
– Typeset by FoilTEX –

FORTRAN and MPI

Message Passing Interface (MPI)

Day 2

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 1

Course plan:

• MPI - General concepts
• Communications in MPI

– Point-to-point communications
– Collective communications

• Parallel debugging
• Advanced MPI: user-defined data types, functions

– Linear Algebra operations
• Advanced MPI: communicators, virtual topologies

– Parallel sort algorithms
• Parallel performance. Summary. Tendencies

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 2

Communications on parallel architectures

Basic notions and definitions

The fundamental characteristics of a communication network are:

network topology direct (static) or dynamic networks
routing policy specifies how messages (respectively, parts of a

message, called packages) choose paths through
the network

flow control policy deals with allocation of network resources, namely,
communication channels (links) and buffers, to
packages as they are processed through the
network

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 3

Communications on parallel architectures

A common technique in modern networks is to divide the message in
packages, and the packages further in small units, called flow-control units

(flits), and communicate them in a pipelined fashion.

If, while traversing the network, the message requests a resource (a channel
or a buffer) which is in use by some other message, the message cannot
proceed further and is blocked. When messages are blocked due to waiting
for mutually occupied resources, a deadlock occurs.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 4

Communications on parallel architectures

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

1

1
1 1 22

2

2

3

33
3

4
4

4

4

- resource occupied

- waiting for a resource

- flit buffer

Deadlock situation with four messages.

Deadlocks can be avoided by using appropriate routing techniques.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 5

Communications on parallel architectures

Routing

• deterministic routing −− > the message is communicated via a fixed
path, connecting the source and the destinations, determined during the
initialization of the communication. Deadlock-free but limits the network

performance.

• adaptive routing −− > the route can change depending on the particular
network situation. Better network performance but higher chance for

deadlocks.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 6

Communication models

T (A, p)(= Tp) = Tcomp + Tcomm

max{Tcomp, Tcomm} ≤ Tp ≤ Tcomp + Tc !!!

Tcomp = Ts(A) +
Tp(A)

p

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 7

Communication models

Tcomm = τ + b ℓN , where

τ startup time, including
- time to establish a connection between the source processor
and the router;
- time to determine the route by executing the routing
algorithm;
- time to prepare the message by adding a header, trailer and
error correction information.

b the time needed to transfer one word along a connection link
(per-word-transfer time)

ℓ the links to be traversed
N the amount of words to be transfered

1
b

- channel bandwidth

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 8

Communication models

The basic communication operations

(i)
moving data from one processor to another

(ii) moving the same data packet from one processor to all others – one-to-all

broadcast or just a broadcast operation

(iii) moving a different message from each processor to every other processor –

all-to-all broadcast.

(iv)
scattering (gathering) data from (in) one processor to (from) all others.

In the scatter operation, a node sends a packet to every other processor.

Gather is dual to scatter.

(v)
multiscattering or multigathering of data. The multiscatter operation

consists of a scatter from every node. Multigather is defined similarly.

The difference between the broadcast (ii) and the scatter (iv) is that in the

scatter operations a different data set is sent to every processor.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 9

Point-to-point communications

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 10

Point-to-point communications

MPI provides a set of SEND and RECEIVE functions that allow the
communication of typed data with an associated tag.

Typing of the message contents is necessary for heterogeneous support.

The tag allows selectivity of messages at the receiving end: one can receive on a particular

tag, or one can wild-card this quantity, allowing reception of messages with any tag.

MPI provides blocking and nonblocking send and receive functions.

In the blocking version, send call blocks until the send buffer can be reclaimed as well as

the receive functions blocks until the receive buffer actually contains the contents of the

message.

