
02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

02917 Advanced Topics in Embedded Systems
Presburger Arithmetic: Cooper’s algorithm

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

2 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

3 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

4 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Introduction

Presburger Arithmetic (introduced by Mojzesz Presburger in 1929), is
the first-order theory of natural numbers with addition.

Examples of formulas are: ∃x .2x = y and ∃x .∀y .x + y > z.

Unlike Peano Arithmetic, which also includes multiplication,
Presburger Arithmetic is a decidable theory.

We shall consider the algorithm introduced by D.C Cooper in 1972.

The presentation is based on: Chapter 7: Quantified Linear
Arithmetic of The Calculus of Computation by Bradley and Manna.

5 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Presburger terms

The terms are generated from

∙ integer constants . . . ,−2,−1, 0, 1,2, . . . and

∙ variables x , y , z, . . .

using the following operations:

∙ addition + and subtraction − and

∙ multiplication by constants: . . . , −2⋅, −1⋅, 0⋅, 1⋅, 2⋅, . . .

Notice

∙ terms are interpreted over integers

∙ the terms do not really allow multiplication as, e.g. 3 ⋅ x is equal
to x + x + x

∙ a term like 3 ⋅ x is usually written 3x

6 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Presburger terms

The terms are generated from

∙ integer constants . . . ,−2,−1, 0, 1,2, . . . and

∙ variables x , y , z, . . .

using the following operations:

∙ addition + and subtraction − and

∙ multiplication by constants: . . . , −2⋅, −1⋅, 0⋅, 1⋅, 2⋅, . . .

Notice

∙ terms are interpreted over integers

∙ the terms do not really allow multiplication as, e.g. 3 ⋅ x is equal
to x + x + x

∙ a term like 3 ⋅ x is usually written 3x

7 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Presburger terms

The terms are generated from

∙ integer constants . . . ,−2,−1, 0, 1,2, . . . and

∙ variables x , y , z, . . .

using the following operations:

∙ addition + and subtraction − and

∙ multiplication by constants: . . . , −2⋅, −1⋅, 0⋅, 1⋅, 2⋅, . . .

Notice

∙ terms are interpreted over integers

∙ the terms do not really allow multiplication as, e.g. 3 ⋅ x is equal
to x + x + x

∙ a term like 3 ⋅ x is usually written 3x

8 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Presburger terms

The terms are generated from

∙ integer constants . . . ,−2,−1, 0, 1,2, . . . and

∙ variables x , y , z, . . .

using the following operations:

∙ addition + and subtraction − and

∙ multiplication by constants: . . . , −2⋅, −1⋅, 0⋅, 1⋅, 2⋅, . . .

Notice

∙ terms are interpreted over integers

∙ the terms do not really allow multiplication as, e.g. 3 ⋅ x is equal
to x + x + x

∙ a term like 3 ⋅ x is usually written 3x

9 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

10 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

11 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

12 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

13 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

14 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

15 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Formulas

We consider formulas F ,G,F1,G1,F2 . . . of the following forms:

∙ s = t , s < t , s > t , s ≤ t , and s ≥ t (comparisons)

∙ 1∣s, 2∣s, 3∣s, . . . (divisibility constraints)

∙ ⊤ (true) and ⊥ (false) (propositional constants)

∙ F ∨ G (disjunction), F ∧ G (conjunction) and ¬F (negation)
(propositional connectives)

∙ ∃x .F (reads ”there exists an x such that F ”) and
∀x .F (reads ”for all x : F ”) (first-order fragment)

where s and t are terms and x is a variable.

Furthermore, We allow brackets in formulas.

Notice: The formulas are interpreted over the integers.

16 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)

17 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)

18 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)

19 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)

20 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Notational conventions

∙ Relative precedence: ¬ (highest – binds tightest), ∧, ∨ (lowest)

∙ The quantifiers ∀x and ∃x extend as far as possible to the right.

∙ ∀x1.∀x2. . . .∀xn.F is abbreviated to ∀x1, x2, . . . , xn.F

Example:
∀x .∃y .¬x + 1 = 2y ∧ x > 0 ∨ y < 2

means
∀x .∃y .(((¬x + 1 = 2y) ∧ x > 0) ∨ y < 2)

21 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Some concepts

∙ In ∀x .F :
∙ x is called the quantified variable
∙ ∀x is called the quantifier
∙ F is the scope of the quantifier

The case for ∃x .F is similar.

