
FORTRAN and MPI

Message Passing Interface (MPI)

Day 4
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Course plan:

• MPI - General concepts
• Communications in MPI

– Point-to-point communications
– Collective communications

• Parallel debugging
• Advanced MPI: user-defined data types, functions

– Linear Algebra operations
• Advanced MPI: communicators, virtual topologies

– Parallel sort algorithms
• Parallel performance. Summary. Tendencies
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Recall: Distributed memory machines
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Recall: Interconnection network topologies

(a) linear

array

(b) ring (c) star (d) 2D mesh (e) 2D toroidal

mesh

(f) systolic array

(g) completely

connected

(h) chordal ring

. . . . .

(i) binary tree (j) 3D cube (k) 3D cube
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Communicators
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Communicators

Creating communicators enables us to split the processors into groups.

Benefits:

• The different groups can perform independent tasks.

• Collective operations can be done on a subset of processors

• The subsets are logically the same as the initial (complete) group of PEs,
i.e., there exists P0 in each subgroup. In this way, for example, recursive
algorithms can be implemented.

• Safety - isolating messages, avoiding conflicts between modules etc.
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Groups of processes

First we need to introduce the notion of group
A group is an ordered set of process identifiers (henceforth processes).

Each process in a group is associated with an integer rank. Ranks are
contiguous and start from zero.

Groups cannot be directly transferred from one process to another.

A group is used within a communicator to describe the participants in a
communication “universe” and to rank such participants (thus giving them
unique names within that “universe” of communication).

There is a special pre-defined group: MPI GROUP EMPTY, which is a group
with no members. The predefined constant MPI GROUP NULL is the value
used for invalid group handles.
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Groups

MPI_COMM_GROUP(comm,group)

input: comm - communicator
output: group - group corresponding to the communicator

MPI_COMM_CREATE(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 8



Groups

Various functions available to manipulate with communicators in MPI:

MPI GROUP UNION(group1, group2, newgroup)

MPI GROUP INTERSECTION(group1, group2, newgroup)

MPI GROUP DIFFERENCE(group1, group2, newgroup)

MPI GROUP INCL(group, n, ranks, newgroup)

MPI GROUP EXCL(group, n, ranks, newgroup)

MPI GROUP FREE(group)
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Communicators

MPI_COMM_CREATE(comm, group, newcomm)

[ IN comm] communicator (handle)

[ IN group] Group, which is a subset of the group of comm (handle)

[ OUT newcomm] new communicator (handle)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

The function creates a new communicator.
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Communicators

Various functions available to manipulate with communicators in MPI:

MPI COMM SIZE(comm, size)

MPI COMM COMPARE(comm1, comm2, result)

MPI COMM SPLIT(comm, color, key, newcomm)

MPI COMM FREE(comm)
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Communicators

MPI_COMM_SPLIT(comm, color, key, newcomm)
IN comm communicator (handle)
IN color control of subset assignment (integer)
IN key control of rank assigment (integer)
OUT newcomm new communicator (handle)

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR
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Communicators

What are those: color and key?

Partitions the group associated with comm into disjoint subgroups, one for
each value of color.
Each subgroup contains all processes of the same color.
Within each subgroup, the processes are ranked in the order defined by the
value of the argument key.
A new communicator is created for each subgroup and returned in newcomm.

A process may supply the color value MPI UNDEFINED, in which case
newcomm returns MPI COMM NULL. This is a collective call, but each
process is permitted to provide different values for color and key.
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Communicators

program Comm
implicit none
include "mpif.h"

integer ierror, rank, size, rankh, sizeh, key
integer ALL_GROUP, color, HALF_COMM
integer N, M
integer, dimension(MPI_STATUS_SIZE) :: status

call MPI_Init(ierror)

