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Course plan:

• MPI - General concepts
• Communications in MPI

– Point-to-point communications
– Collective communications

• Parallel debugging
• Advanced MPI: user-defined data types, functions

– Linear Algebra operations
• Advanced MPI: communicators, virtual topologies

– Parallel sort algorithms
• Parallel performance. Summary. Tendencies
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Memory organization for multiprocessor systems

Computer memories are known to be never big enough

for what you want to do.

The hardship of the unanimous programmer. (Year unknown.)

Two major solutions have been offered:
- a shared memory model, combined with the so-called interleaved storage

(Cray-1, CDC Cyber 205, Fujitsu, NEC SX, CG Power Challenge, Tera

computers etc.),

- distributed memory model (CM-2/200, Intel Paragon, Intel iPSC/860,

MasPar, nCUBE2, Cray T3D/T3E etc.)

All memory systems are, in addition, hierarchical.

Each memory system can be viewed as a complex of several types of memories with

different capacity, response time and price.
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Memory organization

Computer memories are characterized by

• capacity (size) Measured in bytes (B). Ranges from several
tens of B for registers up to hundreds of GB
for disks.

• functional design hierarchy, protection
• response time

access time and memory cycle time
- access time also called latency - is the time needed for the

memory to respond to a read or write request
- memory cycle time is the minimum period between two successive

requests to the memory
- memory bandwidth the rate a which data from/to memory can be

transferred to/from CPU.
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Memory organization

Re: memory cycle time

For many reasons, if a memory has say, 80 ns response time, it can not be
accessed every 80 ns.

Furthermore, the cycle time can be longer than the access time.

The latter can, for example, be a consequence of the so-called destructive

read, which means that after reading, the contents of the memory cell is
destroyed and must be recovered afterwards, which causes time.
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Memory organization

Re: memory latency - the most difficult issue
The access time per word varies from 50 ns for the chips in today’s personal
computers to 10 ns or even less for cache memories.
It includes time to

• select the right memory chip (among several hundreds) but also

• time spent waiting for the bus to finish a previous transaction before the
memory request is initialized.

Only after that the contents of the memory can be sent along the bus (or
via some other interconnection) to registers.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 6



Memory organization

The Latency Problem

The larger the latency, the slower the memory is.

For certain RAM chips, called Dynamic RAMs, with a latency of about 50
ns, we could have

1 access

50 nanoseconds
= 20 million accesses per second

But typical desktop computers have a memory bus speed of 100 MHz, or
100 million memory accesses per second. How can we resolve this disparity
between the memory latency and the bus speed?
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Memory organization

A bus is simply a circuit that connects one part of the motherboard to
another. The more data a bus can handle at one time, the faster it allows
information to travel. The speed of the bus, measured in megahertz (MHz),
refers to how much data can move across the bus simultaneously.

Bus speeds can range from 66 MHz to over 800 MHz and can dramatically
affect a computer’s performance.

The above characteristics have slightly changed but the principle remains.
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Hierarchical structure of the memory
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The memory, closest to the processor registers, is known as cache. It was
introduced in 1968 by IBM for the IBM System 360, Model 85. Caches
are intended to contain the most recently used blocks of the main memory
following the principle ”The more frequently data are addressed, the faster
the access should be”.
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Hierarchical structure of the memory

Keywords:

• cache lines

• cache hit

• cache miss

• replacement strategy FIFO, LRU, ...
• hit rate is the percentage of requests that result in hits

and depends on the memory organization and
the replacement strategy

• cache coherency not considered a severe issue for distributed
memory computers
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Memory design

Non-Uniform Memory Architecture - NUMA
cache-coherent NUMA - ccNUMA

Computer memory design used in multiprocessors, where the memory access
time depends on the memory location relative to a processor.
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Memory design

NEC-SX-5: Multi Node NUMA Memory
The main memory configuration of SX-5M Multi Node systems includes both shared and NUMA architecture.

Each node has full performance access to its entire local memory, and consistent but reduced performance
access to the memory of all other nodes.

Access to other nodes is performed through the IXS Internode Crossbar Switch, which provides page
translation tables across nodes, synchronization registers, and enables global data movement instructions as

well as numerous cross node instructions. Memory addresses include the node number (as do CPU and IOP
identifiers).