∙ An occurrence of a variable x in a formula F is a bound
occurrence if it occurs in the scope of a quantifier ∀x or ∃x in F.
Otherwise, that occurrence of x is free in F .

∙ x is a free variable of F if there is some free occurrence of x in
F .

∙ A formula is called closed if it contains no free variables;
otherwise it is called open.

22 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Some concepts

∙ In ∀x .F :
∙ x is called the quantified variable
∙ ∀x is called the quantifier
∙ F is the scope of the quantifier

The case for ∃x .F is similar.

∙ An occurrence of a variable x in a formula F is a bound
occurrence if it occurs in the scope of a quantifier ∀x or ∃x in F.
Otherwise, that occurrence of x is free in F .

∙ x is a free variable of F if there is some free occurrence of x in
F .

∙ A formula is called closed if it contains no free variables;
otherwise it is called open.

23 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Some concepts

∙ In ∀x .F :
∙ x is called the quantified variable
∙ ∀x is called the quantifier
∙ F is the scope of the quantifier

The case for ∃x .F is similar.

∙ An occurrence of a variable x in a formula F is a bound
occurrence if it occurs in the scope of a quantifier ∀x or ∃x in F.
Otherwise, that occurrence of x is free in F .

∙ x is a free variable of F if there is some free occurrence of x in
F .

∙ A formula is called closed if it contains no free variables;
otherwise it is called open.

24 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Some concepts

∙ In ∀x .F :
∙ x is called the quantified variable
∙ ∀x is called the quantifier
∙ F is the scope of the quantifier

The case for ∃x .F is similar.

∙ An occurrence of a variable x in a formula F is a bound
occurrence if it occurs in the scope of a quantifier ∀x or ∃x in F.
Otherwise, that occurrence of x is free in F .

∙ x is a free variable of F if there is some free occurrence of x in
F .

∙ A formula is called closed if it contains no free variables;
otherwise it is called open.

25 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics

Let ℤ denote the set of integers . . . ,−2,−1, 0,1, 2,

The operations + and − and the relations =, <,≤, >,≥ have their
standard meaning.

A interpretation I assigns an integer I(x) ∈ ℤ to every variable x .

Let I ⊲ {x 7→ v} be the x-variant of I which is as I except that v is
assigned to x .

26 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics

Let ℤ denote the set of integers . . . ,−2,−1, 0,1, 2,

The operations + and − and the relations =, <,≤, >,≥ have their
standard meaning.

A interpretation I assigns an integer I(x) ∈ ℤ to every variable x .

Let I ⊲ {x 7→ v} be the x-variant of I which is as I except that v is
assigned to x .

27 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics

Let ℤ denote the set of integers . . . ,−2,−1, 0,1, 2,

The operations + and − and the relations =, <,≤, >,≥ have their
standard meaning.

A interpretation I assigns an integer I(x) ∈ ℤ to every variable x .

Let I ⊲ {x 7→ v} be the x-variant of I which is as I except that v is
assigned to x .

28 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics

Let ℤ denote the set of integers . . . ,−2,−1, 0,1, 2,

The operations + and − and the relations =, <,≤, >,≥ have their
standard meaning.

A interpretation I assigns an integer I(x) ∈ ℤ to every variable x .

Let I ⊲ {x 7→ v} be the x-variant of I which is as I except that v is
assigned to x .

29 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics of terms

Let an assignment I be given.

The semantics of a term s is an integer Î(s) ∈ ℤ defined as follows:

Î(x) = I(x)
Î(a) = a where a ∈ ℤ

Î(s + t) = Î(s) + Î(t)
Î(s − t) = Î(s) − Î(t)
Î(a ⋅ s) = a ⋅ Î(s) where a ∈ ℤ

30 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Semantics of formulas

Let an assignment I be given.

The semantic relation I ∣= F is defined by structural induction on
formulas:

I ∣= s < t iff Î(s) < Î(t) other relations are similar
I ∣= a∣s iff a divides Î(s) where a ∈ ℤ

I ∣= ¬F iff not (I ∣= F)
I ∣= F ∨ G iff I ∣= F or I ∣= G
I ∣= F ∧ G iff I ∣= F and I ∣= G
I ∣= ∀x .F iff I ⊲ {x 7→ v} ∣= F for every v ∈ ℤ

I ∣= ∃x .F iff I ⊲ {x 7→ v} ∣= F for some v ∈ ℤ

31 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Concepts

A formula F is satisfiable if there is some assignment I for which the
formula is true. Otherwise it is unsatisfiable.

