
Model-based Synthesis of Reactive
Planning Online Testers for
Non-deterministic Embedded

Systems

Jüri Vain
Dept. of Computer Science
Tallinn University of Technology

J.Vain “...Reactive Planning Testing...”
Lyngby, June 14, 2010

Outline

� Preliminaries

� Model-Based Testing

� Online testing

� Reactive Planning Tester (RPT)

� Constructing the RPT

� Performance of the approach

� Demo

Context: Model-Based Testing

� Given

� a specification model and

� an Implementation Under Test (IUT),

� Test goal

� Find

� If the IUT conforms to the specification in
terms expressed in test goal.

Model-Based Testing

� The specification and test goal need to be
formalised.

� We assume specs are given as

� Extended Finite State Machines

� UPTA

� LSC

� etc.

J.Vain “...Reactive Planning Testing...”
Lyngby, June 14, 2010

Online testing

� Denotes test generation and execution
algorithms that

� compute successive stimuli at runtime directed by

� the test purpose and

� the observed outputs of the IUT

J.Vain “...Reactive Planning Testing...”
Lyngby, June 14, 2010

Online testing

� Advantages:

� The state-space explosion problem is reduced
because only a limited part of the state-space
needs to be kept track of at any point in time.

� Drawbacks:

� Exhaustive planning is diffcult due to the
limitations of the available computational
resources at the time of test execution.

J.Vain “...Reactive Planning Testing...”
Lyngby, June 14, 2010

Online testing:

Spectrum of planning methods

� Random walk (RW): select test stimuli in random
� inefficient - based on random exploration of the state space
� leads to test cases that are unreasonably long
� may leave the test purpose unachieved

� RW with reinforcement learning (anti-ant)
� the exploration is guided by some reward function

�
� Exploration with exhaustive planning

� MC provides possibly an optimal witness trace
� the size of the model is critical in explicit state MC
� state explosion in "combination lock" or deep loop models

???

Online testing:

Spectrum of planning methods

� Random walk (RW): select test stimuli in random
� inefficient - based on random exploration of the state space
� leads to test cases that are unreasonably long
� may leave the test purpose unachieved

� RW with reinforcement learning (anti-ant)
� the exploration is guided by some reward function

� Planning with limited horizon!
� Exploration with exhaustive planning

� MC provides possibly an optimal witness trace
� the size of the model is critical in explicit state MC
� state explosion in "combination lock" or deep loop models

Reactive Planning

� Instead of a complete plan, only a set of
decision rules is derived

� The rules direct the system when
executed towards the planning goal.

� Based on current situation evaluation just
one subsequent input is computed at a
time.

� Planning horizon can be adjusable

Reactive Planning
[Brian C. Williams and P. Pandurang Nayak, 96 and 97]

� A Reactive Planning works in 3 phases:
� Mode identification (MI)

� Mode reconfiguration (MR)

� Model-based reactive planning (MRP)

� MI and MR set up the planning problem
identifying initial and target states

� MRP generates a plan

Reactive Planning Tester (RPT)

� MI – Where are we?

Observe the output of the IUT to determine
the current mode (state of the model)

� MR – Where do we want to go?

Determined by still unsatisfied test (sub)goals

� MRP – How do we get there?

Gain function guides the exploration of the
model (choose the transition with the shortest
path to the next subgoal

RPT: Key Assumptions
� Testing is guided by the (EFSM) model of the
tester and the test goal.

� Stimulae to the IUT are tester outputs
generated by model execution

� Responses from the IUT are inputs to the
tester model

� Decision rules of reactive planning are
encoded in the guards of the transitions of
the tester model

� The rules are constructed by offline analysis
based on the given IUT model and the test
purpose.

J.Vain “...Reactive Planning Testing...”
Aalborg, April 8, 2010

RPT: The Model

� The IUT model is presented as an output
observable nondeterministic EFSM in
which all paths are feasible

� Algorithm of making EFSM feasible:

A. Y. Duale and M. U. Uyar. A method enabling
feasible conformance test sequence generation
for EFSM models. IEEE Trans.
Comput.,53(5):614–627,2004.

Example: Nondeterministic FSM

s2

s3

e6:
i6/o6

e7:
i7/o7

s1

e0:
i0/o0

e1:
i0/o1

e2:
i2/o2

e3:
i3/o3

e4:
i3/o4

e5:
i5/o5

i0 and i3 are output observable nondeterministic inputs

Encoding the Test Purpose in IUT Model

� Trap - a boolean variable assignment
attached to the transitions of the IUT model

� A trap variable is initially set to false.

� The trap update functions are executed (set
to true) when the transition is visited.