Latencies for internode NUMA level memory access are less than most workstation technology NUMA

implementations, and the 8 gigabyte per second bandwidth of just a single IXS channel exceeds the entire
memory bandwidth of SMP class systems. Even so, because the internode startup latencies are greater than
local memory accesses, internode NUMA access is best utilized by block transfers of data rather than by the

transfer of single data elements.

This architecture, introduced with the SX-4 Series, has been popularized by many products and lends itself

to a combination of traditional parallel vector processing (microtasking and macrotasking) combined with

message passing (MPI). Message passing alone is also highly efficient on the architecture.
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Memory design

ALLCACHE KSR1: good ideas which did not survive
The system hardware which assures the user to view the distributed memories, local to

each processor, as a global shared address space, is the patented ALLCACHE memory

management system. It provides the programmer with a uniform 264 byte address space

for instruction and data, called the System Virtual Address space (SVA). The contents

of SVA locations reside in physically distributed memories, called local caches, each with

a capacity of 225 = 32 MB. These local caches are second level caches, to distinguish

from the first-level caches, which are the standard instruction and data caches. The data

is stored in pages and subpages. Each local cache has 211 = 2048 pages, each of 128

subpages of 27 = 128B. The unit of data which is exchanged, is a subpage.

The consistency is automatically maintained by taking into account the type of memory

reference made by the processors - only read or modify. If the data is only read, the

processor, which has initiated a memory request, will receive a copy of it and its address.

If a modification is going to take place, the processor will receive the only instance of an

address and its data.
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Memory design: KSR1: The ring of rings

SE:0 SE:0

SE:1

processing node with a local level-2 cache

ALLCACHE routing and directory cell

The memory management is done by the so-called ALLCACHE Engines. The engines form a hierarchy of

a potentially unlimited number of levels. The maximal length of the path to fulfill any memory request

is O(log p), where p is the number of processors. One can view the hardware architecture as a fat tree,

consisting of rings (called SE : 0, SE : 1 etc.), along which the search for a copy of a requested data

proceeds. Each SE : 0 ring connects 32 PEs. If the data is not found in the local SE : 0 ring, to which

the processor that issued the request belongs, the request is sent to the upper ring SE : 1 etc. Each level

has a growing bandwidth: 1 GB/sec for SE : 0, 1, 2 or 4 for SE : 1 and so on.
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The BlueGene

System parameters:

Model BlueGene/L BlueGene/P
Clock cycle 700 MHz 850 MHz
Theor. peak performance
Per Proc. (64-bits) 2.8 Gflop/s 3.4 Gflop/s
Maximal 367/183.5 Tflop/s 1.5/3 Pflop/s
Main memory
Memory/card 512 MB 2 GB
Memory/maximal 16 TB 442 TB
No. of processors 265,536 4221,184
Communication bandwidth
Point-to-point (3-D Torus) 175 MB/s 350 MB/s
Point-to-point (Tree network) 350 MB/s 700 MB/s
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The BlueGene

The BlueGene/L possesses no less than 5 networks,
2 of which are of interest for inter-processor communication: a 3-D torus
network and a tree network.

• The torus network is used for most general communication patterns.

• The tree network is used for often occurring collective communication
patterns like broadcasting, reduction operations, etc. The hardware
bandwidth of the tree network is twice that of the torus: 350 MB/s
against 175 MB/s per link.
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Cache-aware algorithms

Block-versions of various algorithms, combined with a proper data structure.
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MPI: advanced features
User-defined (derived) datatypes
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Derived datatypes

Grouping data for communications

Re: count and data-type parameters in MPI Send and MPI Recv

Imagine we have to send three variables from one PE to another, which are
as follows:

Variable Address Value Type
a 24 0.0 float
b 40 1.0 float
n 48 1024 int

The communication still can take place if we provide not all addresses but

• the address of a

• the relative displacement of b and n
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Derived datatypes

Displacement of b: 40− 24 = 16
Displacement of n: 48− 24 = 24

40

a b n

483224

16

24
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Derived datatypes

Provide now the following information to the communication system:
• There are three elements to be transferred
• The first is float
• The second is float
• The third is int
• In order to find them ...
• the first is displaced 0 bytes from the beginning of the message
• the second is displaced 16 bytes from the beginning of the
message
• the third is displaced 24 bytes from the beginning of the message

• The beginning of the message has an address a
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Derived datatypes

The basic principle behind MPI’a derived datatypes is:
– in a new MPI datatype, provide all of the information except the beginning
address.