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

N = rank
M = rank+10
call MPI_COMM_GROUP(MPI_COMM_WORLD, ALL_GROUP, ierror)
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Communicators

color=rank/2
key=0

call MPI_COMM_SPLIT(MPI_COMM_WORLD,color,key,HALF_COMM, ierror)

call MPI_Comm_rank(HALF_COMM, rankh, ierror)
call MPI_Comm_size(HALF_COMM, sizeh, ierror)
write(*,*) ’Global ’, rank,’ is now local rank ’,rankh,’ ’,color
write(*,*) ’Global ’,rank,’ local ’,rankh, ’ has ’,N,’ and ’,M
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Communicators

if (rankh.eq.0) then
call MPI_SENDRECV(N,1,MPI_INTEGER,1,1,
. N,1,MPI_INTEGER,1,2,HALF_COMM,status,ierror)
else
call MPI_SENDRECV(N,1,MPI_INTEGER,0,2,
. N,1,MPI_INTEGER,0,1,HALF_COMM,status,ierror)
endif

write(*,*) ’Global ’,rank,’ local ’,rankh, ’ new ’,N,’ and ’,M

call MPI_COMM_FREE(HALF_COMM, ierror)
call MPI_GROUP_FREE(ALL_GROUP, ierror)

call MPI_Finalize(ierror)

stop
end
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Communicators

Possible output of the above code (sorted afterwards)

Global 3 local 1 has 3 and 13
Global 2 local 0 has 2 and 12

-------------------------------------------
Global 1 local 1 new 0 and 11
Global 0 local 0 new 0 and 11

Global 2 local 0 new 2 and 13
Global 3 local 1 new 2 and 13

-------------------------------------------
-------------------------------------------
Global 2 local 0 has 2 and 12
Global 3 local 1 has 3 and 13

-------------------------------------------
Global 0 local 0 new 1 and 10
Global 1 local 1 new 0 and 11

Global 2 local 0 new 3 and 12
Global 3 local 1 new 2 and 13
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Virtual interconnection topology
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Virtual topologies

Algorithm −→ communication pattern −→ graph

The processes represent the nodes in that graph,
the edges connect processes that communicate with each other.
MPI provides message-passing between any pair of processes in a group.

However, it turns out to be convenient to describe the virtual communication
topology utilized by an algorithm.

The provided MPI functions for that are:
MPI GRAPH CREATE and MPI CART CREATE

which are used to create general (graph) virtual topologies and Cartesian
topologies, respectively. These topology creation functions are collective.
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Virtual topologies

The tool provided to describe Cartesian grids of processors is
MPI CART CREATE

Cartesian structures of arbitrary dimension are allowed.
In addition, for each coordinate direction one specifies whether the process
structure is periodic or not.

Note that an n-dimensional hypercube is an n-dimensional torus with 2

processes per coordinate direction. Thus, special support for hypercube
structures is not necessary.
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Process topologies

Cartesian topology functions

MPI CART CREATE(comm old,ndims,dims,periods,reorder,comm cart)

IN comm old input communicator

IN ndims number of dimensions in a Cartesian grid

IN dims integer array of size ndims specifying the number

of procs in each dimension

IN periods logical array of size ndims specifying whether the

grid is periodic (’true’) or not (’false’) in each

dimension

IN reorder ranks may be reordered (’true’) or not (’false’)

OUT comm cars communicator with new Cartesian topology

Returns a handle to a new communicator. If reorder=’false’, the rank of each

processor in the group is identical to its rank in the new group.
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Virtual topologies
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...
dims(1) = 4
dims(2) = 4
periods(1) = ’true’
periods(2) = ’true’
reprder = ’false’
MPI_CART_CREATE(MPI_COMM_WORLD,2,dims,
. periods,reorder,GRID_COMM)
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Virtual topologies

MPI CART SHIFT(comm,direction,disp,rank src,rank dest)

IN comm communicator with Cartesian

structure

IN direction coordinate dimension of shift

IN disp displacement (> 0: upwards

shift, < 0: downwards shift)

OUT rank src rank of source process

OUT rank dest rank of destination process

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 23

Virtual topologies
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MPI_CART_SHIFT(GRID_COMM,1,1,src,dest,ierror)
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Virtual topologies

....
C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr))
C find cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)
C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)
C skew array

CALL MPI_SENDRECV_REPLACE(A,1,MPI_REAL,dest,0,source,0,comm,
+ status, ierr)

OBS!:

In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1) nodes,

where DIMS is the array that was used to create the grid.