A formula is valid if it is true for all assignments.

Notice: The truth value of a closed formula is independent of the
chosen assignment. It is either valid (true for all assignments), or
unsatisfiable (false for all assignments).

32 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Concepts

A formula F is satisfiable if there is some assignment I for which the
formula is true. Otherwise it is unsatisfiable.

A formula is valid if it is true for all assignments.

Notice: The truth value of a closed formula is independent of the
chosen assignment. It is either valid (true for all assignments), or
unsatisfiable (false for all assignments).

33 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Concepts

A formula F is satisfiable if there is some assignment I for which the
formula is true. Otherwise it is unsatisfiable.

A formula is valid if it is true for all assignments.

Notice: The truth value of a closed formula is independent of the
chosen assignment. It is either valid (true for all assignments), or
unsatisfiable (false for all assignments).

34 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Examples

∙ ∃y .x = 2y — (x is even) is satisfiable but not valid
also expressible as 2∣x

∙ ∃y .x = 2y ∨ x = 2y + 1 — (x is even or x is odd) is valid
also expressible as 2∣x ∨ 2∣x + 1

∙ ∃x .∀y .x ≤ y is unsatifiable (false)

∙ ∃x .∀y .x + y = y is valid (true)

35 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Examples

∙ ∃y .x = 2y — (x is even) is satisfiable but not valid
also expressible as 2∣x

∙ ∃y .x = 2y ∨ x = 2y + 1 — (x is even or x is odd) is valid
also expressible as 2∣x ∨ 2∣x + 1

∙ ∃x .∀y .x ≤ y is unsatifiable (false)

∙ ∃x .∀y .x + y = y is valid (true)

36 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Examples

∙ ∃y .x = 2y — (x is even) is satisfiable but not valid
also expressible as 2∣x

∙ ∃y .x = 2y ∨ x = 2y + 1 — (x is even or x is odd) is valid
also expressible as 2∣x ∨ 2∣x + 1

∙ ∃x .∀y .x ≤ y is unsatifiable (false)

∙ ∃x .∀y .x + y = y is valid (true)

37 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Examples

∙ ∃y .x = 2y — (x is even) is satisfiable but not valid
also expressible as 2∣x

∙ ∃y .x = 2y ∨ x = 2y + 1 — (x is even or x is odd) is valid
also expressible as 2∣x ∨ 2∣x + 1

∙ ∃x .∀y .x ≤ y is unsatifiable (false)

∙ ∃x .∀y .x + y = y is valid (true)

38 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

39 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

40 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

41 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

42 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier elimination

In the theory of real numbers an example of quantifier elimination is:

∃x .ax2 + bx + c = 0 is equivalent to b2 − 4ac ≥ 0

where a, b, c ∈ ℝ and a ∕= 0.

Presburger developed a method, which for an arbitrary Presburger
formula F gives to an equivalent quantifier-free formula G.

If F is a closed formula, then the truth value of G can be computed.

For example, Cooper’s algorithm for Presburger Arithmetic
transforms:

∃x .(3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x

to the following variable- and quantifier-free formula:
⋁42

j=1(42∣j ∧ 21∣j)
∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

43 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

44 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

45 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

46 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

47 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

48 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Quantifier Elimination (II)

Excluding divisible predicates a∣s from the Presburger Formulas
quantifier elimination is not possible.

Lemma: If F (y) is a quantifier-free formula with one free variable y .
Let

S = {n ∈ ℤ ∣ F (n) is valid}

Then either
S ∩ ℤ

+ or ℤ
+ ∖ S

is finite

Consider the formula: ∃x .2x = y .
∙ S ∩ ℤ

+ is the infinite set of positive even numbers
∙ ℤ

+ ∖ S is the infinite set of positive odd numbers

The addition of divisibility predicates makes quantifier elimination
possible for Presburger Arithmetic, and, e.g.

∃x .2x = y is equivalent to 2∣y

49 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]

50 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]

51 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]

52 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]

53 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Cooper’s procedure - main idea

Consider a formula ∃x .F [x], where F is quantifier free.
Main steps:

∙ Put F [x] on negation normal form, yielding F1[x]

∙ Normalize F1[x] to use < as the only comparison operator,
yielding F2[x]

∙ Normalize F2[x] so that atomic formulas have one occurrence of
x (at most), yielding F3[x]

∙ Normalize F3[x] so that the coefficients of x is 1 (in atomic
formulas containing x), yielding F4[x ′]

∙ Construct from F4[x ′] a quantifier-free formula F5 which is
equivalent to ∃x .F [x]

54 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Negation Normal Form

Input: A quantifier-free formula F [x].