The nonblocking send and receive functions allow the possible overlap of message

transmittal with computation, or the overlap of multiple message with one-another.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 11

Point-to-point communications

Message envelope

Source for send-operations implicitly determined by the
identity of the message sender

Destination specified by the dest argument; the range of valid
values for dest is 0, 1, . . . , n−1; this range includes
the rank of the sender, so each process may send
a message to itself

Communicator specified by comm argument; represents a
communication domain; default communication
domain is MPI COMM WORLD

Tag specified by the tag argument; the range of valid
values for tag is 0, 1, . . . , impl dep, where the
value of impl dep is implementation dependent;
MPI requires that impl dep be not less than 32767

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 12

Point-to-point communications

Both blocking and nonblocking communications have modes, which allow
to choose the semantics of the send operation. The four modes are:

- standard - the completion of the send does not necessarily mean that
the matching receive has started, and no assumption should be made in the
application program about whether the out-going data is buffered by MPI;

- buffered - the user can guarantee that a certain amount of buffering
space is available;

- synchronous - rendezvous semantics between sender and receiver is used;

- ready - the user asserts that the matching receive already has been posted.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 13

Point-to-point communications

Standard Send
Using standard send means that the mode of sending may be synchronous
or buffered (see below). This means that upon completion, although the
send buffer can be safely re-used, the message may or may not have arrived
at the destination.

It should not be assumed that sending will complete before receiving begins.
Therefore, two machines should not use blocking standard sends to exchange
messages as this may cause a deadlock.

Processes need to guarantee to eventually receive all messages that have
been sent to them, otherwise a network overload may occur and an error
may occur.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 14

Point-to-point communications

Synchronous Send
A synchronous send does not complete until acknowledgement of receipt is
received. A synchronous send is slower than a standard or buffered send since
the send process remains idle until the receive process catches up. However,
as an advantage, synchronous sending is safer and more predictable as
a network cannot be overloaded as long as processes guarantee they will
eventually receive the message.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 15

Point-to-point communications

Buffered Send
A buffered send copies the message to a system buffer before the message
is then received from this buffer.

This mode of sending guarantees to complete immediately and so is quicker
than standard sending. It is also more predictable, if the network overloads
then an error will be caused. Unfortunately, it cannot be assumed that
adequate pre-allocated buffer space will exist and therefore a buffer must
be specifically created, attached to (and subsequently detached from) a
buffered send.

A buffered send attaches a buffer using the routine ”MPI Buffer attach”,
called before the send call, and detaches the buffer using
”MPI Buffer detach”, called after the send has completed.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 16

Point-to-point communications

Ready Send

Similar to a buffered send, a ready send completes immediately. The
communication is guaranteed to succeed is a matching receive is already
posted.

However, if a matching receive does not exist the outcome is undefined.
This distinguishes the ready send mode from all other modes of sending.

Ready sends are mainly used when performance is critical. For the user who
is not so concerned about efficiency the mode is not recommended. As with
buffered send, the blocking and non-blocking versions are equivalent.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 17

Point-to-point communications

RECEIVE
Messages are received by posting a call to MPI Recv that matches a posted
MPI send. For the receive call to be successful, the datatype argument
must be identical to the datatype specified in the equivalent argument in
the send call.

A receive call matches a send call through the ”source” and ”tag”
arguments. This means that a process will only receive a message from the
specified source, with a specified tag.

It is possible to use the constants MPI ANY SOURCE and MPI ANY TAG
respectively for these arguments, allowing the receipt of a message from
any process, with any tag.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 18

Point-to-point communications

Rules of Point to Point Communication

• Messages do not overtake each other. If a process sends two messages
and another process posts two matching receives, the messages will be
received in the order that they were sent.

• It is not possible for a matching send and receive to remain outstanding.
Hopefully both the send and receive complete, but for example if two
sends (receives) are posted with one matching receive (send), then one
send (receive) will fail.