A general MPI datatype is a sequence of pairs

{(t0, d0), (t1, d1), · · · , (tn−1, dn−1)} (1)

where tk) is a basis MPI datatype and dk is displacement in bytes.

For the above example:
{(MPI FLOAT,0),(MPI FLOAT,16),(MPI INT,24)}

Type map: the sequence (1).

Extent: the span from the first byte to the last byte occupied at entries in
the datatype, rounded up to satisfy alignment requirements.
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Derived datatypes

Example: Consider Type = {(double, 0), (char, 8)}.
Assume that doubles have to be aligned at addresses that are multiple of 8.

The extent of this type is 16.

The extent will be the same for Type = {(char, 0), (double, 1)}.
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User-defined datatypes and packing

MPI provides a mechanism to build general user-defined data types.
However, the construction phase of these is expensive!
Thus, an application should use those many times to amortize the ’build’
costs.
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User-defined datatypes and packing

Example: We want to sent n number of contiguous elements, all of the
same type. Consider an array a(n,n). Say, we want to communicate a
row in C and a column in Fortran.

C Fortran

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 25

User-defined datatypes and packing

MPI TYPE CONTIGUOUS(count,oldtype,newtype)

count = 3

newtype

oldtype
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User-defined datatypes and packing

Example: Now, for the same array a(n,n), we want to communicate a
row in Fortran and a column in C. Both cases: not contiguous, but have
a constant stride.

Fortran C
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User-defined datatypes and packing

MPI TYPE VECTOR(count,blklen,stride,oldtype,newtype)

count = 3, blklen = 2, stride = 3

newtype

oldtype

MPI TYPE VECTOR(n,1,n,MPI DOUBLE,MPI VDOUBLE)
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User-defined datatypes and packing

Example: Consider an already defined datatype oldtype which has type
map {(double, 0), (char, 8)}.
A call to

MPI Type Vector(2,3,4,oldtype,newtype)

will create type map

{(double,0),(char,8),(double,16),(char,24),(double,32),(char,40), ...

(double,64),(char,73),(double,80),(char,88),(double,96),(char,104)}

I.e., two blocks with three copies of the old type, with a stride 4 × 16
elements between the blocks.
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User-defined datatypes and packing

Example:
Consider again oldtype with type map {(double, 0), (char, 8)}.
A call to

MPI Type Vector(3,1,-2,oldtype,newtype)

will create type map

{(double,0),(char,8),(double,-32),(char,-24),(double,-64),(char,-56)}
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User-defined datatypes and packing

Another scenario: Communicate the upper triangular part of a square
matrix.

n
n−1

n−2
...

1

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 31

User-defined datatypes and packing

MPI TYPE INDEXED(count,array of blklen,array of displ,...
oldtype,newtype)

count = 3, blklen = (2,3,1), displ=(0,3,8)

newtype

oldtype
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User-defined datatypes and packing

for (i=0; i<n; i++) {
blk_len[i]=n-1;
displ[i] = (n+1)*i;

}
MPI_Type_Indexed(n,blklen,displ,MPI:Float, &MPI_U);
MPI_Type_Commit(&MPI_U);
if (my_rank==0)

MPI_Send(A,1,MPI_U,1,0,MPI_COMM_WORLD);
else /* my_rank==1 */

MPI_Recv(T,1,MPI_U,0,0,MPI_COMM_WORLD,&status);
end

OBS: Type-vector MPI Type Vector(3,1,-2,...) is
inapplicable since the lengths of the portions are different.
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User-defined datatypes and packing

MPI TYPE HVECTOR(count,blklen,stride,oldtype,newtype)

count = 3, blklen = 2, stride = 7

newtype

oldtype

Identical to MPI TYPE VECTOR, however the stride is given in bytes and
not in elements.

’H’ stands for homogeneous.