Output: A formula F1[x], where negation is used on literals only.

Technique: Apply de Morgan’s laws

¬(F ∨ G) ⇐⇒ ¬F ∧ ¬G
¬(F ∧ G) ⇐⇒ ¬F ∨ ¬G

from left to right, together with:

¬¬F ⇐⇒ F
¬⊤ ⇐⇒ ⊥
¬⊥ ⇐⇒ ⊤

until no further application is possible.

55 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Negation Normal Form

Input: A quantifier-free formula F [x].

Output: A formula F1[x], where negation is used on literals only.

Technique: Apply de Morgan’s laws

¬(F ∨ G) ⇐⇒ ¬F ∧ ¬G
¬(F ∧ G) ⇐⇒ ¬F ∨ ¬G

from left to right, together with:

¬¬F ⇐⇒ F
¬⊤ ⇐⇒ ⊥
¬⊥ ⇐⇒ ⊤

until no further application is possible.

56 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F2[x]

Output: A formula F2[x] containing comparison < only, and where
negation is applied to divisibility constraints only.

Technique: Use

s = t ⇐⇒ s < t + 1 ∧ t < s + 1
¬(s = t) ⇐⇒ s < t ∨ t < s
¬(s < t) ⇐⇒ t < s + 1

The other comparisons ≤,≥, > can also be treated.

57 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F3[x]

Output: A formula F3[x], where atomic formulas contain one
occurrence of x at most.

Technique: Use linear arithmetic to bring each atomic formula
containing x on the form

hx < t or t < hx or k ∣hx + t

where h, k ∈ ℤ
+ and x does not occur in t .

Example:
6x + z < 4x + 3y − 5

is transformed to
2x < 3y − z − 5

58 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F3[x]

Output: A formula F3[x], where atomic formulas contain one
occurrence of x at most.

Technique: Use linear arithmetic to bring each atomic formula
containing x on the form

hx < t or t < hx or k ∣hx + t

where h, k ∈ ℤ
+ and x does not occur in t .

Example:
6x + z < 4x + 3y − 5

is transformed to
2x < 3y − z − 5

59 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F4[x ′]

Output: A formula F4[x ′], where coefficients to x ′ are all 1 and

∃x .F [x] is equivalent to ∃x ′
.F [x ′]

Let � be the least common multiple (lcm) of all coefficients to x .

Normalize each constraint so that � is the coefficient of x . The
resulting formula is F ′

3[�x]. F4[x ′] is F ′

3[x
′] ∧ �∣x ′

Example:

2x < z + 6 ∧ y − 1 < 3x ∧ 4∣5x + 1

is transformed to F ′

3[30x]

30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24∣30x + 6

as 30 = lcm{2, 3,5}, and F4[x ′] is

x ′
< 15z + 90 ∧ 10y − 10 < x ′ ∧ 24∣x ′ + 6 ∧ 30∣x ′

60 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F4[x ′]

Output: A formula F4[x ′], where coefficients to x ′ are all 1 and

∃x .F [x] is equivalent to ∃x ′
.F [x ′]

Let � be the least common multiple (lcm) of all coefficients to x .

Normalize each constraint so that � is the coefficient of x . The
resulting formula is F ′

3[�x]. F4[x ′] is F ′

3[x
′] ∧ �∣x ′

Example:

2x < z + 6 ∧ y − 1 < 3x ∧ 4∣5x + 1

is transformed to F ′

3[30x]

30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24∣30x + 6

as 30 = lcm{2, 3,5}, and F4[x ′] is

x ′
< 15z + 90 ∧ 10y − 10 < x ′ ∧ 24∣x ′ + 6 ∧ 30∣x ′

61 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F4[x ′]

Output: A formula F4[x ′], where coefficients to x ′ are all 1 and

∃x .F [x] is equivalent to ∃x ′
.F [x ′]

Let � be the least common multiple (lcm) of all coefficients to x .