• The message sent by the send call must have the same datatype as the
message expected by the receive type. The datatypes posted should be
MPI datatypes.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 19

Point-to-point communications

Blocking SEND

MPI SEND (buf, count, datatype, dest, tag, comm, status)

IN buf initial address of send buffer
IN count number of entries to send
IN datatype datatype of each entry
IN dest rank of destination
IN tag message tag
IN comm communicator

int MPI SEND(void* buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 20

Point-to-point communications

Blocking RECEIVE

MPI RECV(buf, count, datatype, source, tag, comm, status)

IN buf initial address of receive buffer
IN count number of entries to receive
IN datatype datatype of each entry
IN source rank of source
IN tag message tag
IN comm communicator
OUT status return status

MPI RECV(buf, count, datatype, source, tag, comm, status, ierror)

<type> buf(⋆)
INTEGER count, datatype, source, tag, comm, status(MPI STATUS SIZE), ierror

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 21

Point-to-point communications

if (me.ne.0) then
call MPI_RECV(nnode,1,MPI_INTEGER,0,1,

> MPI_COMM_WORLD,status,ierr)
call MPI_RECV(nedge,1,MPI_INTEGER,0,2,

> MPI_COMM_WORLD,status,ierr)
call MPI_RECV(nface,1,MPI_INTEGER,0,3,

> MPI_COMM_WORLD,status,ierr)
else

do iPE=1,nPEs-1
call MPI_SEND(NodePerProc(iPE),1,MPI_INTEGER,iPE,1,

> MPI_COMM_WORLD,status,ierr)
call MPI_SEND(EdgePerProc(iPE),1,MPI_INTEGER,iPE,2,

> MPI_COMM_WORLD,status,ierr)
call MPI_SEND(FacePerProc(iPE),1,MPI_INTEGER,iPE,3,

> MPI_COMM_WORLD,status,ierr)
enddo

endif

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 22

Point-to-point communications: Combined SEND-RECEIVE

MPI SENDRECV executes a blocking send and receive operation. Both send and receive use the same

communicator, but may have distinct tag arguments. The send and receive buffers must be disjoint.

MPI SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm, status)

IN sendbuf initial address of send buffer

IN sendcount number of entries to send
IN sendtype type of entries in the send buffer

IN dest rank of destination
IN sendtag send tag
OUT recvbuf initial address of receive buffer

IN recvcount number of entries to receive
IN recvtype datatype of each entry

IN source rank of source
IN recvtag recv tag

IN comm communicator
OUT status return status

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 23

Point-to-point communications

do iPE=1,nPEs-1
do inode=1,NodePerProc(iPE)

call MPI_SENDRECV(Node_local(1,inode,iPE),2,
> MPI_DOUBLE_PRECISION,0, 1,
> Node(1,inode),2,
> MPI_DOUBLE_PRECISION,iPE,1,
> MPI_COMM_WORLD,status,ierr)

enddo
enddo

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 24

Point-to-point communications

c --------- fetch from EAST: [xv(i,j,k) = x(i+distx,j,k)]
if (NEWS27(1) .ne. 999) then
call MPI_SENDRECV(xv(nanrx+1,1,1),1,type_fixed_x,NEWS27(1),1,
> xv(nanrx,1,1), 1,type_fixed_x,NEWS27(1),2,
> MPI_COMM_WORLD,status,ierr)
endif

c ---------- fetch from NORTH: [xv(i,j,k) = x(i,j+disty,k)]
if (NEWS27(3) .ne. 999) then
call MPI_SENDRECV(xv(1,nanry+1,1),1,type_fixed_y,NEWS27(3),3,
> xv(1,nanry,1), 1,type_fixed_y,NEWS27(3),4,
> MPI_COMM_WORLD,status,ierr)
endif

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 25

Point-to-point communications

do ib = 1,Cross_node_no
iblock=Cross_Node_list(ib)
do ip=1,Node_PE_local(0,iblock)

iPE=Node_PE_local(ip,iblock)
call MPI_SENDRECV(K(1,1,iblock),4,

> MPI_DOUBLE_PRECISION,iPE,1,
> K_tmp(1,1,iPE,ib),4,
> MPI_DOUBLE_PRECISION,iPE,1,
> MPI_COMM_WORLD,stat,ierr)

enddo
enddo

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 26

Point-to-point communications

Nonblocking SEND/RECEIVE

MPI ISEND(buf, count, datatype, dest, tag, comm, status, request)

