
FORTRAN and MPI

Message Passing Interface (MPI)

Day 5
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Course plan:

• MPI - General concepts
• Communications in MPI

– Point-to-point communications
– Collective communications

• Parallel debugging
• Advanced MPI: user-defined data types, functions

– Linear Algebra operations
• Advanced MPI: communicators, virtual topologies

– Parallel sort algorithms
• Parallel performance. Summary. Tendencies
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Parallel performance

Computational and communication complexity

• notations, notions

• parallel performance metrics

• parallel performance models

• computational complexity of some basic algorithms/operations
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Parallel performance

Basic terminology

• parallel machine (homogeneous), number of PE p, size of the problem
N , some algorithm A

• computational complexity W (A, p), W (A, 1)

• clock cycle

• execution time
serial: T (A, 1) = tcW (A)

parallel: T (A, p) = Ts(A) +
Tp(A)

p + Tc(A, p)

• FLOPS rate (peak performance: theoretical vs sustained)
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Parallel performance
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Parallel performance
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Parallel performance
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Parallel performance
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Parallel performance

Parallel performance metrics

• T (A, p) is the primary metric !!!

• speedup S(A, p) = T (A,1)
T (A,p) ≤ p; relative, absolute

• efficiency E(A, p) = S(A,p)
p ≤ 1

• redundancy W (A, p)/W (A, 1)

• scalability
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Parallel performance

qp

qp

qp

qp

qp

qp

ut

ut

ut

ut
ut ut

bc

bc

bc

bc

bc

bc

r

r

r

r

r

r

Number of processors

Time

Examples of speedup curves

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 10



Parallel performance

Measuring speedups - pros and cons: contra- relative speedup is that it
”hides” the possibility for T (A, 1) to be very large. The relative speedup
”favors slow processors and poorly-coded programs” because of the following
observation.

Let the execution times on a uni- and p-processor machine, and the corresponding speedup be

T0(A, 1) and T0(A, p) and S0 =
T0(A, 1)

T0(A, p)
> 1.

Next, consider the same algorithm and optimize its program implementation. Then usually

T (A, p) < T0(A, p) but also S < S0.

Thus, the straightforward conclusion is that worse programs have better speedup.
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Parallel performance

A closer look: T (A, p) = βT0(A, p) for some β < 1. However, T (A, 1) is
also improved, say T (A, 1) = αT0(A, 1) for some α < 1.

What might very well happen is that α < β. Then, of course,
S0

S
=

β

α
> 1.

When the comparison is done via the absolute speedup formula, namely

S̃0

S̃
=

T (A∗, 1)

T0(A, p)

T (A, p)

T (A∗, 1)
= β < 1.

In this case T (A∗, 1) need not even be known explicitly. Thus, the absolute
speedup does provide a reliable measure of the parallel performance.
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Parallel performance

Both speedup and efficiency, as well as MFLOPSrate, are tools for analysis but

not a goal of parallel computing.

None of these alone is a sufficient criterion to judge whether the performance of a parallel

system is satisfactory or not. Furthermore, there is a tradeoff between the parallel execution

time and the efficient utilization of many processors, or between efficiency and speedup.

One way to observe this is to fix N and vary p. Then for some p1 and p2 we have the

relation
E(A, p1)

E(A, p2)
=

p2T (A, p2)

p1T (A, p1)
.

If we want E(A, p1) < E(A, p2) and T (A, p1) > T (A, p2) to hold simultaneously,

then
p2
p1

<
T (A,p1)

T (A,p2), i.e., the possibility of utilizing more processors is limited by the gain in

execution time. As a realistic goal, when developing parallel algorithms for massively parallel

computer architectures one aims at efficiency which tends to one with both increasing

problem size and number of processors.
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Parallel performance

Scalability

* scalability of a parallel machine: The machine is scalable if it can
be incrementally expanded and the interconnecting network can incorporate
more and more processors without degrading the communication speed.

* scalability of an algorithm: If, generally speaking, it can use all the
processors of a scalable multicomputer effectively, minimizing idleness due
to load imbalance and communication overhead.

