higher in the Taylor expansion. However, the general theory 
of [2, 31 applies to this choice, and we do not expect the difference to be significant 
in practice. Having chosen f, we define tis from (2) and reverse our steps to find 

3= f(rP) -- 
ar 47cr2 

so that 

f&(z)= -$ ; z. 
f(-) 

The kernels just constructed are second order accurate with respect to 6. If f’ is 
arbitrarily smooth, as is true for f(r) = tanh r3, then we have convergence with 
6 = h4, q = 1 -E, and the errors are essentially second order in h as well. For the 
“cubic Gaussian,” the results of [2] require q < 2, so that the order of convergence 
in h is 2 - E. (See Theorem 1 in [2] and the remarks following Theorem 2; the num- 
ber M is 6 in this case. The predicted order of convergence is not sharp and can be 
improved at least to y - E.) 

To obtain kernels with m = 4 we can combine two different scalings as before. Let 
tjc4’(r) = c,$(r) + c,+(r/a), where J/ . is one of the two choices specified above. The 
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conditions that $ (4) have weight one and satisfy the second order moment con- 
ditions lead to the equations 

c,+&=l 

cL + a6c2 = 0. 

Again reversing the steps we have 

l+byyr, = $J&f(~)+c2a2f(f)] 

f-$%1= -&{clf(~+c2a3f($} 

KS(z)= -& {c,f (X)+c,u3f (s)}z. 

For example, with f(r) = 1 - e -” or tanh r3, it would be convenient to choose 
a -’ = 2. In the first case, this gives 

KS(z)= -$ {l ~C*e-“‘SJ~c*e-2’J/d3} z 

so that only one exponentiation is necessary. 
An alternative method can be used to produce kernels of fourth order in 6 from 

the one of second order already obtained. Suppose a function f(r) has been found 
as above meeting conditions (Cl)-(C3). We will choose 

f4(r) = cl ftr) + c2rf ‘(r) 

with appropriate constants and check that the corresponding kernel 

(1.11) 

@‘(z) = -- 1 4w3 f 4 6) r 6 ’ 

is fourth order. 
If f satisfies (Cl ) and (C2), then f4 does also, and (C3) will hold provided c1 = 1. 

We need to impose the moment condition (iii) with IflI = 2. The correspondence 
betweenf, and tit4) is given by (l.lO), and we can convert the condition on +(4) to a 
similar one for f4, 

0=47c joE$C4b(r)r2.r2dr=joa f&(r)r’dr 

= 
s 
oa g:(r) r2 dr = -2 

5 x g4(r) r dr, 
0 
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where g4(r) = f?(r) - 1, so that g4( co ) = 0. If we now substitute from (1.11) with 
f = 1 + g and c, = 1, our condition becomes 

O=l" {g(r)r+czg’(r)rZ) dr 
0 

=(l-2c,)10= g(r)rdr, 

after integrating by parts. This holds if c2 = $, and therefore the choice 

f4(r) =f(r) + &f’(r) 

satisfies all our requirements. 
We can apply this result directly to the two choices off made above. If f(r) = 

1 -e-“, then 

f4(r) = 1 + (- 1 + 2 3, e-‘I. 2r 

For f(r) = tanh r3, we have 

f4(r) = tanh r3 + 1 3 sech’ r3 2r 

or 

f4(r) = T+ $r3( 1 - T’), T = tanh r3. 

Again, either of these two methods can be extended to produce higher order ker- 
nels. Similar arguments could be used in the 2-D case and would lead to the 
Gaussian kernels found before and additional ones as well, all of the form 

For example, in analogy with the second choice above, the function 

f(r) = tanh r2 

gives a second order kernel. As in the 3-D case we can add a term of the form rf’(r) 
to obtain a fourth order kernel 

f4(r) = tanh r2 + r2 sech’ r2 

= T+ r2( 1 - T’), T = tanh r2. 

