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A number of test programs are to be studied. Most of them are provided both in Fortran and C.
The programs to begin with are
hello 0.f, deadlock.f, pi 0.f (respectively hello 0.c, deadlock.c, pi 0.c)
and can be downloaded from
http://www2.imm.dtu.dk/courses/FortranMPI/MPI/Labs/Lab1.
Make a copy of these files, together with the example makefile in some of your directories.

Exercise 1 (Start and stop MPI)

1. Try the program hello, which is the very first step in using MPI. Compile and link the
program issuing the command
make -f Makefile F hello

This will use the a makefile to build an executable file named hello.

Run the program on one and more processors by issuing the command

mprun -np 1 hello (for one processor) or, say,
mprun -np 4 hello (for four processors).

2. Modify the program so that each processor prints its number (rank) in addition to the
greetings. Also make the processor with rank zero to print the total number of processors
that take part in the current execution of the program.

3. Check in the sub-directory hello pool. There you find further examples of bringing
some extra functionality in this MPI code.

Exercise 2 (Deadlock test) In the deadlock program two processors try to exchange the vari-
able a between each other, and save it as b using synchronous communications.
This is one of the simplest examples of such - the pair SEND -- RECEIVE, which performs to
so-called point-to-point communication.

1



1. Build up the executable deadlock by issuing make -f Makefile F deadlock.

2. Run the program:
mprun -np 2 deadlock. As the name indicates, the program will hang forever in a
deadlock and you have to use <Ctrl/C> to break out the deadlock.

3. Modify the code so that it will not deadlock.

To help this, below you find information of the parameters of the MPI SEND and MPI RECV
routines.

MPI SEND (buf, count, datatype, dest, tag, comm, status)

IN buf initial address of send buffer
IN count number of entries to send
IN datatype datatype of each entry
IN dest rank of destination
IN tag message tag
IN comm communicator

MPI RECV(buf, count, datatype, source, tag, comm, status)

IN buf initial address of receive buffer
IN count number of entries to receive
IN datatype datatype of each entry
IN source rank of source
IN tag message tag
IN comm communicator
OUT status return status

Hint: Try to understand the importance of the message tag parameter.

Exercise 3 (Computing the value of π in parallel) An example of a Divide-and-conquer tech-
nique, or the domain decomposition approach.
The program pi computes π in parallel using numerical integration.
The well-known way to compute π is the following:
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If we use the midpoint rule, we can compute the above integral as follows (see Figure 1):
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Figure 1:

The trivial parallel implementation of the latter formula is that if we have p processors available,
we slice the interval into p pieces, attach one interval to each of them to compute a partial sum,
and then sum-up, say, in one processor, which will know the answer.
Collecting the partial results can be done in two ways:
(a) using global reduction operation (a very simple example of another type of communication
in MPI, the so-called collective communication).
(b) using point-to-point communications (send and receive).

1. Study both source codes in Fortran and C and observe what MPI functions are utilized.

2. build the executable pi by
make -f Makefile F pi

Run the program on various number of processors.

The C-program is written in such a way that the interval [0, 1] is subdivided into 108 subin-
tervals and each processor takes 1

p
108 subintervals to work with.

For the F-program the number of subintervals (n) per processor is an input parameter.
Thus, the total number of subintervals is n ∗ p.

The way to compute the global sum in the C-version is by using variant (b).

3. Change the code appropriately so that you can measure the execution time by adding
MPI WTIME in the code.

...
double precision MPI_WTIME,t_begin,t_end
...
t_begin = MPI_WTIME()
do something
t_end=MPI_WTIME()
write(*,*) my_proc,’ Time: ’,t_end-t_begin
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4. Check in the sub-directory Num int. There are several other implementations of the same
algorithm. The routine trapets, for example uses another numerical integration scheme
(the trapets-rule) which has a higher numerical accuracy. Also, one cam see the serial
implementation of the algorithm. Pay particular attention to the implementation of the
communications in pi send and pi reduce.

Exercise 4 (Computing the value of π using a Monte Carlo method)

Buffon-Laplace-needle problem

Problem Statement: More than 200 years before Metropolis coined the name ’Monte Carlo’
method, George Louis Leclerc, Comte de Buffon, proposed the following problem.
’If a needle of length ` is dropped at random on the middle of a horizontal surface ruled with
parallel lines a distance d > ` apart, what is the probability that the needle will cross one of
the lines?’ This problem was first solved by Buffon (1777, pp. 100-104), but his derivation
contained an error. A correct solution was given by Laplace (1812, pp. 359-362; Laplace 1820,
pp. 365-369).
http://mathworld.wolfram.com/Buffon-LaplaceNeedleProblem.html

We reformulate somewhat the original problem in the following way. Imagine that a needle of
length ` is dropped onto a floor with a grid of equally spaced parallel lines distances a and b
apart, where ` is less than a and b.

The probability that the needle will land on at least one line is given by

P (`, a, b) =
2`(a + b)− `2

π ab

(Uspensky 1937, p. 256; Solomon 1978, p. 4).

The idea now is to keep dropping this needle over and over on the table, and to record the
statistics. Namely, we want to keep track of both the total number of times that the needle is
randomly dropped on the table (call this N), and the number of times that it crosses a line (call
this C).

If you keep dropping the needle, eventually you will find that the number
N(2`(a + b)− `2)

Cab
approaches the value of π.
(Note that for large N the quantity C/N approaches the probability P (`, a, b).)
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In order to get a reasonably accurate approximation of π we need to perform a number of trials
of order 106 − 108. Since the separate trials are completely independent, we can perform those
in parallel and sum up the result. This problem is an example of a trivial parallelism.

1. Study the implementation of the above algorithm (pi buffon laplace.f).

2. Compile and run the program for different numbers of processors (1, 2, 4,...).

3. How does the accuracy of the computed value of π behaves on one and many PEs? It is
better to have more processors used, compared with one? How much more? What is the
reason for the error behaviour you observe - the parallelization of the code, the algorithm
or something else?

4. Amend the code in order to be able to time the execution. Do you observe that it scales? For
instance, change the code so that you can have the same total number of trials, distributed
evenly over a varying number of processors. What happens with the execution time when
you increase the number of processors? Does the time on one PE reduce twice when two
processors are used, compared to one PE? Or four times when four PEs are used?

Exercise 5 (If you have some time and you are curious...)
There are more programs in the sub-directory More ex.
You can study them, see what are they doing compile and run them. Are they correct, for exam-
ple, simple mp?
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