* scalability of a machine-algorithm pair
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Parallel performance

How to define scalability?

Definition 1: A parallel system is scalable if the performance is linearly proportional to

the number of processors used.

BUTS: impossible to achieve in practice

Definition 2: A parallel system is scalable if the efficiency E(A, p) can become bigger

than some given efficiency E0 ∈ (0, 1) by increasing the size of the problem, i.e., E(A, p)

stays bounded away from zero when N increases (efficiency-conserving model).

Definition 3: A parallel system is scalable if the parallel execution time remains constant

when the number of processors p increases linearly with the size of the problem N (time-

bounded model). BUTS: too much to ask for since there is communication overhead.

Definition 4: A parallel system is scalable if the achieved average speed of the algorithm

on the given machine remains constant when increasing the number of processors, provided

that the problem size is increased properly with the system size.
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Parallel performance

Presuming an algorithm is parallelizable, i.e., a significant part of it can be done

concurrently, we can achieve large speed-up of the computational task using

(a) well-suited architecture;

(b) well-suited algorithms;

(c) well-suited data structures.

A degraded efficiency of a parallel algorithm can be due to either the computer architecture

or the algorithm itself:

(i) lack of a perfect degree of parallelism in the algorithm;

(ii) idleness of computers due to synchronization and load imbalance;

(iii) of the parallel algorithm;

(iv) communication delays.
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Parallel performance

More on parallel performance

Definition: A parallel system is said to be cost-optimal if the cost of solving
a problem in parallel is proportional to the execution time of the fastest-
known sequential algorithm on a single processor.

The cost is understood as the product pTp
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Parallel performance

Example: Adding n numbers on a p-processor machine (p < n).
The serial complexity of adding n numbers is O(n). On a p-processor

hypercube (p = 2d) the complexity becomes

O(
n

p
+ 2 log p).

n p=1 p=4 p=8 p=16 p=32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62
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Parallel performance

Scaled speedup:
Compare scalability figures when problem size and number of PEs are
increased simultaneously in a way that the load per individual PE is kept
large enough and approximately constant.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 19

Parallel performance

Parallel performance models

• The fundamental principle of computer performance; Amdahl’s law
(1967)

Given: N operations, grouped into k subtasks N1, N2, · · · , Nk, which must be done

sequentially, each with rate Ri.

T =
k

X

i=1

ti =
k

X

i=1

Ni

Ri

=
k

X

i=1

fi N

Ri

; R =
T

N
N/

X

(fiN/Ri) =
1

Pk
i=1 fi/Ri

Hence, the average rate R for the whole task is the weighted harmonic mean of

R1, R2, . . . , Rk.

For the special case of only two subtasks - fp (parallel) and 1− fp - serial, then

R(fp) =
1

fp
Rp

+
1−fp
Rs

and S =
p

fp + (1− fp)p
≤

1

1− fp

.
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Parallel performance

Gene Amdahl:

For over a decade prophets have voiced the contention that the

organization of a single computer has reached its limits and that

truly significant advances can be made only by interconnection

of a multiplicity of computers in such a manner as to permit

cooperative solution...The nature of this overhead (in parallelism)

appears to be sequential so that it is unlikely to be amendable to

parallel processing techniques. Overhead alone would then place

an upper limit on throughput on five to seven times the sequential

processing rate, even if the housekeeping were done in a separate

processor...At any point in time it is difficult to foresee how the

previous bottlenecks in a sequential computer will be effectively

overcome.
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Parallel performance

• Gustafson-Barsis law (1988):

Perhaps, the first breakthrough of the Amdahl’s model is the result achieved by the

1988 Gordon Bell’s prize winners - a group from Sandia Laboratories.

On a 1024 processor nCUBE/10 and with fp computed to be in the range of

(0.992, 0.996) they encountered a speedup of 1000 while the Amdahl’s law prediction

was only of the order of 200 (S = 1024/(0.996 + 0.004 ∗ 1024) ≈ 201).