Although convergence proofs for vortex methods have been given only in the cir- 
cumstances of [2, 31, the smooth kernels obtained here could be applied to other 
versions of these methods, for example, the three-dimensional method of [6]. It 
should be noted, however, that for a vorticity distribution on a set of lower dimen- 
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sion, such as an interface between two potential flows, the formulas for modified 
kernels are somewhat different. Smooth kernels for this case will be developed in 
other work [ 11. 7 

2. NUMERICAL EXPERIMENTS FOR TWO-DIMENSIONAL FLOWS 

Here we describe the result of numerical experiments which illustrate the higher 
order (super-quadratic) accuracy of the explicit kernels derived in the first section 
for two dimensional flows and moderate integration times. We also report on 
calculations which illustrate the large inaccuracy of the point vortex method for 
smooth fluid flows. In addition, we describe numerical results on the behavior of all 
these vortex methods for long time intervals of integration. Numerical experiments 
describing the accuracy of a variety of low-order accurate vortex methods for 
moderate integration times are given by Hald and Del Prete in [12], while the 
work in [lS] tests some aspects of the accuracy of vortex methods for inviscid 
shear layers. 

A useful class of test problems can be obtained by choosing a radial distribution 
of vorticity, o = w(r). The corresponding solution of the 2-D Euler equations is a 
rotating steady flow with a simple exact expression for the velocity field, 

(2.1) 

The particle paths are circles about the origin. Since the vorticity distribution is 
arbitrary, the angular velocity can vary with the radius, and substantial shearing 
can take place as time goes on. Thus we have a natural way to test the accuracy of 
the method in a highly distorted geometry. 

In the numerical studies to be described, we compared calculated solutions with 
the exact solution of (2.1) for several choices of o(r). This class of test problems 
was also used in [ 121. We always chose w(r) as a polynomial in r for r 6 1 and zero 
for r > 1 since in these cases the formulae in (2.1) become especially simple. Since 
the support of the vorticity o(r) is confined to r < 1, we let 22 denote the nor- 
malized mean velocity for r < 1, i.e., 

(2.2) 

To discretize the initial data, we used a square grid centered at the origin with 
spacing h in each coordinate direction and we took the initial particle locations to 
be the centers of these squares. We always assigned the exact value of the vorticity 
at the center of each square multiplied by h2 as the initial vorticity distribution 
associated with the given particle (see the discussion above (1.4) from Section 1). 
We have intentionally avoided taking advantage of the special radial geometry of 
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the vorticity to distribute the particles in a special configuration to minimize the 
absolute errors reported below. 

The particle locations (2,) computed by a vortex method determine the 
numerical velocity field according to the expression 

with 

24 comp(Z, t) = d(z, t) = 1 Kb(z- Tk) Wkh2 
k 

(2.3) 

uj.comp = 1 K,(Tj - 2,) COkh2 
k 

the associated discrete velocity field computed at the particles. 
We utilized two different nondimensional ways for measuring the error. First, if 

N particles are used in the calculation, the mean square average error in their 
velocities is Epart with 

(EPart)2 = $ ,!I I uj,comp - Uj,exactI ' 
J=l 

(2.4) 

and the nondimensional 

relative mean square error in velocity 
at the particles is epart = E,,,fl. (2.5 1 

In the second measure of error, we monitor the computed velocity field from (2.3) 
along the ray 0 <x < 1 and y = 0. By assuming that the error along this ray is 
typical (from the rotational symmetry of the exact solution this is a plausible 
assumption), the mean square average error over r < 1 is 

We evaluate the above integral by sampling the computed velocity at the ten points 
along the ray, x = j/10, j = l,..., 10, y= 0 and using the trapezoidal rule to deter- 
mine the error Eray , given by 

(2.6) 

wherefj= 1 forj= l,..., 9 andfio = f. With Eray defined in (2.6), the nondimensional 

relative mean square error in ray velocity is eray = Era,/%!. (2.7) 

We have introduced this second more severe way of measuring the error since in 
most practical problems, the accuracy in velocity outside the computed particle 
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locations is also very important. For example, if boundaries are present the value of 
U camp off the particles are needed to generate the irrotational flow to satisfy the 
boundary conditions. Furthermore, in many problems involving shear layers, the 
propagation of secondary vortices is affected by the accuracy of the velocity field 
generated by the background vorticity. 

