
FORTRAN and MPI

Message Passing Interface (MPI)

Day 4

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 1



Course plan:

• MPI - General concepts
• Communications in MPI

– Point-to-point communications
– Collective communications

• Advanced MPI: user-defined data types, functions
– Linear Algebra operations

• Advanced MPI: communicators, virtual topologies
– Parallel sort algorithms

• Parallel debugging
• Parallel performance. Summary. Tendencies

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 2



Parallel debuggers, Performance analysers

TotalView Multiprocess Debugger

TotalView is a full-featured, source-level, graphical debugger for application
programs. It is a multiprocess, multithread debugger that supports multiple
parallel programming paradigms including MPI, PVM and OpenMP.

Languages Programming Paradigms

C Multiprocess
C++ Multithread
FORTRAN 77 MPI
Fortran 90 OpenMP
Assembler PVM

Fork/exec
shmem

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 3



Gör s̊a här:

Debugging MPI programs with TotalView
How to start and illustration of some basic features

1. Compute your code with the flag ’-g’

isaac(hpcmn) $ mpf90 -g -o search search.f -lmpi

2. Start TotalView in foreground by typing the command ’totalview’

3. In the ’New Program’ window

(a) Click ’Browse’ and choose the executable which you want to debug
(b) Click on ’Parallel’ in the header menu

i. Click on ’Parallel system’ and choose ’

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 4



Gör s̊a här:

ii. Click on ’Tasks’ and choose the number of processes you want to
run your program on

iii. Confirm with ’OK’
Totalview shows a new window where you see source code of your
main routine.

4. Browse the code and put some breakpoints by left-clicking on the line
number

5. Try ’diving’ into a subroutine by right-clicking on the subroutine’s name

When going down one can put more breakpoints on appropriate command
lines

6. Start the execution by clicking on ’GO’ in the header menu of the same
window. Answer ’NO’ to the question if you want to stop the process.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 5



Gör s̊a här:

The execution will continue till the first break point is reached.

By clicking on ’GO’ again, the execution is resumed.

7. After the program has stopped at a certain breakpoint, we are able to see
the values of the variables on the different processes (again by diving).

Totalview opens a separate window per variable. Note that if the
execution has been continued to the next point the variable value could
have changed its value and one has to update it by clicking on ’Update’.

8. Test the path ’Tools’ −→ ’Call Graph’, which will plot a graph of the
calls in your program (according to how the pattern of the execution of
this particular run).

9. Test the path ’Tools’ −→ ’Message Queue Graph’, which will plot a
graph of the not yet completed communications.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 6



Gör s̊a här:

10. Observe the possibilities to:

(a) step through your code and execute command per command. This can
be done for the individual processes separately. Check the ’Process’
menu.

(b) action points, possibility to put a barrier etc
(c) Test the path ’Tools’ −→ ’Memory Debugging’, which provides a list

of services, such as memory leaks.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 7


