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Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

2 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010



02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

3 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010



02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

4 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010



02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

5 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010



02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Presburger terms

The terms are generated from

∙ integer constants . . . ,−2,−1, 0, 1,2, . . . and

∙ variables x , y , z, . . .

using the following operations:

∙ addition + and subtraction − and

∙ multiplication by constants: . . . , −2⋅, −1⋅, 0⋅, 1⋅, 2⋅, . . .

Notice

∙ terms are interpreted over integers

∙ the terms do not really allow multiplication as, e.g. 3 ⋅ x is equal
to x + x + x

∙ a term like 3 ⋅ x is usually written 3x
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Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.
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Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)
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Some concepts

∙ In ∀x .F :
∙ x is called the quantified variable
∙ ∀x is called the quantifier
∙ F is the scope of the quantifier

The case for ∃x .F is similar.

∙ An occurrence of a variable x in a formula F is a bound
occurrence if it occurs in the scope of a quantifier ∀x or ∃x in F.
Otherwise, that occurrence of x is free in F .

∙ x is a free variable of F if there is some free occurrence of x in
F .

∙ A formula is called closed if it contains no free variables;
otherwise it is called open.
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Semantics

Let ℤ denote the set of integers . . . ,−2,−1, 0,1, 2, . . ..

The operations + and − and the relations =, <,≤, >,≥ have their
standard meaning.

A interpretation I assigns an integer I(x) ∈ ℤ to every variable x .

Let I ⊲ {x 7→ v} be the x-variant of I which is as I except that v is
assigned to x .
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Semantics of terms

Let an assignment I be given.

The semantics of a term s is an integer Î(s) ∈ ℤ defined as follows:

Î(x) = I(x)
Î(a) = a where a ∈ ℤ

Î(s + t) = Î(s) + Î(t)
Î(s − t) = Î(s) − Î(t)
Î(a ⋅ s) = a ⋅ Î(s) where a ∈ ℤ
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Semantics of formulas

Let an assignment I be given.

The semantic relation I ∣= F is defined by structural induction on
formulas:

I ∣= s < t iff Î(s) < Î(t) other relations are similar
I ∣= a∣s iff a divides Î(s) where a ∈ ℤ

I ∣= ¬F iff not (I ∣= F )
I ∣= F ∨ G iff I ∣= F or I ∣= G
I ∣= F ∧ G iff I ∣= F and I ∣= G
I ∣= ∀x .F iff I ⊲ {x 7→ v} ∣= F for every v ∈ ℤ

I ∣= ∃x .F iff I ⊲ {x 7→ v} ∣= F for some v ∈ ℤ
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Concepts

A formula F is satisfiable if there is some assignment I for which the
formula is true. Otherwise it is unsatisfiable.

A formula is valid if it is true for all assignments.

Notice: The truth value of a closed formula is independent of the
chosen assignment. It is either valid (true for all assignments), or
unsatisfiable (false for all assignments).
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Examples

∙ ∃y .x = 2y — (x is even) is satisfiable but not valid
also expressible as 2∣x

∙ ∃y .x = 2y ∨ x = 2y + 1 — (x is even or x is odd) is valid
also expressible as 2∣x ∨ 2∣x + 1

∙ ∃x .∀y .x ≤ y is unsatifiable (false)

∙ ∃x .∀y .x + y = y is valid (true)
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∙ ∃x .∀y .x + y = y is valid (true)
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Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)
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Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y
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Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]
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Negation Normal Form

Input: A quantifier-free formula F [x].

Output: A formula F1[x], where negation is used on literals only.

Technique: Apply de Morgan’s laws

¬(F ∨ G) ⇐⇒ ¬F ∧ ¬G
¬(F ∧ G) ⇐⇒ ¬F ∨ ¬G

from left to right, together with:

¬¬F ⇐⇒ F
¬⊤ ⇐⇒ ⊥
¬⊥ ⇐⇒ ⊤

until no further application is possible.
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Construction of F2[x ]

Output: A formula F2[x] containing comparison < only, and where
negation is applied to divisibility constraints only.