We tested vortex methods using the higher order Gaussian kernels 

KIc”‘(z) = K(z) ( 1 - Q 

with orders m = 2,4,6,8 and described in Section 1. We denote by m = 0 the point 
vortex method, in which (2.3) and the following formula are replaced by 

u camp =; K(z - &) wkh2, 

uj,cmnp =k;j K(2j-2z,) okh2. 

Numerical experiments with the other kernels developed in Section 1 through scal- 
ing are given by Perlman in [16]. With these preliminaries, we now describe the 
numerical results. 

The Accuracy of Vortex Methods for Moderate Times 

In our first experiment we chose a relatively smooth positive vorticity dis- 
tribution, 

w(r) = 
i 

(1 -r2)3, r< 1, 
0, r> 1. (2.8) 

This vorticity distribution has three bounded derivatives. In Table I we report the 
relative velocity error at the particles, epart, and the relative velocity error along the 
ray, erayT for a 16 x 16 rectangular mesh covering the initial vorticity (208 particles 
with nonzero vorticity) for a sample of times up to T= 12. The significance of this 
time is that 

T= 12 corresponds approximately to the shortest period of 
rotations for the eddy associated with (2.8) (the eddy turn around 
time). 

The classical fourth order Runge-Kutta method with time step t = 1 was used in the 
time discretization of the vortex methods in the numerical results described in 
Table I as well as all other results reported below. When we halved the time step in 
any case we found that there was no significant change in the accuracy indicating 
that the dominant errors were due to spatial discretization. In Fig. 1, we have 
illustrated the distortion by the exact solution generated by o(r) in (2.8) of the 
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TABLE I” 

O-Point 
t?,: vortices 2 4 6 8 

Time C,=6jh: 1 2 2.5 2.5 

T=O 

T=3 

T=6 

T=9 

T= 12 

e part 
eray 
e part 
eray 
e par, 
eray 
e part 
era) 
e part 
eray 

0.009 0.027 
0.021 0.028 
0.013 0.027 
0.128 0.028 
0.033 0.028 
0.159 0.028 

0.111 0.029 
0.05 1 0.034 
0.366 0.033 

0.012 0.0054 0.0015 
0.012 0.0053 0.0015 
0.012 0.0054 0.0016 
0.012 0.0053 0.0015 

0.012 0.0054 0.0017 
0.012 0.0053 0.0016 

0.013 0.0060 0.0046 
0.012 0.0053 0.0040 
0.014 0.0077 0.0086 
0.014 0.0086 0.0111 

a o(r) = (1 - Y~)~, h = 0.125, 208 particles with nonzero vorticity. 

squares at time t = 0 used in the initial discretization. These graphics indicate that 
there is already substantial distortion and shearing beginning near the time T= 6 
and increasing rapidly with time; thus, the numerical solution of this problem up to 
T= 12 is a good test for the fact that errors generated by the finite cores in vortex 
methods ignore the distortion of the actual underlying fluid blobs. 

The first important conclusion from Table I regards the point vortex method. 
While the velocity errors on the particles themselves stay within (perhaps accep- 
table) errors of 5% of the average exact velocity until T= 12, the errors in the 
velocity field along a ray have grown to 36% of the average velocity by the time 
T= 12! This indicates that the velocity field representation by point vortices can be 
wildly inaccurate even for smooth flows where there is a complete unambiguous 
theory of existence, uniqueness, and stability for solutions of the 2-D ideal fluid 
equations [2]. The significance of this observation is that the point vortex method 
is unreliable for problems such as those involving boundaries or smooth inviscid 
shear layers where one needs accurate values of the velocity off the particle trajec- 
tories. In the experiments with longer times of integration, these errors for the point 
vortex method continue to grow as time increases. 