MPI IRECV(buf, count, datatype, source, tag, comm, status, request)

OUT request request handle

These calls allocate a request object and return a handle to it in
request which is used to query the status of the communication or
wait for completion.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 27

Point-to-point communications

Completion operations

MPI WAIT(request,status) returns when the operation
identified by request is
completed

MPI TEST(request,flag,status) returns flag=true if the
operation identified by
request is completed or
flag=false otherwise

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 28

Point-to-point communications

...
!start communication
call MPI_ISEND(B(1,1),n,MPI_REAL,left, tag,comm,req(1),ierr)
call MPI_ISEND(B(1,m),n,MPI_REAL,right,tag,comm,req(2),ierr)
call MPI_IRECV(A(1,1),n,MPI_REAL,left, tag,comm,req(3),ierr)
call MPI_IRECV(A(1,m),n,MPI_REAL,right,tag,comm,req(4),ierr)
! do some computational work
...
! Complete communication
do i=1,4

call MPI_WAIT(req(i),status(1,i),ierr)
end

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 29

Point-to-point communications

send

receive

Short protocol Long protocol

data

ackn.

ready

message

req-to-send

ackn.

receive

send

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 30

Point-to-point communications

Out of order communications with nonblocking messages

call MPI_COMM_RANK(comm,rank,ierr)
if (rank .eq. 0) then

call MPI_SEND(sendbuf1, count, MPI_REAL,1,1,comm,ierr
call MPI_SEND(sendbuf2, count, MPI_REAL,1,2,comm,ierr

else ! ranl = 1
call MPI_IRECV(recvbuf2, count, MPI_REAL,0,2,comm,req
call MPI_IRECV(recvbuf2, count, MPI_REAL,0,1,comm,req
call MPI_WAIT(req1, status, ierr)
call MPI_WAIT(req2, status, ierr)

endif

If both blocking SEND and RECV were used, the first message has to be copied and buffered before the

second SEND can be proceeded.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 31

Persistent Communication Requests

Persistent communication requests are associated with nonblocking send
and receive operations.

Situation: communication with the same argument list is repeatedly
executed within the inner loop of a parallel computation.

(1) MPI persistent communications can be used to reduce communications
overhead in programs which repeatedly call the same point-to-point message
passing routines with the same arguments. They minimize the software
overhead associated with redundant message setup.

(2) An example of an application which might benefit from persistent
communications would be an iterative, data decomposition algorithm that
exchanges border elements with its neighbors. The message size, location,
tag, communicator and data type remain the same each iteration.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 32

Persistent Communication Requests

Step 1: Create persistent requests

The desired routine is called to setup buffer location(s) which will be
sent/received. The five available routines are:

MPI Recv init Creates a persistent receive request
MPI Bsend init Creates a persistent buffered send request
MPI Rsend init Creates a persistent ready send request
MPI Send init Creates a persistent standard send request
MPI Rsend init Creates a persistent ready send request
MPI Ssend init Creates a persistent synchronous send request

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 33

Persistent Communication Requests

Step 2: Start communication transmission

Data transmission is begun by calling either of the MPI Start routines.

MPI Start Activates a persistent request operation
MPI Startall Activates a collection of persistent request operations

Step 3: Wait for communication completion

Because persistent operations are non-blocking, the appropriate MPI Wait
or MPI Test routine must be used to insure their completion.