T (A, 1) = (1− fp) + fpp
T (A, p) = (1− fp) + fp = 1 properly scaled problem

S = T (A, 1) = p− (p− 1)(1− fp)
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An algorithm which scales ... Parallel performance

Coarsest Number of PEs
Grid level No Time

size (total no. 1 2 4 8 16 32 64 (sec)
of levels)

60.14 31.32 18.19 total

642 8(12) 59.47 31.03 18.09 outer

25.68 13.51 8.30 coars.
0.11 1.17 1.26 comm.

161.76 79.77 41.96 total

1282 10(14) 160.76 79.09 41.66 outer
89.18 45.61 24.00 coars.
2.46 2.67 3.29 comm.

The Stokes problem: Performance results on the Cray T3E-600 computer
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An algorithm which scales ... Parallel performance

Coarsest Number of PEs
Grid level No Time

size (total no. 1 2 4 8 16 32 64 (sec)
of levels)

455.67 total
8(16) 452.31 outer

101.34 coars.
6.26 comm.

406.62 190.54 94.61 49.55 28.90 total

10(16) 403.49 189.06 93.86 49.18 28.71 outer
159.75 80.09 41.63 21.97 13.20 coars.

5.31 5.93 5.58 4.62 3.89 comm.
440.90 213.34 107.87 56.79 34.21 total

2562 12(16) 438.01 211.96 107.16 56.43 34.04 outer
283.38 142.39 74.42 39.19 24.25 coars.

5.75 7.32 7.41 5.90 4.49 comm.
824.96 total

14(16) 822.33 outer

728.07 coars.
15.03 comm.

The Stokes problem: Performance results on the Cray T3E-600 computer (cont)
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An algorithm which scales ... Parallel performance

Coarsest Number of PEs
Grid level No Time

size (total no. 1 2 4 8 16 32 64 (sec)
of levels)

632.60 304.24 154.65 total

5122 12(18) 629.44 302.71 153.81 outer

363.38 183.18 96.15 coars.
14.28 12.14 10.14 comm.

1662.73 829.71 total

12(20) 1655.73 826.22 outer
810.11 422.25 coars.
29.89 22.26 comm.

1913.08 total

10242 14(20) 1906.57 outer

1326.37 coars.
33.19 comm.

The Stokes problem: Performance results on the Cray T3E-600 computer (cont)
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MPI is not the only alternative...
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Message Passing - approaches, alternatives

• PVM - Parallel Virtual machine (1989)

• MPI - Message Passing Interface (1993)

• BSP - Bulk Synchronous Parallel computations (1990)
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Message Passing - approaches, alternatives

PVM

The major difference:
- MPI is a library to write an application program, not a distributed memory
operating system;
- PVM can be regarded as the ’de facto’ standard for distributed computing.

The general notion for PVM is that of a virtual machine, which is a set of heterogeneous

hosts, connected with some network, which appears logically to the user as a single large

parallel computer.

The problem is decomposed into separate programs, each compiled to run on a specific type

of computer. The major issue becomes how to exchange data between the programs. The

communication is done by calls to PVM library routines (pvm send() and pvm recv()
through message buffers. One data exchange may contain data items of various types and

they are packed and unpacked respectively upon send and receive.
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PVM Terms

host: a physical machine (or nodes of a parallel machine)
virtual machine: meta-machine composed of one or more hosts
task: a PVM process - smallest unit of computation
TID: a unique identifier associated with each task
PVMD: the PVM daemon, e.g. ’pvm3/lib/ARCH/pvmd3’

where ARCH is the architecture of the host such
as sol2, sun, sgi.

message: ordered list of data between tasks
group: set of tasks assigned a symbolic name, each task

has a unique index in the group and a task can
belong to zero or more groups

Want to know more? Visit http://www.csm.ornl.gov/pvm/.
Maintained at The Computer Science and Mathematics Division (CSM),
Oak Ridge National Lab.
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BSP

BSP

The claim: BSP is a ’bridging’ model between software and hardware
for parallel computation that is analogous to the von Neumann model of
sequential computation.

The bulk synchronous parallel (BSP) model consists of:

• a set of processor-memory pairs,

• a communication network that delivers messages point-to-point,

• a mechanism for efficient synchronization of all, or a subset of, the
processors.