Allows for specifying overlapping entries.
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User-defined datatypes and packing

Example: We have assumed that ’double’ cannot start at displacements 0
and 4. Consider already defined datatype oldtype which has type map
{(double, 0), (char, 8)}.
A call to

MPI Type Hvector(2,3,4,oldtype,newtype)

will create type map

{(double,0),(char,8),(double,16),(char,24),(double,32),(char,40), ...

(double,4),(char,12),(double,20),(char,28),(double,36),(char,44)}
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User-defined datatypes

Example: Task: transpose a matrix:

REAL a(100,100), b(100,100)
INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofreal
INTEGER myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C transpose matrix a onto b

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

C create datatype for one row
C (vector with 100 real entries and stride 100)

CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)
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User-defined datatypes

Example: Transpose a matrix (cont):

C create datatype for a matrix in row-major ordering
C (100 copies of the row datatype, strided 1 word apart;
C the successive row datatypes are interleaved)

CALL MPI_TYPE_HVECTOR( 100, 1, sizeofreal, row, matrow, ierr)

CALL MPI_TYPE_COMMIT(matrow, ierr)
C send matrix in row-major ordering and receive it in column-major order

call MPI_SENDRECV(a,1, matrow, myrank,0,
b,100*100,MPI_REAL,myrank,0,MPI_COMM_WORLD,status,ierr)
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User-defined datatypes

Example: Transpose a matrix (cont):
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NOTE!! The whole array is LOCAL for the process (processes).
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User-defined datatypes

MPI TYPE STRUCT(count,array of blklen,array of displ,array of types)

count = 3, blklen = (2,3,4), displ=(0,7,16)

newtype

oldtypes
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User-defined datatypes

MPI TYPE STRUCT allows to describe a collection of data items of various
elementary and derive types as a single data structure.

Data is viewed as a set of blocks, each of whih – with its own count and
data type, and a location, given as a displacement.

OBS! The displacement need not be relative to the beginning of a particular
structure. They can be given as absolute addresses as well.
In this case they are treated as relative to the starting address in memory,
given as

MPI BOTTOM

MPI Bcast(MPI BOTTOM,1,struct type,0,comm)
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User-defined datatypes - struct

Example: Another approach to the transpose problem (cont.)

REAL a(100,100), b(100,100)
INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofreal
INTEGER myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank)

C transpose matrix a onto b

CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)

C create datatype for one row
CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)
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User-defined datatypes - struct

Example: Another approach to the transpose problem (cont.)

C create datatype for one row, with the extent of one real number
disp(1) = 0
disp(2) = sizeofreal
type(1) = row
type(2) = MPI_UB
blocklen(1) = 1
blocklen(2) = 1
CALL MPI_TYPE_STRUCT( 2, blocklen, disp, type, row1, ierr)

CALL MPI_TYPE_COMMIT( row1, ierr)

C send 100 rows and receive in column major order
CALL MPI_SENDRECV( a,100, row1, myrank, 0,

b,100*100,MPI_REAL,myrank, 0,
MPI_COMM_WORLD, status, ierr)
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User-defined datatypes - struct

/* set up 4 blocks */
int blockcounts[4]={50,1,4,2};
MPI_datatype types[4];
MPI_Aint displs[4];
/* initialize types and displs with addresses of items */
MPI_Address(&cmd.display, &displs[0] );
MPI_Address(&cmd.max, &displs[1] );
MPI_Address(&cmd.min, &displs[2] );
MPI_Address(&cmd.error, &displs[3] );
types[0] = MPI_CHAR;
types[1] = MPI_INT;
types[2] = MPI_INT;
types[3] = MPI_double;

for (i=3; i>=0;i--)
displs[i]-=displs[0];

MPI\_Type_struct(4,blockcounts,displs,types,&strtype);
MPI\_Type_comit(&strtype);
MPI\_Bcast(cmd,1,strtype,MPI\_COMM\_WORLD);
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Datatype Constructors - additional

MPI TYPE COMMIT(data type)
MPI TYPE FREE(data type)
MPI TYPE EXTENT(data type,extent)
Returns the extent of a datatype.
Can be used for both primitive and derived data types.

MPI TYPE SIZE(data type,size)
Returns the total size (in bytes) of the entries in the type signature,
associated with the data type, i.e., the total size of the data in the message
that would be created with this datatype.