Step 4: Deallocate persistent request objects

When there is no longer a need for persistent communications, the
programmer should explicitly free the persistent request objects by using
the MPI Request free() routine.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 34

Persistent Communication Requests

MPI SEND INIT(buf, count, type, dest, tag, comm, request)

MPI RECV INIT(buf, count, type, source, tag, comm, request)
MPI START(request)
MPI STARTALL(count,array-of-requests)

MPI REQUEST FREE(request)

IN buf initial address of send buffer
IN count number of entries to send

IN type datatype of each entry
IN dest rank of destination
IN source rank of source

IN tag tag
IN comm communicator

OUT request request handle

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 35

Persistent Communication Requestsfor (i=0; i<size-1; i++) { /* Setup */
MPI_SEND_INIT(sendbuf,counts[(rank+1)%size],

type, right, i, MPI_COMM_WORLD, &request[2*i]);
MPI_RECV_INIT(recvbuf,counts[(rank+i-1+size)%size],

type, left, i, MPI_COMM_WORLD, &request[2*i+1]);
}

while (!done) /* Run pipeline */
<copy local data into sendbuf>
for (i=0;i<size; i++) {

MPI_STATUS stat[2];
if (i != size - 1)

MPI_STARTALL(2,&request[2*i]);
< compute using sendbuf>
if (i != size - 1)

MPI_WAITALL(2, &request[2*i], stat);
< copy recvbuf into sendbuf>
}

<compute new data>
}

for (i=0; i<2*(size-1); i++) { /* Free requests */
MPI_REQUEST_FREE(&request[i]);

}

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 36

Things to take care of ...

a11 a12 a13 a14

a21 a24

a31 a34

a41 a42 a43 a44

west east

north

south

me

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 37

Things to take care of ...

for i=1:n
do something
receive from P_src, tag=1
do something else
send to P_dest, tag=2

end

Use constant tag within a loop: if for one processor it takes longer to finish
the current iteration i, it may end up with receiving the data from iteration
i + 1 for processor Psrc.

The same may happen if the same tag is used in two parts of the code
which are not separated explicitly by a barrier.

Result: a nondeterministic code which may finish correctly from time to
time, give wrong results some of the time, and other time just crash.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 38

Collective communications

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 39

Collective communications

⋄ Transmission of data and synchronization among all processes
in a group.

Restrictions:
⋄ amount of data send must match exactly that of data received;
⋄ collective functions only in blocking version;
⋄ No tag, thus the calls are matched according to the order of

execution;
⋄ only ’normal’ mode, i.e., a collective function returns as soon

as its participation in the overall communication is completed.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 40

Collective communications

• Barrier synchronization across all processes;

• Global communication functions

- Broadcast from one to all processes;
- Gather data from all processes to one process;
- Scatter data from one to all processes;
- Scatter/Gather data from all processes to all processes;

• Global reduction operation such as sum, max, min, etc.

All the listed functions (excepts broadcast) can be found in two variants:

(a) simple - where all items are messages of the same size;

(b) vector - where each item may be of a different size.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 41

Collective communications

MPI BARRIER(comm, ierr)

MPI BARRIER blocks the caller until all processes have called it. The call
returns at any process only after all processes have entered the call.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 42

Collective communications

BROADCAST

MPI BCAST(buffer, count, datatype, root, comm)

0

broadcast

A A

A

A

A

A

A

0

0

0

0

0

data

processes 0

call MPI_BCAST(Discoef,2*ndisco,MPI_DOUBLE_PRECISION,0,
> MPI_COMM_WORLD,status,ierr)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 43

MPI BCAST example

MPI BCAST broadcasts a message from the process with rank root to all
processes in the group. The argument root must have identical value on
all processes and comm must represent the same communication domain.
On return the contents pf the root’s communication buffer is copied to all
processes.

MPI_COMM comm;
int array[100];
int root=0;
....

call MPI_BCAST(array, 100, MPI_INT, root, comm);
....

call MPI_BCAST(Discoef,2*ndisco,MPI_DOUBLE_PRECISION,0,
> MPI_COMM_WORLD,status,ierr)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 44

Collective communications

GATHER

MPI GATHER(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

A A30 1 2 4 5A A A A
scatter

gather

0

1

4
3
2

A

A

A

A

A

5A

data

processes

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 45

MPI GATHER examples

Gather 100 integers from every proc to root.
(i) Everybody allocates space for the receive buffer.