In C, the dimension indicated by direction = i is the dimension specified by dims[i].
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Parallel Divide-and-Conquer techniques

• Partitionings:

- data partitioning

- functional partitioning

• Examples of Divide-and-Conquer approaches:

-
n

P

i=1

ai,
n

P

i=1

aibi

- Numerical integration

- Solution of tridiagonal systems

- Bucket sort algorithm
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More examples of Divide-and-Conquer algorithms:

matrix manipulations block splitting of matrices, multifrontal methods

the ’knapsack’ problem the problem to find a set of items each with a weight w

and a value v, in order to maximize the total value while

not exceeding a fixed weight limit

’Mergehull’ an algorithm for determining the convex hull of n points

in a plane.

integer factorization an algorithm for decomposing positive integer numbers

into prime factors

set-covering the problem is to find a minimal set of subsets of a setS,

which covers the properties of all elements of the set S.
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a7
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((((((a1+a2)+a3)+a4)+a5)+a6)+a7)+a8

+ ++

+

+

+

+

a3 a5 a8a6a4a2 a7a1

(a1+a2)+(a3+a4))+((a5+a6)+(a7+a8))

A trivial example how to gain parallelism
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Parallel Divide-and-Conquer techniques

Scalar product, summing-up n numbers

FAN-IN, FAN-OUT algorithms

1
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Binary tree algorithm represented by a cascade graph to compute
n

P

i=1

xiyi, where

n = 2s(s = 3)
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Parallel Divide-and-Conquer techniques

Numerical integration

f(x)

0 x

P2 P3P1P0

h bh hha

Proc0: broadcast a and b
Proci: h = (b − a)/p

ai = a + (i − 1) ∗ h, bI = a + Ih
area local = F (ai) + f(bi) ∗ h ∗ 0.5

Proc0: gather area local into area locali
area =

Pp−1
i=0 area locali
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Parallel Sort Algorithms
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Parallel Sort Algorithms

A general-purpose parallel sorting algorithm must be able to sort a large sequence with a

relatively small number of processors.

Let p be the number of processors and n be the number of elements to be sorted. Each

processor is assigned a block of size n/p elements. Let A0, A1, · · · , Ap−1 be the blocks

assigned to processors P0, P1, · · · , Pp−1, respectively. We say that Ai < Aj if every

element of Ai is smaller than every element in Aj. When the sorting finishes, each

processor Pi holds a set A
′

i such that for i ≤ j and
p−1
S

i=0

Ai =
p−1
S

i=0

A
′

i.

In a typical sorting process, each processor sorts locally the block it owns, then selects a

pivot, split the block into two according to the pivot, exchange half of the block with its

neighbors, merge the received block with the block it retained.
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From Sequential Sort to Parallel Sort

• Sequential sort

– Selection sort, Insertion sort, Bubble sort, each has a complexity of O(n2), where

n is the number of elements

– Quick sort, Merge sort, Heap sort

- O(n log n)

- Quick sort best on the average

• Different approach to design a parallel sort

– Use a sequential sort and adapt

- How well can it be done in parallel? Not all sequential algorithms can be parallelized

easily.

- Sometimes a poor sequential algorithm can develop into a reasonable parallel

algorithm (e.g. bubble sort).

– Develop a different approach

- More difficult, but may lead to better solutions.
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Sequential sort algorithms

Name Description Complexity Modifications

bubble sort by comparing each adjacent pair of

items in a list in turn, swapping the items

if necessary, and repeating the pass through

the list until no swaps are done

O(n2) bidirectional

bubble sort,

exchange

sort, sink

sort

insertion Sort by repeatedly taking the next item and

inserting it into the final data structure

in its proper order with respect to items

already inserted. Run time is O(n2)

because of moves.

O(n2) binary

insertion

sort
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Sequential sort algorithms

Name Description Complexity Modifications

bucket A distribution sort where input elements are

initially distributed to several (but relatively

few) buckets based on a certain predefined

value-brakets. Each bucket is sorted if

necessary, and the buckets’ contents are

concatenated.

O(n log log n) bin sort,

range sort

29, 25, 3, 49, 9, 37, 21, 43

0−15 16−30 31−49

3
9

29, 25

21

49 37

43
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Sequential sort algorithms

Name Description Complexity Modifications

quicksort One element, x of the list to be sorted

is chosen and the other elements are split

into those elements less than x and those

greater than or equal to x. These two lists

are then sorted recursively using the same

algorithm until there is only one element

in each list, at which point the sublists are

recursively recombined in order yielding the

sorted list.

O(n log n) balanced,

external,

hybrid

merge sort A sort algorithm which splits the items to

be sorted into two groups, recursively sorts

each group, and merges them into a final,

sorted sequence

O(n log n) (non)balanced,

balanced

two-way,

k-way
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Sequential sort algorithms

Name Description Complexity Modifications

heap sort A sort algorithm which builds a heap, then

repeatedly extracts the maximum item.