... superstep

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 30



BSP

The parameters that define performance:

• s - processor speed (number of steps per second, or the actual rate at which useful

calculation is done);

• p - number of processors;

• ℓ - the time the machine needs for the barrier synchronization (depends on network

latency);

• g - the cost, in steps per word, of delivering message data, calculated from the average

cost of transferring each word of messages of all sizes in the presence of other traffic

on the network (bandwidth inefficiency, gap)

The closer the g value approaches 1 and the smaller the ℓ value is for a given system, the

easier it is to produce scalable parallel performance on that architecture.
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BSP

Advantages of the BSP model

* a higher level of abstraction for the programmer
a cost model for performance analysis and prediction
which is simpler and compositional,
more efficient implementations on many machines

!! Predictability

BSPonMPI

http://www.bsp-worldwide.org/
http://www.bsp-worldwide.org/implmnts/oxtool/
http://bsponmpi.sourceforge.net/bench/index.html
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BSP

Scalar product: MPI vs BPS

-----------------------------------------------------------
c Scalar product: MPI --> BSP
c -----------------------------------------------------------

double precision function dot1(x,y,n)
implicit none
include ’mpif.h’ --> include ’fbsp.h’
integer n,i,ierr,comm --> integer n,i,field_length
double precision lsum,gsum,x(n),y(n)
lsum=0.0d0 --> field_length = 8
do i=1,n

lsum=lsum + x(i)*y(i)
enddo
call MPI_ALLREDUCE(lsum,gsum,1,MPI_DOUBLE_PRECISION,
> MPI_SUM, MPI_COMM_WORLD, ierr)

c--> call BSP_REDUCE(SUM,lsum,gsum,field_length)
mpi_dot1 = gsum
return
end
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BSP

OpenMP

OpenMP is an industry-wide standard for directive-based parallel
programming on SMP (Symmetric MultiProcessor) systems.

OpenMP Is an Application Program Interface (API) enabling explicit direct
multi-threaded, shared memory parallelism.

OpenMP is of three primary API components:

• compiler directives;
• runtime library routines;
• environment variables.
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BSP

OpenMP is portable: the API is specified for C/C++ and Fortran.

OpenMP is standardized: jointly defined and endorsed by a group of major
computer hardware and software vendors. Expected to become an ANSI
standard later.

OpenMP is Not:

• meant for distributed memory parallel systems (by itself);
• necessarily implemented identically by all vendors;
• guaranteed to make the most efficient use of shared memory

(currently there are no data locality constructs).

http://www.openmp.org
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OpenMP Programming Model

Thread Based

Parallelism:

A shared memory process can consist of multiple threads.

OpenMP is based upon the existence of multiple threads

in the shared memory programming paradigm.

Explicit Parallelism: OpenMP is an explicit (not automatic) programming

model, offering the programmer full control over

parallelization.

Fork - Join Model: OpenMP uses the fork-join model of parallel execution:

O

K

R

F

OO

F J

O

N

I

J

R I

NK

{parallel region} {parallel region}

master master

thread thread

master

thread
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C / C++ - General Code Structure

#include <omp.h>
main () {
int var1, var2, var3;
Serial code

...

...
Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{
Parallel section executed by all threads

...

...
All threads join master thread and disband
}

Resume serial code
...

}
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Fortran - General Code Structure

PROGRAM HELLO
INTEGER VAR1, VAR2, VAR3
Serial code

...

...
Beginning of parallel section. Fork a team of threads.
Specify variable scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
Parallel section executed by all threads

...

...
All threads join master thread and disband

!$OMP END PARALLEL

Resume serial code
...
...

END
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Fortran - General Code Structure

program sum

c Compute global sum

call omp_set_num_threads(16)
xsum = 0.0

c$omp parallel do private(i,m,x) shared(xsum)
do i = 1, 800

m = (i-1)/100
x = m + 1.0
xsum = xsum + x

enddo
print *, ’Global Sum = ’, xsum

end
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Java And MPI

MPI Java Wrapper:

Design:

♦ all set of classes with lightweight functional
interface to MPI

♦ the classes are based on the fundamental MPI
object types (communicators, groups, etc.)