Technique: Use

s = t ⇐⇒ s < t + 1 ∧ t < s + 1
¬(s = t) ⇐⇒ s < t ∨ t < s
¬(s < t) ⇐⇒ t < s + 1

The other comparisons ≤,≥, > can also be treated.
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Construction of F3[x ]

Output: A formula F3[x], where atomic formulas contain one
occurrence of x at most.

Technique: Use linear arithmetic to bring each atomic formula
containing x on the form

hx < t or t < hx or k ∣hx + t

where h, k ∈ ℤ
+ and x does not occur in t .

Example:
6x + z < 4x + 3y − 5

is transformed to
2x < 3y − z − 5
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Construction of F4[x ′]

Output: A formula F4[x ′], where coefficients to x ′ are all 1 and

∃x .F [x] is equivalent to ∃x ′
.F [x ′]

Let � be the least common multiple (lcm) of all coefficients to x .

Normalize each constraint so that � is the coefficient of x . The
resulting formula is F ′

3[�x]. F4[x ′] is F ′

3[x
′] ∧ �∣x ′

Example:

2x < z + 6 ∧ y − 1 < 3x ∧ 4∣5x + 1

is transformed to F ′

3[30x]

30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24∣30x + 6

as 30 = lcm{2, 3,5}, and F4[x ′] is

x ′
< 15z + 90 ∧ 10y − 10 < x ′ ∧ 24∣x ′ + 6 ∧ 30∣x ′
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Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
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� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
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Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
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Construction of F5 – part 2

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

Case 2: there is a least satisfying assignments to x ′.

For that assignment an (B) literal is true and for smaller assignments
to x ′ the formula is false.

Let B = {b∣b < x ′ is a (B) literal}

Then F52 is:
�⋁

j=1

⋁

b∈B

F4[b + j]

Then F5 is F51 ∨ F52 i.e.

�⋁

j=1

F−∞[j] ∨
�⋁

j=1

⋁

b∈B

F4[b + j]
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(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)
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Construction of F5 – part 2

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

Case 2: there is a least satisfying assignments to x ′.

For that assignment an (B) literal is true and for smaller assignments
to x ′ the formula is false.

Let B = {b∣b < x ′ is a (B) literal}

Then F52 is:
�⋁

j=1

⋁

b∈B

F4[b + j]

Then F5 is F51 ∨ F52 i.e.

�⋁

j=1
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�⋁
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⋁

b∈B

F4[b + j]
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Example (I)

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x ]

F [x] is on Negation Normal Form. Isolate x and use < only:

∃x . (3x < 9 ∨ 13 < 7x) ∧ 2∣x
︸ ︷︷ ︸

F3 [x ]

Normalize coefficient to x , part 1:

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42∣21x
︸ ︷︷ ︸

F ′

3 [21x ]

Normalize coefficient to x , part 2:

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′ ]
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Example (II)

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′ ]

Eliminate the quantifier:

F−∞[x ′] : (⊤ ∨ ⊥) ∧ 42∣x ′ ∧ 21∣x ′

� = lcm{21, 42} = 42

B = {39}

⋁42
j=1(42∣j ∧ 21∣j)

∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

This formula is true and so is

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x ]
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Summary (I)

∙ Cooper’s algorithm can decide arbitrary formulas of Presbruger
Arithmetic – even in the presence of arbitrary quantifications.

∙ The problem has a double exponential lower bound and a triple
exponential upper bound.

∙ Cooper’s algorithm has a triple exponential upper bound.

∙ Many optimizations are possible.
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Summary (II)

The advantage with Cooper’s algorithm is that it does not require
normal form, as some other decision methods do. Quantifier
elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and

∙ a parallel implementation on a multi-core platform

striving for a very efficient backend for DC-modelchecking.
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elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and
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Summary (II)

The advantage with Cooper’s algorithm is that it does not require
normal form, as some other decision methods do. Quantifier
elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and

∙ a parallel implementation on a multi-core platform

striving for a very efficient backend for DC-modelchecking.
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