Add Test Purpose

s2

s3

e6:
i6/o6, t6=true

e7:
i7/o7, t7=true

s1

e0:
i0/o0
t0=true

e1:
i0/o1, t1=true

e2:
i2/o2, t2=true

e3:
i3/o3, t3=true

e4:
i3/o4, t4=true

e5:
i5/o5, t5=true

bool t0 = false;
...
bool t7 = false;

Model of the tester
� Generated from the IUT model decorated with test purpose

� Transition guards encode the rules of online planning

� 2 types of tester states:
� active – tester controls the next move
� passive – IUT controls the next move

� 2 types of transitions:
� Observable – source state is a passive state (guard ≡ true),
� Controllable – source state is an active state (guard ≡ pS /\ pT
where pS – guard of the IUT transition; pT – gain guard)

The gain guard (defined on trap variables) must ensure
that only the outgoing edges with maximum gain are
enabled in the given state.

Construction of the Tester Sceleton

s2

s3

e6:
i6/o6,
t6=truee7:

i7/o7,
t7=true

s1

e0:
i0/o0
t0=true

e1:
i0/o1,
t1=true

e2:
i2/o2,
t2=true

e3:
i3/o3,
t3=true

e4:
i3/o4, t4=true

e5:
i5/o5,
t5=true

s1

sa

s2sb

sc

s3

sd se

sf

States: Transitions:
- active - observable

- passive - controllable

Add IO and Gain Guards

s1

s4

s2s5

s6

s3

s6 s9

s7

eo0:

o0/t0=true

eo1:

o1/t1=true

ec01:
[pc01(T)]

-/i0
eo2:
o2/t2=true

eo7:
o7/t7=true

ec2:
[pc2(T)]
-/i2

ec34:
[pc34(T)]
-/i3 eo3:

o3/t3=true

eo6:
o6/t6=true ec6:

[pc6(T)]
-/i6 ec7:

[pc7(T)]
-/i7

ec5:
[pc5(T)]
-/i5

eo5:
o5/t5=true

Constructing the gain guards (GG):

intuition

� GG must guarantee that

� each transition enabled by GG is a prefix of some locally
optimal (w.r.t. test purpose) path;

� tester should terminate after the test goal is reached or
all unvisited traps are unreachable from the current
state;

� to have a quantitative measure of the gain of executing
any transition e we define a gain function ge that returns
a distance weighted sum of unsatisfied traps that are
reachable along e.

Recall lessons from nature:

Ants’Collective Hunting Strategies

Pheromone Guided Hunting:
• Maximizing prey localization
• Minimizing prey catching effort

Path selection criteria:
strength of pheromon trail - the
analog to gain function

Constructing Gain Guards:

intuition

Decision
point

Alternative
choices

...tri trj trk...

Planning
cones to be
covered for
decision
making

Constructing Gain Guards: intuition

tri trj trk

Decision
point

Alternative
choices

...

ge(tri,T)

...

ge(trj,T) ge(trj,T)

Gain
functions

Constructing the gain guards:

the gain function

� ge = 0, if it is useless to fire the transition e from the
current state with the current variable bindings;

� ge > 0, if fireing the transition e from the current state with
the current variable bindings visits or leads closer to at
least one unvisited trap;

� gei > gej for transitions ei and ej with the same source state,
if taking the transition ei leads to unvisited traps with
smaller distance than taking the transition ej;

� Having gain function ge with given properties define GG:

pT ≡ (ge = maxk gek) ∧ ge > 0

Constructing the Gain Functions:

shortest path trees

� Reachability problem of trap labelled transitions can be
reduced to single-source shortest path problem.

� Arguments of the gain function ge are
� Shortest path tree TRe with root node e

� VT – vector of trap variables

� To construct TRe we create a dual graph G = (VD,ED) of the
tester control graph MT where
� the vertices VD of G correspond to the transitions of the MT,

� the edges ED of G represent the pairs of consequtive
transitions sharing a state in MT (2-switches)

Constructing the Gain Guards:

shortest path tree (example)

The dual graph of the tester model The shortest-paths tree (left) and the reduced
shortest-paths tree (right) from the transition ec01

Constructing the gain guards:

gain function (1)

� Represent the reduced tree TR(ei, G) as a set of elementary sub-trees
each specified by the production νi ←j∈{1,..n}νj

� Rewrite the right-hand sides of the productions as arithmetic
terms:

(3)

� t↑i - trap variable ti lifted to type N,

� c - constant for rescaling the numerical value of the gain function,

� d(ν0, νi) the distance between vertices ν0 and νi, where

l - the number of hyper-edges on the path between ν0 and νi

w j – weight of j-th hyperedge

Constructing the gain guards:

gain function (2)

� For each symbol νi denoting a leaf vertex in
TR(e,G) define a production rule

(4)

� Apply the production rules (3) and (4) starting
from the root symbol ν0 of TR(e,G) until all non-
terminal symbols νi are substituted with the
terms that include only terminal symbols t↑i and
d(ν0, νi)

Example: Gain Functions

Example: Gain Guards

Complexity of constructing and

running the tester

� The complexity of the synthesis of the reactive planning tester is
determined by the complexity of constructing the gain functions.

