
Programming of parallel computers
Computer Lab no. 2: Communications in MPI

DCAMM, DTU and IT, Uppsala University

January, 2008

Some of the suggested exercises utilize a number of available test codes, which can be down-
loaded from
http://www2.imm.dtu.dk/courses/FortranMPI/MPI/Labs/Lab2.

Exercise 1 Read through the following programs, which illustrate different types of communi-
cations in MPI. Compile and run the codes for varying number of PEs.

1. The test code alltoall is an example of using nonblocking communications.

2. The test code IO gather illustrates gathering messages from all processes.

3. The test code ring, as the name suggests, simulates a ring architecture and sends a short
message from one to the next PE, until the message comes back to the processor which
initiated the send-loop.

Exercise 2 Compare the parallel performance of two vector operations: a scalar product (s =
vTw) and a vector update operation (r = v + αw), where v,w, r are vectors (one-dimensional
arrays) of size pN , α, s are scalars and p is the number of the PEs involved in the program run.
We will assume that the arrays are already distributed among all PEs.
Observe that the second operation is fully local, while the first one requires both local operations
and a global communication.
Proceed as follows:

• Initialise the local array size N . This can be done in two ways:

– Assign a value to N explicitly in the source code. Then one needs to edit and recom-
pile every time when one wants to vary N .

– Read the current value of N from processor P0 and sent it to all others.

• Allocate three double precision arrays of size N on each PE, call them V, W, R, say, and
initialize their entries to be equal to 1, 2 and 0, correspondingly.

Assign some value to a scalar variable alfa.

1



• Perform the operation R = V + alfa*W and time it (using MPI WTIME).

• Perform the operation s = sum(V(i)*W(i), i=1,...,p*N. It requires two steps:
(a) a local array multiplication and (b) a global communication, say ALL REDUCE. Time
the whole operation.

Do the following test runs:

1. Keep the number of PEs equal and increase the value of N , say 100, 1000, 10000, 100000.

2. Keep the size of N constant, but large enough, say 100000, and increase the number of
processors.

How much communication overhead does the global communication routine add to the overall
computing time, compared to local computations only?
On a piece of paper write down briefly your observations and comments, and deliver it to Maya
Neytcheva before you finish the lab.

Exercise 3 (Ping-pong) This is the classical ”ping-pong” communications test, where process
0 sends a message to process 1, which then sends it back to process 0.

1. Consider the code pingpong. Compile and execute it on two processors.

2. Study the implemented algorithm and the input parameters message length, number of
hops. Can we draw some conclusion about the underlying interconnection network by
varying those parameters?

Exercise 4 (round-robin) Test MPI’s basic blocking send/receive timings by sending a message
on a ”round-robin” trip through the processors.
Basic outline of the test:

• Allocate an array msg(1:n) in Fortran (or msg[n] in C ) for a message of n double precision
numbers.

• Initialize MPI

• Get p - the number of processes and myrank - this process’s rank.

• Call MPI BARRIER to let everybody synchronize.

• Process 0 initializes msg[n] to have all zeros in it.

• Process 0 calls MPI WTIME() to get start time tstart of the messaging circle.

• Send the message msg around the ring; each time it arrives at a process k, it will have all
of its entries incremented by 1.0

2



• When the message gets back to process 0, it gets the finish time and then checks the array
msg to make sure it has the correct values in it.

In the special case where the number of processes is p = 2, this round-robin algorithm acts
similarly to the ping-pong algorithm from (Exercise 3).
Doing with it p being larger and sending the message all the way around all processes could help
to average out any differences in the underlying communications hardware/software topology
and implementation and we could see an average of messaging performance. The total number
of messages required for this is p, so it should be like sending a single message p times.

1. Create a program code which implements the above algorithm. Use blocking send and
receive communications. Possibly you can modify pingpong.

2. When you have done your own implementation and it works correctly, compare with the
given code ring. What is the difference? You may also change ring to send not integers
but long messages as in your code and check whether the different type of send commands
make difference in the overall time, and for how long messages.

3. Additional task: building and testing a parallel performance model

For the implementation with blocking send-receive, try to analyse the underlying computer
network using the following simple linear model

T (n) = Tlat +
n

Rbw

,

where T (n) is the total execution time, n is the length of the message sent (in double
words), Tlat is the latency time to get a message started, Rbw is the bandwidth rate in
double words per minute.

Initially try message sizes that are powers of two: 8, 16, ..., 63556. Finding Tlat and Rbw

is then a matter of solving a linear least squares fit, which one can do easily with Matlab
(or Excel, or a hand calculator, or any other valid way). Then one could test how well
the model predicts the communication time for messages of other lengths: 1000, 10000,
100000.

Warnings: However, beware that it is not bulletproof. For instance, the least squares fit
may produce a value of Tlat which is negative. Or it could happen that the average time for
a message of length 32 is smaller than that for a message of length 8. What interpretation
can one have in such a case?

3