Heap data structure: A tree where every

node has a key more extreme (greater or

less) than the key of its parent.

O(n log n) weak heep

sort, adaptive

heap sort

radix sort A multiple pass sort algorithm that

distributes each item to a bucket according

to part of the item’s key beginning with

the least significant part of the key. After

each pass, items are collected from the

buckets, keeping the items in order, then

redistributed according to the next most

significant part of the key ( c depends on

the size of the key and number of buckets.

O(cn) bottom-

up radix

sort, radix

quicksort
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Sequential sort algorithms

Name Description

diminishing increment

sort

Counting Sort

shell sort
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Sequential sort algorithms

Parallel algorithms on sequences and strings:

Matching Parentheses: This is an interesting algorithm since one might think that

matching parentheses seems very sequential. For each location the algorithm returns the

index of the matching parenthesis. The algorithm is based on a scan and an integer

sort (rank). The scan returns the depth of each parenthesis and the sort groups them

into groups of equal depth. At this point we can simply switch the indices of neighbors.

Assuming a work-efficient radix sort, this algorithm does O(n) work and has the depth is

bounded by the sort.

function parentheses_match(string) =
let

depth = plus_scan({if c==‘( then 1 else -1 : c in string});
depth = {d + (if c==‘( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

parentheses_match("()(()())((()))");
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Sequential sort algorithms

Bucket sort algorithm

n  numbers

P0 P1 P2 P3

26 − 50 51 − 75 76 − 1000 − 25

filter

Quick sort in each bucket - serial complexity to sort k numbers: O(k log k)

T1 = n + pn
p log(n

p) = n(1 + log(n
p)) = O(n)

Tp = n + n
p log(n

p)
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Parallel sort algorithms

Divide-and-Conquer approaches for sorting algorithms:

• Merge sort

- collects sorted list onto one processor, merging as items come together

- maps well to tree structure, sorting locally on leaves, then merging up the tree

- as items approach root of tree, processors drop out of the process, limiting parallelism

• Quick sort

- maps well to hypercube

- divide list across dimensions of the hypercube, then sort locally

- selection of partition values is even more critical than for sequential version since it

affects load balancing

- hypercube version leaves different numbers of items on different nodes
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Quick sort

• Basic idea of parallel quick sort algorithm on a hypercube

1: Select global partition value (pivot), split values across

highest cube dimension, high values going to upper side

and low values to lower side

2: Repeat on each of the lower dimensional cubes forming the

upper and lower halves of the original (divide)

3: Continue this process until the remaining cube is a single

processor, then sort locally

4: Each node contains a sorted list, and the lists from node to

node are in order, using Grey code numbering of nodes.
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Quick sort

• How to implement it? Hyper quick sort;

I. Divide data equally among nodes

II. Sort locally on each node first

III. Broadcast median value from node 0 as pivot

IV. Each list splits locally, then trades halves across highest

dimension

V. Apply the above two steps successively (and in parallel) to

lower dimensional cube forming the two halves, and so on

until dimension reaches 0 (a single node)
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Quick sort

• Run time for quicksort on hypercube: following components contribute to run time.

1. Local sort (e.g. sequential quicksort) in O(n
p log n

p)

2. Broadcasting a pivot during i-th iteration takes O(d− (i− 1)) where d− (i− 1)

is the dimension of the sub-hypercube.

In a d-dimension hypercube, one-to-all broadcast can be done in d steps. Thus the

total time spent in broadcasting pivots (it needs d = log p iterations)

d
X

i

i =
d(d + 1)

2
=

(log p)(log p + 1)

2
= O(log2 p)

3. Partitioning n/p elements in O(n
p log n

p), but we need to do it log p times

4. Exchange local list with neighbors in O(n
p log n

p), but we need to do it log p times.

5. Merge local list with the one received in O(n
p log n

p), but we need to do it log p

times
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Quick sort

So the total run time is

Tp = O

„

n

p
log

n

p

«

+ O

„

n

p
log p

«

+ O(log
2
p).

If the number of processors p is equal to n/ log n,

then its best run time is

O(log n ∗ log(log n)) + O(log
2
n) = O(log

2
n).
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