{(double, 0), (char, 8)}
Extent is equal to 16
Size is equal to 9.
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Datatype Constructors

CALL MPI_Type_vector ( 1, 1, 1,
> MPI_DOUBLE_PRECISION,
> MPI_REAL_8, ierr )

if ( ierr .NE. MPI_SUCCESS ) then
stop

end if
CALL MPI_Type_commit ( MPI_REAL_8, ierr )
if ( ierr .NE. MPI_SUCCESS ) then

stop
endif

c ------------ - - - - - - - - - - - - - - - - - - - - - - - - - - -
CALL MPI_Type_vector ( sgridy*sgridz, 1, sgridx,

> MPI_REAL_8,
> type_fixed_x, ierr )

CALL MPI_Type_commit ( type_fixed_x, ierr )

CALL MPI_Type_vector ( sgridz, sgridx, sgridy,
> MPI_REAL_8,
> type_fixed_y, ierr )

CALL MPI_Type_commit ( type_fixed_y, ierr )
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Datatype Constructors

c --------- fetch from EAST: [xv(i,j,k) = x(i+distx,j,k)]
if (NEWS27(1) .ne. 999) then
call MPI_SENDRECV(xv(nanrx+1,1,1),1,type_fixed_x,NEWS27(1),1,
> xv(nanrx,1,1), 1,type_fixed_x,NEWS27(1),2,
> MPI_COMM_WORLD,status,ierr)
endif

c ---------- fetch from NORTH: [xv(i,j,k) = x(i,j+disty,k)]
if (NEWS27(3) .ne. 999) then
call MPI_SENDRECV(xv(1,nanry+1,1),1,type_fixed_y,NEWS27(3),3,
> xv(1,nanry,1), 1,type_fixed_y,NEWS27(3),4,
> MPI_COMM_WORLD,status,ierr)
endif
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Type matching

if (my_rank==0)
MPI_Send(mesage,send_count,send_type,1,0,comm);

else if (my_rank==1)
MPI_Recv(mesage,resv_count,recv_type,0,0,comm);

Must send type be identical to send recv?

Type signature of the derived datatype: {t0, t1, · · · , tn−1}

Fundamental MPI rule:
the type signature of the sender and receiver must be compatible.

{ts0, t
s
1, · · · , t

s
n−1} {t

r
0, t

r
1, · · · , t

r
m−1}

then n ≤ m and tsi ≡ tri for i = 1, · · · , n− 1.
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Type matching, cont.

Example: Array A(10, 10), float
Task: Receive a column of it into a row of another array of the same size.

if (my_rank==0)
MPI_Send(&A([0],[0]),1,col_type,1,0,comm,comm);

else if (my_rank==1)
MPI_Recv(&A([0],[0]),10,MPI_Float,0,0,comm,&stat);

endif
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Basic Linear Algebra Subroutines (BLAS)
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Basic Linear Algebra Subroutines (BLAS)

The BLAS routines fall into three categories, depending on whether the
operations involve vectors or matrices:

(i) vector or scalar operations - Level 1 BLAS;

(ii) matrix-vector operations - Level 2 BLAS;

(iii) matrix-matrix operations - Level 3 BLAS.
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Basic Linear Algebra Subroutines (BLAS)

The BLAS 1 subroutines perform low granularity operations on vectors that
involve one or two vectors as input and return either a vector or a scalar as
output. In other words, O(n) operations are applied on O(n) data, where
n is the vector length.
Some of the BLAS -1 operations:

y←− ax + y vector update
x←− ax

y←− x vector copy
dot←− xTy dot product
nrm2←− ‖x‖2 vector norm
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Basic Linear Algebra Subroutines (BLAS)

BLAS 2 perform operations of a higher granularity than BLAS Level
1 subprograms. These include matrix- vector operations, i.e., O(n2)
operations, applied to O(n2) of data. The major operations:

y←− αAx + βy

y←− αATx + βy

y←− Tx T is a triangular matrix
A←− αxyT + A rank-one update
H ←− αxyH + ᾱyxH + H rank-two update, H is hermitian
y←− Tx multiplication by a triangular

system
y←− T−1x solution of a system with a

triangular matrix
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Basic Linear Algebra Subroutines (BLAS)

BLAS 3 are aimed at matrix-matrix operations, i.e., O(n3) operations,
applied to O(n2) of data.
Some of the level-3 routines:

C ←− αAAT + βC matrix rank-one update
C ←− αABT + αBAT + βC matrix rank-two update
B ←− αT−1B solution of a system with a

triangular matrix and many right-
hand sides
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Basic Linear Algebra Communication Subroutines (BLACS)

BLACS aim at ease of programming, ease of use and portability.