MPI_COMM comm;
int gsize, sendarray[100];
int root=0, *rbuf;
....
MPI_COMM_SIZE(comm,&gsize);
rbuf = (int*)malloc(gsize*100*sizeof(int));
MPI_GATHER(sendarray,100,MPI_INT,rbuf,100,MPI_INT,root,comm)
....

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 46

MPI GATHER examples

Gather 100 integers from every proc to root.
(ii) Only root allocates space for the receive buffer.

MPI_COMM comm;
int gsize, sendarray[100];
int root=0, myrank, *rbuf;
....
MPI_COMM_RANK(comm,myrank);
if (myrank == root){

MPI_COMM_SIZE(comm,&gsize);
rbuf = (int*)malloc(gsize*100*sizeof(int));
}

MPI_GATHER(sendarray,100,MPI_INT,rbuf,100,MPI_INT,root,comm)
....

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 47

MPI GATHER examples

Gather 100 integers from every proc to root.
(iii) Use derived datatype.

MPI_COMM comm;
int gsize, sendarray[100];
int root, *rbuf;
MPI_DATATYPE rtype;
....
MPI_COMM_SIZE(com,&gsize);
MPI_TYPE_CONTIGUOUS(100, MPI_INT, &rtype);
rbuf = (int*)malloc(gsize*100*sizeof(int));
MPI_GATHER(sendarray, 100, MPI_INT, rbuf, 100, rtype,root,comm)
....

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 48

Collective communications

All-GATHER

MPI ALLGATHER(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm)

data

processes

allgather

E

F

0

0

0

0

0

0

A

B

C

D

0 0 0 0 0 0A
0 0 0 0 0 0

B C D E

A

A

B

B

C

C

D

D E

F

F

F

0 0 0 0 0

A B D E F0 0 0 0 0

A B

F

F0 0 0 0 0

0

0

0

0
C

C

0 0 0 00
A C D

D

EB

E

E

MPI_Comm comm;
int gsize, sendarray[100];
int *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_ALLGATHER(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 49

Collective communications

ALL-TO-ALL communication

data

processes

alltoall

0 1 2 3 4 5 5 5 5 5 5 5F

0

0

1
1

2
2

3
3

3 3 3 3 3 34
4 4 4 4 4 4 4

5
5

A

A
2 2 2 2 2 2

D D D D D D

E E E E E E

F F F F F

0

0

1
1

2
2 3 4 5

B B B B B

C C C C C C

0 1 2 3
3

4
4

5
5

A A A A A A

B

B

B

B

B

A

A

C

C

C

C

D

D

D

D

E

E

E

E

F

F

F

F

B

B

A

A

C

C D

E

E F
0 0 0 0 00

1 1 1 1 1 1

D F

MPI ALLTOALL(sendbuf, sendcount, sendtype,
recvbuf,recvcount, recvtype, comm)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 50

Collective communications

REDUCE and ALL REDUCE

Name (operation) Meaning

MPI MAX maximum
MPI MIN minimum
MPI SUM sum
MPI PROD product
MPI LAND logical and
MPI LOR logical or
MPI MAXLOC max value and location
MPI MINLOC min value and location

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 51

Collective communications

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

c dot_product: compute a scalar product
subroutine dot_product(global,x,y,n)
implicit none
include "mpif.h"
integer n,i,ierr
double precision global,x(n),y(n)
double precision tmp,local
local = 0.0d0
global = 0.0d0
do i=1,n

local = local + x(i)*y(i)
enddo
call MPI_ALLREDUCE(local,tmp,1,MPI_DOUBLE_PRECISION,
> MPI_SUM, MPI_COMM_WORLD, ierr)
global = tmp
return
end

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 52

Erroneous examples

switch(rank) {
case 0:

MPI_BCAST(buf1,count,type,0,comm);
MPI_BCAST(buf2,count,type,1,comm);
break;

case 1:
MPI_BCAST(buf2,count,type,1,comm);
MPI_BCAST(buf1,count,type,0,comm);
break;

