
Programming of parallel computers
Computer Lab no. 3: Derived data types. Linear

algebra operations

DCAMM, DTU and IT, Uppsala University

January, 2008

Some of the suggested exercises utilize a number of available test codes, which can be down-
loaded from
http://www2.imm.dtu.dk/courses/FortranMPI/MPI/Labs/Lab3.

Exercise 1 [Derived data types]
Suppose that we want to communicate one column of a 2D array and that we store data row-wise
in a 1D data structure, see Figure 1. In order to use MPI Send and MPI Recv, we have to spec-
ify their arguments, namely, type, length and starting address of the data to be communicated.
This latter requires data in one message to be stored contiguously in memory which causes a
problem in the above described data allocation.
We can then either send the elements one by one, which is very inefficient, or copy the column to
a temporary array, send the temporary array, receive data in another temporary array and finally
unpack the temporary array to the corresponding column (as done in the test implementation in
Exercise 4).
MPI provides a more convenient way by the use of derived datatypes.
Remark: Due to the fact that the way how arrays are stored in memory is language-dependent,
sending a column in C and sending a row in Fortran is the operation which requires special care.

Tasks

P0

A A

P1

Figure 1: Communicate a column from P0 to P1, assume data stored row-wise in a 1D array

1



1. Compile, run and study the program datatypes. Make sure that you understand the
usage of MPI Type vector.

2. Modify the program to communicate the same portion of information if we have a 2D array
instead or to communicate two (or more) rows.

You may check the code in array sect and type.f. (The latter should be tested on 2,
3 and 4 PE.)

Exercise 2 Create your own routine to perform matrix×vector operation. Choose the matrix and
the corresponding vector partitioning yourself and allocate the matrix blocks and the sub-vectors
locally. Initialize all matrix and vector entries to be equal to 1 so that checking the correctness of
your algorithm will be easier.

Exercise 3 [Solving a hyperbolic equation] This example considers the numerical solution of
a hyperbolic partial differential equation in two-dimensions, namely the following advection
equation:

ut + ux + uy = f(x, y) 0 ≤ x, y ≤ 1
u(0, y, t) = h(y − 2t) + u0(0, y), 0 ≤ y ≤ 1
u(x, 0, t) = h(x− 2t) + u0(x, 0), 0 ≤ x ≤ 1
u(x, y, 0) = h(x + y) + u0(x, y), 0 ≤ x, y ≤ 1

The functions f(x, y), u0(x, y) and h(τ) are chosen in such a way that the problem possesses an
analytical solution u(x, y, t) as follows:

u(x, y, t) = h(x + y − 2t) + u0(x, y)
f(x, y) = 2ex+y + 3x2 + 6y2 + sin((x + y)/2) + cos((x + y)/2)

u0(x, y) = ex+y + x3 + 2y3 + sin((x + y)/2)− cos((x + y)/2)
h(τ) = sin(2π τ)

Assume now that the spatial domain is covered by a rectangular grid with step-sized ∆x and
∆y in the x- and y-direction, correspondingly. We pose the problem to compute numerically the
values of the solution in the discrete points (xi, yj, tk) where xi = i∆x, yj = j∆y and tk = k∆t.
We denote u(xi, yj, tk) as uk

ij .
The usual way to solve such a time-dependent problem is as follows: we compute the solution at
time tk and then, using the so-obtained approximate solution, proceed to compute it on the next
time level tk+1.
In this particular implementation the problem is discretized using the so-called Leap-frog scheme
which reads as follows

uk+1
ij = uk−1

ij + 2∆t
(
fij −D0

xu
k
ij −D0

yu
k
ij

)
(1)

where fij = f(xi, yj), D0
xu

k
ij = (uk

i+1,j − uk
i−1,j)/(2∆x) and D0

yu
k
ij = (uk

i,j+1 − uk
i,j−1)/(2∆y).

We see, that D0
xu

k
ij and D0

yu
k
ij are the standard central difference approximations to the corre-

sponding first derivatives in x and y.

2



The scheme 1 entails and additional requirement to compute extra numerical boundary conditions
on the lines x = 1 and y = 1. For simplicity, in the program implementation, we choose to use
the analytic solution.
The above problem is implemented in C++ and in F90. Choose your preferable language and
download the corresponding files from
http://www2.imm.dtu.dk/courses/FortranMPI/MPI/Labs/Lab3/wave CC/ or
http://www2.imm.dtu.dk/courses/FortranMPI/MPI/Labs/Lab3/wave F90/.
The implementation in C++ includes the following routines:

wave.cc main program
wave.h header file, function declarations
bound.cc boundary conditions
diffop.cc differential operators
initcomm.cc communication setup
residual.cc error norm
force.cc forcing functions f, up, h
Array2 dbl.cc 2D arrays
Array2 dbl.h header file 2D arrays
wave.dat data file, problem specification
Makefile makefile
batch.q batch script

The code is parallelized by splitting the spatial domain into squares and each processor is re-
sponsible for the calculations on a block xp

1 ≤ x ≤ xp
2, yp

1 ≤ y ≤ yp
2 .