BLACS serve a particular audience and operate on 2D rectangular matrices
(scalars, vectors, square, triangular, trapezoidal matrices are particular
cases).

Syntax: vXXYY2D
- v - the type of the objects (I,S,D,C,Z);
- XX - indicates the shape of the matrix (GE, TR)
- YY - the action (SD (send), RV, BS, BR (broadcast/receive))

vGESD2D(M, N, A, LDA, RDEST, CDEST)
vGERV2D(M, N, A, LDA, RDEST, CDEST)
vTRSD2D(UPLO, DIAG, M, N, A, LDA, RDEST, CDEST)
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Basic Linear Algebra Communication Subroutines (BLACS)

Here
A(M, N) is the matrix
LDA - leading matrix dimension
RDEST - row index of destination process
CDEST - column index of destination process

Example of a broadcasting routine call:

vGEBS2D(’scope’, ’topology’, M, N, A, LDA)

where
’scope’ can be ’column’, ’row’;
’topology’ can be ’hypercube’, ’tree’
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Linear Algebra problems

Operations on matrices and vectors.

• dense matrix linear algebra

• sparse matrix linear algebra
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Dense matrix linear algebra

A(n, n), B(n, n), C(n, n), v(n, 1), w(n, 1)
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Data storage and related

Matrix-vector multiplication w = Av

w = 0
do i=1,n

do j = 1,n
w(i) = w(i) + A(i,j)*v(j)

enddo
enddo
-----------------------------------------------
do j=1,n

do i = 1,n
w(i) = w(i) + A(i,j)*v(j)

enddo
enddo

Note: w(:) = w(:) + v(j)*A(:,j) is a vector operation!
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Dense matrices

1
2
3

4
5
6

7

9
8P2

P1

P0

(a) block

1 5 6 924 7 8 3

P0 P1 P2

(b) cyclic

Striped partitionings

P6 P7 P8

P5P4P3

P0 P1 P2

1 4 75 83 6 9
1

4

2
3

6

9

8

5

7

2

(c) block

P6 P7 P8

P5P4P3

P0 P1 P2

1 2 35 67 8 9
1

2

4
7

8

9

6

5

3

4

(d) cyclic

Checkerboard partitionings
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Dense matrices

P6 P7 P8

P5P4P3

P0 P1 P2

(e) column-wise one-to-all

broadcast

P6 P7 P8

P5P4P3

P0 P1 P2

(f) row-wise accumulation

Communications during matrix-vector multiplication

for block checkerboard partitioning





A11 A12 A13
A21 A11 A23
A31 A32 A33









v1

v2

v3



 =





A11v1 + A12v2 + A13v3

A21v1 + A22v2 + A23v3

A31v1 + A32v2 + A33v3




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Matrix - matrix multiplication

w = 0
do i=1,n

do j = 1,n
do k = 1,n

C(i,j) = C(i,j) + A(i,k)*K(k,j)
end

enddo
enddo

Serial complexity: n3

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 61

Matrix - matrix multiplication

A31 A32 A33 B31 B32 B33

B23

B13B12

B22B21

B11

A23A22A21

A11 A12 A13

Scenario 1:
All-to-all on each row of A

All-to-all on each column of B

Local multiplications and additions

Both communication and memory demanding!
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Matrix - matrix multiplication

Scenario 2: Cannon’s algorithm
L.E. Cannon, A cellular computer to implement the Kalman Filter Algorithm,
Ph.D. thesis, Montana State University, Bozman, MT, 1969.