♦ the Java wrapper language bindings provide a
semantically correct interface to MPI

♦ one-to-one mapping between MPI and Java
wrapper bindings

♦ to the greatest extent possible, the Java wrapper
for MPI functions are methods functions of MPI
classes
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Java And MPI

Structure:

♦ everything is included in the MPI package (Java term)

♦ A set of basic MPI functions has been implemented

init(), finalize(), Wtime(), Wtick(), Send(), Bsend(), Rsend(),
Bcast(), Gather(), Scatter(), Allgather(), Reduce(),...
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Java And MPI

http://www.jppf.org/index.php
About JPPF (JAVA Parallel Processing Framework):
a grid toolkit for Java that makes it easy to run your applications in parallel,
and speed up their execution by orders of magnitude.

Linux and Unix platforms (32 and 64 bits)
Windows 2000, XP, 2003 (32 and 64 bits)
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GRID

Computational Grids enable

• sharing,

• selection,

• aggregation

of a wide variety of geographically distributed computational resources
(supercomputers, compute clusters, storage systems, data sources,
instruments, people)
and presents them as a single, unified resource for solving large-
scale compute and data intensive computing applications (e.g, molecular
modelling for drug design, brain activity analysis, and high energy physics).
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MPI-based Parallel software packages

PETSc – http://acts.nersc.gov/petsc/

PETSc, the Portable, Extensible Toolkit for Scientific computation
provides sets of tools for the parallel (as well as serial), numerical solution of
PDEs that require solving large-scale, sparse nonlinear systems of equations.
PETSc includes nonlinear and linear equation solvers that employ a variety of
Newton techniques and Krylov subspace methods. PETSc provides several
parallel sparse matrix formats, including compressed row, block compressed
row, and block diagonal storage.

PETSc is designed to facilitate extensibility. Thus, users can incorporate
customized solvers and data structures when using the package. PETSc
also provides an interface to several external software packages including
BlockSolve95, ESSL, Matlab, ParMeTis, PVODE, and SPAI. PETSc is fully
usable from Fortran, C and C++, and runs on most UNIX based-systems.
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MPI-based Parallel software packages

HYPRE High Performance Preconditioners

https://computation.llnl.gov/casc/linear solvers/sls hypre.html

Beta-version: hypre-2.2.0b from September 2007

HYPRE is a software library for solving large, sparse linear systems of
equations on massively parallel computers. The library was created with
the primary goal of providing users with advanced parallel preconditioners.
Issues of robustness, ease of use, flexibility, and interoperability also play an
important role.
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MPI-based Parallel software packages

TRILINOS - http://trilinos.sandia.gov/

The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution
of large-scale, complex multi-physics engineering and scientific problems.
A unique design feature of Trilinos is its focus on packages.
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MPI-based Parallel software packages

MUMPS: a MUltifrontal Massively Parallel sparse direct Solver

http://graal.ens-lyon.fr/MUMPS/

Distributed Multifrontal Solver (F90, MPI based );

Dynamic Distributed Scheduling to accommodate both numerical fill-in and multi-user

environment;

Use of BLAS, ScaLAPACK. Version for complex arithmetic;

Parallel factorization and solve phases (uniprocessor version also available);

Iterative refinement and backward error analysis;

Various matrix input formats
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Final words

High Performance Computing (HPC)
Where are we?

♦ Performance:

– Sustained performance has increased substantially during the last years.
– On many applications, the price-performance ratio for the parallel systems has become smaller than

that of specialized supercomputers. But · · ·

– Still, some applications remain hard to parallelize well (adaptive methods).

♦ Languages and compilers:

– Standardized, portable, high-level languages exist (MPI, PVM, HPF, Matlab). But · · ·
Initial releases of HPF were not very efficient (1993 - 1997).

– Message passing programming is tedious and hard to debug.
– Programming difficulties remain still a major obstacle for mainstream scientists to parallelize existing

codes.

However, we are witnessing and we are given the chance to participate in the exiting process

of parallel computing achieving its full potential power and solving the most challenging

problems in Scientific Computing.
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