The processors are organized in a 2D Cartesian topology to match the data decomposition. The
node-points are ordered row-wise. Communication is required when computing the D0

x operator,
D0

y operator, and in the residual computation. The communication is local neighbor-to-neighbor
and follows the same pattern in each timestep. In the y-direction the data is not contiguous
and therefore derived datatypes are used. To lower some of the communication initialization
overheads persistent communication is used. Moreover, the communication is overlapped with
the computations to minimize the synchronization overheads.
The implementation in F90 includes the following routines:

adveq.f90, params.dat, bound.f90, force.f90, Makefile
The input data (wave.dat and params.dat) is set so that the number grid-points in each spatial
direction is 255.

Tasks:

1. Observe

(a) the initialization of the logical topology (wave.cc, adveq.f90)

(b) derived data types (initcomm.cc, adveq.f90)

(c) using persistent communications and overlapping communication and computation
(adveq.f90, subroutine init comm, MPI Waitall, initcomm.cc)

3



2. Compile and run the program using different numbers of processors, note the timings for
each run.

Plot the so-called speedup, Sp = T1/Tp, where T1 is the time to run the program on one
processor and Tp - the time to run the program on p processors.

What do you observe? Is the scaling linear, can you explain the results, is it what you
expected?

3. To get exclusive runs without interference from other users, one has to use the batch sys-
tem. Specify your number of processors in the file batch.q and submit the script with
the command qsub batch.q. To check the status of the system you can use qstat.
When your job has finished you will get an output file wave.out with the results.

Exercise 4 Consider the code in sub-directory cg F77.
The implemented problem there is to solve a discrete Laplace equation using the standard (un-
preconditioned) Conjugate Gradient (CG) method.
The model continuous problem is

−uxx − uyy = f(x, y), (x, y) ∈ Ω = [0, 1]2,

with Dirichlet boundary conditions imposed on the whole boundary ofΩ. The spatial domain
(the unit square) is discretized using rectangular grid, not necessarily equidistant.
The discretization is done using standard central difference approximation,

1

h2
x

(−ui+1,j + 2ui,j − 2ui−1,j) +
1

h2
y

(−ui,j+1 + 2ui,j − 2ui,j−1) = fij

Parallelism is achieved using spatial domain decomposition. It is to be noted that the so-arising
matrix, which has a five-diagonal structure with diagonal entries equal to 4 and off-diagonal
entries equal to−1, is kept in a nonstandard way. In each subdomain, instead of one sparse matrix
with 5-diagonal structure and size N × N with N = nx ∗ ny, five dense arrays are allocated,
named m, e, w, n, s from middle, east, west, north, south, each of size nx× ny.

1. Apart from some scalar products, communications are required when performing a matrix-
time-vector multiplication (grid cmnmat.f). The implementation is ’stupid’ since the
data is first gartered in a buffer, then exchanged and finally unpacked.

One can modify this routine by creating proper data types and then time the two versions
to see if and how much the overall time has improved.

2. The program is interactive and permits to have different types of partitionings, see Figure
2 and different sizes of the locally allocated sub-meshes. It asks the user to input px and
py, to determine the processor geometry, and to input nx and ny to determine the size
of the local sub-grid, allocated per PE. By varying px, py and nx, ny we can do some
performance studies.

4



2 x 1 1 x 2

2x2 4x2 4x4

1x1

Figure 2: Processor grids px× py

For example,
px = py = 1, nx = ny = 200
px = py = 2, nx = ny = 100

will solve a problem of the same size on one and four processors. Our expectation is that
the time on four processors will ideally be four times smaller.

The choice
px = py = 1, nx = ny = 100
px = py = 2, nx = ny = 100

will solve four times larger system on four processors, keeping the load per PE constant.
Ideally, we would expect the time in both cases to be the same. However, this will be
true only if we use an algorithm, which scales linearly with the number of degrees of
freedom, such as Multigrid (MG) or Algebraic Multigrid (AMG). With the present method,
the number of iterations will roughly double when the number of degrees of freedom is
increased four times. Thus, the quantity to watch is the time spent per iteration. We expect
this to be the same if the implementation is done in a good way.

(a) Check the above two effects by running a few experiments.

(b) Do we have to use MPI BARRIER after each communication in the code grid cmnmat?

Please write your observations and comments regarding the tasks from Exercises 3 and 4 on a
piece of paper and hand it in to Maya Neytcheva before you leave the computer lab session.
Thank you.

5