Normalize each constraint so that � is the coefficient of x . The
resulting formula is F ′

3[�x]. F4[x ′] is F ′

3[x
′] ∧ �∣x ′

Example:

2x < z + 6 ∧ y − 1 < 3x ∧ 4∣5x + 1

is transformed to F ′

3[30x]

30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24∣30x + 6

as 30 = lcm{2, 3,5}, and F4[x ′] is

x ′
< 15z + 90 ∧ 10y − 10 < x ′ ∧ 24∣x ′ + 6 ∧ 30∣x ′

62 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F4[x ′]

Output: A formula F4[x ′], where coefficients to x ′ are all 1 and

∃x .F [x] is equivalent to ∃x ′
.F [x ′]

Let � be the least common multiple (lcm) of all coefficients to x .

Normalize each constraint so that � is the coefficient of x . The
resulting formula is F ′

3[�x]. F4[x ′] is F ′

3[x
′] ∧ �∣x ′

Example:

2x < z + 6 ∧ y − 1 < 3x ∧ 4∣5x + 1

is transformed to F ′

3[30x]

30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24∣30x + 6

as 30 = lcm{2, 3,5}, and F4[x ′] is

x ′
< 15z + 90 ∧ 10y − 10 < x ′ ∧ 24∣x ′ + 6 ∧ 30∣x ′

63 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
64 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
65 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
66 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 1

Output: A quantifier-free formula F5 which is equivalent to ∃x .F [x]
(and to ∃x ′.F4[x ′])

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

We distinguish two cases.

Case 1: there are infinitely many small satisfying assignments to x ′.

Let F−∞[x ′] be obtained from F4[x ′] by replacing:
∙ (A)-literals by ⊤ and
∙ (B)-literals by ⊥.

Let
� = lcm{h ∣ h∣x + c is a divisibility constraint in a (C) or (D) literal}.

Let F51 be
�⋁

j=1

F−∞[j]

All possible combinations of divisibility constraints are tested.
67 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 2

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

Case 2: there is a least satisfying assignments to x ′.

For that assignment an (B) literal is true and for smaller assignments
to x ′ the formula is false.

Let B = {b∣b < x ′ is a (B) literal}

Then F52 is:
�⋁

j=1

⋁

b∈B

F4[b + j]

Then F5 is F51 ∨ F52 i.e.

�⋁

j=1

F−∞[j] ∨
�⋁

j=1

⋁

b∈B

F4[b + j]

68 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 2

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

Case 2: there is a least satisfying assignments to x ′.

For that assignment an (B) literal is true and for smaller assignments
to x ′ the formula is false.

Let B = {b∣b < x ′ is a (B) literal}

Then F52 is:
�⋁

j=1

⋁

b∈B

F4[b + j]

Then F5 is F51 ∨ F52 i.e.

�⋁

j=1

F−∞[j] ∨
�⋁

j=1

⋁

b∈B

F4[b + j]

69 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Construction of F5 – part 2

Each literal in F4[x ′] containing x ′ has one of the forms:
(A) x ′ < a, (B) b < x ′, (C) h∣x ′ + c, (D) ¬(h∣x ′ + c)

Case 2: there is a least satisfying assignments to x ′.

For that assignment an (B) literal is true and for smaller assignments
to x ′ the formula is false.

Let B = {b∣b < x ′ is a (B) literal}

Then F52 is:
�⋁

j=1

⋁

b∈B

F4[b + j]

Then F5 is F51 ∨ F52 i.e.

�⋁

j=1

F−∞[j] ∨
�⋁

j=1

⋁

b∈B

F4[b + j]

70 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (I)

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

F [x] is on Negation Normal Form. Isolate x and use < only:

∃x . (3x < 9 ∨ 13 < 7x) ∧ 2∣x
︸ ︷︷ ︸

F3 [x]

Normalize coefficient to x , part 1:

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42∣21x
︸ ︷︷ ︸

F ′

3 [21x]

Normalize coefficient to x , part 2:

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

71 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (I)

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

F [x] is on Negation Normal Form. Isolate x and use < only:

∃x . (3x < 9 ∨ 13 < 7x) ∧ 2∣x
︸ ︷︷ ︸

F3 [x]

Normalize coefficient to x , part 1:

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42∣21x
︸ ︷︷ ︸

F ′

3 [21x]

Normalize coefficient to x , part 2:

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

72 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (I)

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

F [x] is on Negation Normal Form. Isolate x and use < only:

∃x . (3x < 9 ∨ 13 < 7x) ∧ 2∣x
︸ ︷︷ ︸

F3 [x]

Normalize coefficient to x , part 1:

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42∣21x
︸ ︷︷ ︸

F ′

3 [21x]

Normalize coefficient to x , part 2:

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

73 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (I)

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

F [x] is on Negation Normal Form. Isolate x and use < only:

∃x . (3x < 9 ∨ 13 < 7x) ∧ 2∣x
︸ ︷︷ ︸

F3 [x]

Normalize coefficient to x , part 1:

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42∣21x
︸ ︷︷ ︸

F ′

3 [21x]

Normalize coefficient to x , part 2:

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

74 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (II)

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

Eliminate the quantifier:

F−∞[x ′] : (⊤ ∨ ⊥) ∧ 42∣x ′ ∧ 21∣x ′

� = lcm{21, 42} = 42

B = {39}

⋁42
j=1(42∣j ∧ 21∣j)

∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

This formula is true and so is

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

75 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (II)

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

Eliminate the quantifier:

F−∞[x ′] : (⊤ ∨ ⊥) ∧ 42∣x ′ ∧ 21∣x ′

� = lcm{21, 42} = 42

B = {39}

⋁42
j=1(42∣j ∧ 21∣j)

∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

This formula is true and so is

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

76 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Example (II)

∃x ′
. (x ′

< 63 ∨ 39 < x ′) ∧ 42∣x ′ ∧ 21∣x ′

︸ ︷︷ ︸

F4 [x′]

Eliminate the quantifier:

F−∞[x ′] : (⊤ ∨ ⊥) ∧ 42∣x ′ ∧ 21∣x ′

� = lcm{21, 42} = 42

B = {39}

⋁42
j=1(42∣j ∧ 21∣j)

∨
⋁42

j=1((39 + j < 63 ∨ 39 < 39 + j) ∧ 42∣39 + j ∧ 21∣39 + j)

This formula is true and so is

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2∣x
︸ ︷︷ ︸

F [x]

77 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (I)

∙ Cooper’s algorithm can decide arbitrary formulas of Presbruger
Arithmetic – even in the presence of arbitrary quantifications.

∙ The problem has a double exponential lower bound and a triple
exponential upper bound.

∙ Cooper’s algorithm has a triple exponential upper bound.

∙ Many optimizations are possible.

78 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (I)

∙ Cooper’s algorithm can decide arbitrary formulas of Presbruger
Arithmetic – even in the presence of arbitrary quantifications.

∙ The problem has a double exponential lower bound and a triple
exponential upper bound.

∙ Cooper’s algorithm has a triple exponential upper bound.

∙ Many optimizations are possible.

79 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (I)

∙ Cooper’s algorithm can decide arbitrary formulas of Presbruger
Arithmetic – even in the presence of arbitrary quantifications.

∙ The problem has a double exponential lower bound and a triple
exponential upper bound.

∙ Cooper’s algorithm has a triple exponential upper bound.

∙ Many optimizations are possible.

80 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (I)

∙ Cooper’s algorithm can decide arbitrary formulas of Presbruger
Arithmetic – even in the presence of arbitrary quantifications.

∙ The problem has a double exponential lower bound and a triple
exponential upper bound.

∙ Cooper’s algorithm has a triple exponential upper bound.

∙ Many optimizations are possible.

81 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (II)

The advantage with Cooper’s algorithm is that it does not require
normal form, as some other decision methods do. Quantifier
elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and

∙ a parallel implementation on a multi-core platform

striving for a very efficient backend for DC-modelchecking.

82 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (II)

The advantage with Cooper’s algorithm is that it does not require
normal form, as some other decision methods do. Quantifier
elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and

∙ a parallel implementation on a multi-core platform

striving for a very efficient backend for DC-modelchecking.

83 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

02917
Ad-

vanced
Top-
ics in
Em-
bed-
ded
Sys-
tems

Michael R. Hansen

Summary (II)

The advantage with Cooper’s algorithm is that it does not require
normal form, as some other decision methods do. Quantifier
elimination in connection with DNF or CNF hurts a lot.

A disadvantage with Cooper’s algorithm is that constants obtained
using lcm may be large.

Ongoing work: Experiments with a declarative implementation of the
algorithm including many optimizations aiming at:

∙ including techniques from other decision methods, and

∙ a parallel implementation on a multi-core platform

striving for a very efficient backend for DC-modelchecking.

84 DTU Informatics, Technical University of Denmark Presburger Arithmetic: Cooper’s algorithm MRH 17/06/2010