Let A, B,C be n× n and the number of processors be p.
The matrices A, B and C are partitioned in blocks (Aij), B(ij), C(ij)).
whenever A(ik) and B(kj) happen to be in the processor (i, j), they are
multiplied and accumulated into C(ij).
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Matrix - matrix multiplication

PijA

B
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Matrix - matrix multiplication

Cannon’s algorithm

for i = 1 : n % row-wise

assign A(ij) to processor Pi,(i+j) mod n

end
for j = 1 : n % column-wise

assign B(ij) to processor P(i+j) mod n,j

end
for k = 1 : n

forall (i = 1 : n, j = 1 : n)

C(ij) = C(ij) + A(ik) ∗ B(kj)

Left circular shift each block row of A

Upward circular shift each block column of B

end
end
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Matrix - matrix multiplication

Assume that each processor holds blocks of size ( n√
p ×

n√
p). The algorithm

requires 4p − 2 communication steps, during each
n2

p
amount of words is

transferred. Thus, for the parallel time we obtain

Tp =
n3

p
+ (4p− 2)

n2

p
,

compared to n3 in the serial case. For the speedup and efficiency the figures
are (replacing 4p− 2 by 4p)

S =
1

1

p
+

4

n

, E =
1

1 +
4p

n

. (2)
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Matrix - matrix multiplication

Relation (2) shows that if p is such that n ≥ 36p, for instance, the efficiency
becomes above 0.9.

However, this algorithm has the disadvantage that it does not take into
account whether the data layout it requires is suitable for other matrix
operations.
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Sparse matrices
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Sparse matrices

Shared memory

sc
at

te
r

y(1:n)

A(:,i)y(:)

y(1:n)

+ x(i)*

y(:)

=

gather

Y (:) = Y (:) + x(i) ∗ A(i, :)
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Sparse matrices

Distributed memory

3

1

Ω2

Ω

Ω

(g)

2
P

3
P

1
P

0
P

1 2 3 4 5

7 8 9 11

13 14 16 17 18

19 20 22 23 24

25 26 28 29 30

31 32 33 34 3635

10

6

12

15

21

27

(h)

Grid-wise mapping of a discrete problem onto distributed memory

computer
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Sparse matrices

(Block-)Tridiagonal Systems

A =









A11 A12 0
A21 A22 A23

. . . . . . . . .
0 An,n−1 An,n









or A = tridiag (Ai,i−1, Ai,i, Ai,i+1).

Ω2 Ω3 Ω41Γ 1Ω 2Γ

(i) Subdomain division and ordering.

Ω1

Ω2

Ω3

Ω4

(j) Subdomain division of a network.
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Sparse matrices

Given a tridiagonal matrix A. The usual way is to factorize it as A = LU

and then solve Ax = b as
Lz = b and Ux = z.

Both factorization (Gauss elimination) and the solution of triangular (in this
case, lower- and upper-bidiagonal) systems is PURELY SEQUENTIAL by
its nature !!!

forward Lz = b, i.e.,

substitution: z1 = b1

zi = bi −
i−1
P

k=1
li,kzk, i = 2, 3, · · · , n.

backward Ux = z, i.e.,
substitution: xn = zn

xi = zi −
n

P

k=i+1
ui,kxk, i = n − 1, · · · , 1.

2

6

6

4

∗ 0 0 0
∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗

3

7

7

5

2

6

6

4

z1

z2

z3

z4

3

7

7

5

=

2

6

6

4

b1

b2

b3

b4

3

7

7

5
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Sparse matrices

In order to gain some parallelism when solving linear recursions, some
special techniques have been studied:

• Multifrontal solution methods

• Odd-even elimination methods

• Recursive doubling

• Divide-and conquer methods
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The beginning of the end for Day 3:

The Conjugate Gradient method
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Assume A and b are distributed and an initial guess x(0) is given, which is replicated.

g(0) = b − Ax(0)

r = replicate(g(0))

d(0) = −r

δ0 = (g(0), r(0))

For k = 0, 1, · · · until convergence

(1) h = Ad(k)

(2) τ = δ0/(h, d(k))

(3) x(k+1) = x(k) + τd(k)

(4) g(k+1) = g(k) + τh

(5) r = replicate(g(k+1))

(6) δ1 = (g(k+1), r)

(7) β = δ1/δ0, δ0 = δ1

(8) d(k+1) = r + βd(k)
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