}

Assume that comm={0,1}.
The calls do not specify the same root.
!!! Collective communications must be executed in the same order at all
members of the communication group.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 53

Erroneous examples

switch(rank) {
case 0:

MPI_BCAST(buf1,count,type,0,comm0);
MPI_BCAST(buf2,count,type,2,comm2);
break;

case 1:
MPI_BCAST(buf1,count,type,1,comm1);
MPI_BCAST(buf2,count,type,0,comm0);
break;

case 2:
MPI_BCAST(buf1,count,type,2,comm2);
MPI_BCAST(buf2,count,type,1,comm1);
break;

}

Say, comm0={0,1}, comm1={1,2}
and comm2={2,0}.
If the broadcast is a synchronizing
operation, the code will deadlock.

Reason: there is a cyclic dependency:
BCAST in comm2 −→ BCAST in comm0
BCAST in comm0 −→ BCAST in comm1
BCAST in comm1 −→ BCAST in comm2

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 54

Erroneous examples

switch(rank) {
case 0:

MPI_BCAST(buf1,count,type,0,comm);
MPI_SEND(buf2,count,type,1,tag,comm);
break;

case 1:
MPI_RECV(buf2,count,type,0,tag,comm);
MPI_BCAST(buf1,count,type,0,comm);
break;

}

The program may deadlock because MPI BCAST on P0 may block till PE1
executes the matching MPI BCAST. However, PE1 waits to receive data
and will never execute BCAST.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 55

Erroneous examples

switch(rank) {
case 0:

MPI_BCAST(buf1,count,type,0,comm);
MPI_SEND(buf2,count,type,1,tag,comm);
break;

case 1:
MPI_RECV(buf2,count,type,MPI_ANY_SOURCE,tag,comm);
MPI_BCAST(buf1,count,type,0,comm);
MPI_RECV(buf2,count,type,MPI_ANY_SOURCE,tag,comm);
break;

case 2:
MPI_SEND(buf2,count,type,1,tag,comm);
MPI_BCAST(buf1,count,type,0,comm);
break;

}

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 56

Erroneous examples

A correct but nondeterministic code. There are two possible scenarios:

Processes
0 1 2

Scenario 1
RECV ←− SEND

BCAST BCAST BCAST
SEND −→ RECV

Scenario 2
BCAST
SEND −→ RECV

BCAST
RECV ←− SEND

BCAST

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 57

MPI environmental management

Timing MPI Programs

MPI WTIME()
DOUBLE PRECISION MPI WTIME()

MPI WTIME returns a floating-point number of seconds representing
elapsed wall-clock time since some arbitrary point of time in the past.
This point is guaranteed not to change during the lifetime of the process.
Thus, a time interval can be measured by calling this routine at the beginning
and end of the program segment has to be measured and subtracting the
values returned.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 58

MPI environmental management

1 2

4

5 6

8

3

7

2+6

7+38+4

1+5 2+6

7+38+4

3+7+4+8 3+7+4+8

3+7+4+83+7+4+8

1+5+2+6

1+5+2+6 1+5+2+6

Σ Σ

ΣΣ

Σ Σ

ΣΣ

1+5

= 1+2+3+4+5+6+7+8Σ

1+5+2+6

Computing a scalar product on a 3-D hypercube

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 59

Gray codes

000 001

100 101

111 110

011 010

[000,001,010,011,100,101,110,111]

(a) Standard numbering

000 001

100 101

010 011

110 111

[000,001,011,010,100,101,111,110]

(b) Gray code ordering

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 60

Gray codes

Theorem Any m1 × m2 . . . × mn mesh in the n-dimensional space Rn,

where mi = 2ri can be mapped onto a d-cube where d = r1 + r2 + · · · rn,

with the proximity property preserved. The mapping of the grid points

is the cross product G1 × G2 × · · · × Gn where Gi, i = 1, . . . n is any

one-dimensional Gray-code mapping of the mi points in the ith coordinate

direction.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 61