On the other hand, we have found in all our experiments that the smoothed core 
vortex methods give comparable errors for the particle velocities and the velocities 
along the ray. It is evident from Table I that both errors are much smaller than the 
particle velocity errors of the point vortex method, except in the second order case 
initially. For m 12 the ray errors range to 3.3 %, while for the orders m = 4, 6,8, 
these errors vary respectively from 1.2 to 0.16% at one-half the eddy turn-around 
time and grow to a size from 1.5% to 1% at the time T= 12. Furthermore, at all 
but the final time, the absolute errors are smaller as the order m increases. 

To determinate the order of accuracy for the methods with m = 2,4,6,8, we have 
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FIG. 1. The distortion of the initial rectangles used in discretization by the exact fluid flow generated 
by (2.8) at the successive times T=O, 2, 6, 10. 

also used a 20 x 20 rectangular grid to discretize the initial data, resulting in 316 
particles with nonzero vorticity. We determined the parameter 6 on this mesh by 
6 = Cmh314, where C, is the number determined by the choice of 6 and h in Table I. 
If the vorticity distribution is smooth enough and if h is small enough so that the 
convergence theory from [2] applies, the predicted theoretical rate of convergence 
for the mth order kernel is O(hmq), where mq = $m, m = 2,4,6,8. 

In Table II we record the actual rate of convergence computed by comparing 
these two calculations. We have only displayed the convergence rate measured by 
the relative velocity error at the particles, although the rates for the velocity along 

X31/58/2-4 
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TABLE II 

Time m: 2 4 6 8 

All times 1.5 

T=O 1.40 
T=6 1.43 
T=12 1.63 

Theoretical order 

3.0 4.5 

Computed order 

2.59 3.38 
2.51 3.35 
2.40 2.22 

6.0 

3.57 
3.64 
1.21 

the ray are similar. Computed convergence rates by comparison with 16 x 16 and 
20 x 20 meshes initially. 

We observe that the predicted rate of convergence is within 0.1 of the computed 
rate for m = 2 and within 0.6 of the actual convergence rate for m = 4. This indicates 
that h is small enough and o(r) is smooth enough for the asymptotic convergence 
theory in [3] to apply for m = 2 and almost so for m = 4. However, for m = 6,8, the 
convergence rate deviates appreciably from the theoretical prediction. 

This is not very surprising since for the theory in [3] to apply for m = 6,8 with 
the predicted theoretical convergence rate, o(r) needs to have at least 14 bounded 
derivatives whereas o(r) in (2.8) has only three. Nevertheless, the absolute errors 
with the 6th and 8th order methods are substantially smaller than the errors with 
m = 2 and slightly smaller than those for m = 4 for these moderate integration times. 
Furthermore, the numerical tests for m = 4, 6, 8 clearly indicate superquadratic con- 
vergence without extensive additional computational labor beyond that required for 
low order accurate vortex methods. In all cases the errors with the larger number of 
particles were considerably smaller than those in Table I. For example, with m = 4, 
eray reached a maximum of 0.008 at T= 12. 

Next, we report the results for other patches of vorticity. In one case, we chose 
the vorticity to change sign, 

o(r) = (1 - r)2 (1 - 2r)( 1 + 4r), r-c 1, 

= 0, r> 1. 
(2.9) 

The last factor is included to preserve smoothness at the origin. This vorticity dis- 
tribution is less smooth and the velocity profile is not monotone for r < 1, so that 
this problem is a more severe test than the one in (2.8). In Table III, we record the 
results of numerical experiments using a 16 x 16 mesh (208 particles with nonzero 
vorticity) to discretize the initial vorticity distribution. Here we only record the 
relative error in the ray velocity. 

We observe that as before the point vortex method is extremely unreliable and 
the errors rise to over 50% of the amplitude of the average velocity at T = 9. This 
error does fall to about 10% at T= 12; however, these errors oscillate and again 
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TABLE III 

Relative Error in Velocity along the Rays, era,,’ 

HI: 0 2 4 6 8 

Time 6/h: 1 2 2.5 2.5 

T=O 0.036 0.073 
T=3 0.487 0.073 
T=6 0.187 0.073 
T=9 0.511 0.075 
T=12 0.096 0.074 

“w(r)=(l-r)?(l-?r)(l+4r)and h=0.125. 

0.059 0.036 0.012 
0.059 0.036 0.012 
0.059 0.036 0.012 
0.060 0.038 0.015 
0.056 0.032 0.019 

grow to 55 % by T = 13. The absolute errors for m = 2,4,6,8 in this case behave as 
in Table I; however, the magnitude of the errors is somewhat larger. 

Finally, we mention that we have also done numerical experiments for the dis- 
continuous patch of vorticity, 

w(r) = 1, r< 1, 

= 0, r > 0. 

The particles in this case rotate as a rigid body, and most of the error is due to the 
crude initial discretization with a rectangular grid for this discontinuous initial data. 
We expected and observed no difficulties with the point vortex method in this case 
as a representation of the particle velocities. The higher order methods treated the 
discontinuous initial data in a stable fashion and all methods gave relative errors of 
l-2 % in the relative particle velocities with 208 particles. Negligible error growth in 
time was observed. We mention this experiment here primarily to point out that the 
vortex methods using higher order kernels computed this discontinuous initial data 
in a stable accurate fashion even though the theory from [3] does not apply to dis- 
continuous initial data. 

The Accuracy of Vortex Methods for Large Integration Times 

With the test problems defined in (2.8) and (2.9) we report the results of large 
time integration of the vortex methods with m = 4, 8 up to approximately 4.5 eddy 
turn-around times, i.e., T = 54-in fact, if one were to attempt a graphical display of 
the distortion of the initial grid up to this analogous to the displays in Fig. 1, the 
grid squares would be distorted beyond recognition. For (2.8) we used a 16 x 16 
grid with 208 particles with nonzero vorticity as before. In Table IV we record the 
relative error in the velocity at the particles at intervals of one eddy turn-around 
time. For comparison, we also display in this table large time runs with a very sim- 
ple rezoning strategy which we describe in detail later. 

Before discussing the results presented in Table IV, we mention a computational 
trend which we have not tabulated. With any of the smooth velocity kernels with 
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TABLE IV 

Relative Error in Velocity at the Particles. c~,,~,” 

f?,: 4 x 8 rezoned 

Time C,,=kh: 2.5 4 

T=O 0.026 0.0148 
T= 12 0.026 0.0149 
r=24 0.042 0.03 12 
T=36 0.028 0.0183 
T=48 0.028 0.0183 

Maximum error 4.7 4’0 3.5% 

in eparr O<T<54 O<Tc54 

0.00055 
0.0014 (276lh 
0.0021 (317jb 
0.0030 (376)h 

0.3 9,” 
O<T<36 

“ Long time integration with h = 0.125, o(r) = (1 -r’)’ and 208 particles initially. 
* The method in the last column uses new particles and the new number of particles is also given (in 

parentheses). 

m = 2, 4, 6, 8, we have found that decreasing 6 with the same h but always enforcing 
6 > Ir decreases the error for times up to roughly one turn-around time at the 
expense of larger errors for longer times. For example, a choice of 6 as in Table I 
would lead to errors up to about 8% of the average velocity at much later times 
with 208 particles. Nevertheless, extremely rapid error growth in time was not 
observed. In particular, for m = 4 and m = 8 we have used larger values of C,, in 
Table IV than in Table I and the results there illustrate this trend. The reader can 
check that the errors at T= 12 are larger in Table IV for m = 4,8, however, the 
maximum error of 3.5 % for 0 < t d 54 with 6 = 4h and m = 8 would be more than 
doubled with the choice 6 = 2Sh. A possible explanation of this phenomenon is that 
the discretization of the velocity integral at large times, which is inherently poor 
because of the irregular particle arrangement, is improved by increasing the radius 
of smoothing so that the integral is less singular. 

The trend regarding the deterioration of accuracy in the point vortex method 
described earlier for moderate times becomes even more exaggerated at larger times. 
We have found errors in the ray velocity of over 100% at times as small as T= 19. 
Furthermore, the error in the relative velocity at the particles for the point vortex 
method, while better behaved than the error measured at the rays, grows more 
rapidly than the error with any of the smoothed kernels. 

We have also performed similar long runs for the vorticity distribution of (2.9) 
with a change of sign. In this case we used a 20 x 20 grid (3 16 particles). With m = 4 
and 6/h = 2.5, the maximum relative error in particle velocity for T < 50 was 7.7 %; 
for m = 8 and b/h = 4, it was 5.6 %. This vorticity patch fails to satisfy the classical 
Rayleigh stability criterion. It is unclear whether the larger errors in this case are a 
manifestation of instabilities in the steady flow. Further numerical experiments 
would be necessary to determine this. 

The vorticity distribution with the form in (2.8) generates an asymptotically 
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stable solution of the 2-D Euler equations satisfying linearized stability criteria and 
the superficial reason for the deteriorating accuracy of vortex methods for large 
times is the neglect of core distortion. On simple remedy to overcome this difficulty 
is the following one: After a fixed number of time steps one takes the computed vor- 
ticity, redistributes this vorticity on a rectangular mesh, and restarts the calculation 
with this new vorticity distribution. The vortex method gives a natural way to 
implement this strategy. The computed particles Zj define a continuous vorticity dis- 
tribution by 

Wcomp(Zr t) = c l)i(z - :j) ojll*. 

One can evaluate this function explicitly to assign new vortices on a rectangular 
grid in the restarting procedure. Since the tid functions in our case are Gaussians, 
and do not have compact support, we only treat as nonzero those values on a rec- 
tangular mesh with the same h covering four times the initial area (32 x 32 in our 
example) with Iw,,,~ 1 > 13~ where 19~ is a given tolerance. It is very important that 
this rezoning strategy is not implemented very often since this most likely 
introduces diffusive error, and vortex methods without the rezoning have the 
desirable feature that they have essentially no numerical viscosity. 

In the last column of Table IV, we report the results of implementing the rezon- 
ing strategy every five time steps with At = 1 and 8, = 0.0005. (Here the velocity 
errors were computed at initial particle locations rather than current ones.) This 
method keeps the error an order of magnitude below that given without the rezon- 
ing for times as large as T = 36 but it has the disadvantage that 168 additional par- 
ticles were added in the course of the calculation so that the computational labor 
has gone up substantially. A similar redistribution procedure for the vorticity patch 
of (2.9) led to errors under 2% for T < 40 with the number of particles growing to 
364. The authors do not advocate this rezoning strategy as a general procedure 
because these steady exact solutions are very special and further extensive testing is 
necessary; however, the results here indicate the feasibility of such an approach for 
long time integration with vortex methods. 

CONCLUSIONS 

The authors have developed simple explicit formulae for high order accurate ker- 
nels for vortex methods in two and three dimensions. A series of numerical 
experiments using exact steady smooth solutions of the 2-D Euler equations 
indicates the following facts: (1) Pure point vortex methods are unpredictably 
inaccurate in representing the velocity field off the particle trajectories in smooth 
flows. (2) For moderate integration times, the higher order smooth kernels yield 
considerably smaller relative errors than lower order vortex methods. The methods 
with higher order kernels also exhibit super-quadratic convergence under 
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refinement without significant increase in the computational labor when compared 
with low-order vortex methods. (3) For long integration times, the higher accuracy 
of vortex methods deteriorates without exhibiting catastrophic large-time numerical 
instability, and simple rezoning strategies can minimize this effect. 
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