� For each gain function the cost of finding the TRe by breadth-first-
search is O(|VD| + |ED|) [Cormen], where
� |VD| = |ET| - number of transitions of MT

� |ED| - number of transition pairs of MT (is bounded by |ES|
2)

� For all controllable transitions of the MT the upper bound of the
complexity of the computations of the gain functions is O(|ES|

3).

� At runtime each choice by the tester takes O(|ES|
2) arithmetic

operations to evaluate the gain functions

Experimental results:

Test Goal: All Transitions

Experimental Results:

Test Goal: Selected Transition

Demo: "combination lock"

� Comparison of methods

� Random search

� Anti-ant

� Reactive planning tester

Case study: Feeder Box Control Unit

(FBCU) of the street lighting subsystem

J.Vain “...Reactive Planning Testing...”
Aalborg, April 8, 2010

Test environment of the FBCU

Shaping RPT planning cones (i)

Doctoral course ’Advanced topics in
Embedded Systems’. Lyngby'09

tri trj trk

Decision
point

Alternative
choices

In online-
testing decision
time strictly
bounded!...

ge(tri,T)

...

ge(trj,T) ge(trj,T)

Gain
functions

Shaping RPT planning cones (ii)

Doctoral course ’Advanced topics in
Embedded Systems’. Lyngby'09

tri trj trk

Decision
point

Alternative
choices

Decision time
strictly
bounded!

Prune the cone!
...

ge(tri,T)

...

ge(trj,T) ge(trj,T)

Gain
functions

Horizon

(Different
ways to
define h, and
visibility)

Average lengths of test sequences in the

experiments

Doctoral course ’Advanced topics in
Embedded Systems’. Lyngby'09

Horizon

All transitions test coverage Single transition test coverage

Planning with horizon Planning with horizon

anti-ant random choice anti-ant random choice

0 18345 ± 5311 44595 ± 19550 2199 ± 991 4928 ± 4455

1 18417 ± 4003 19725 ± 7017 2156 ± 1154 6656 ± 5447

2 5120 ± 1678 4935 ± 1875 1276 ± 531 2516 ± 2263

3 4187 ± 978 3610 ± 2538 746 ± 503 1632 ± 1745

4 2504 ± 815 2077 ± 552 821 ± 421 1617 ± 1442

5 2261 ± 612 1276 ± 426 319 ± 233 618 ± 512

6 2288 ± 491 1172 ± 387 182 ± 116 272 ± 188

7 1374 ± 346 762 ± 177 139 ± 74 147 ± 125

8 851 ± 304 548 ± 165 112 ± 75 171 ± 114

9 701 ± 240 395 ± 86 72 ± 25 119 ± 129

10 406 ± 102 329 ± 57 73 ± 29 146 ± 194

11 337 ± 72 311 ± 58 79 ± 30 86 ± 59

12 323 ± 61 284 ± 38 41 ± 15 74 ± 51

13 326 ± 64 298 ± 44 34 ± 8 48 ± 31

14 335 ± 64 295 ± 40 34 ± 9 40 ± 23

15 324 ± 59 295 ± 42 25 ± 4 26 ± 5

16 332 ± 51 291 ± 52 23 ± 2 24 ± 3

17 324 ± 59 284 ± 32 22 ± 2 21 ± 1

18 326 ± 66 307 ± 47 21 ± 1 21 ± 1

19 319 ± 55 287 ± 29 21 ± 1 21 ± 1

20 319 ± 68 305 ± 43 21 ± 1 21 ± 1

Average test sequence lengths
of the test sequences

� Test goal: all transitions

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
horizon

st
ep

s

Planning with horizon + anti-ant

Planning with horizon + random choice

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 1718 19 20

horizon

st
ep

s

Planning with horizon + anti-ant

Planning with horizon + random choice

� Test goal: single transition

Average time spent for online
planning of the next step

Doctoral course ’Advanced topics in
Embedded Systems’. Lyngby'09

13

14

15

16

17

18

19

20

21

22

23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

horizon

m
se

c

All transitions

Single transition

How to derive data constraints?

� For all transitions t(si,.) of state si generate reduced
reachability tree RRTi s.t.

� transition t(si,.) is a root and the trap labeled transitions the
terminal nodes of the RRTi .

� Compute data constraint for each path πj of RRTi
� use wp-algorithm (starting from trap node) for pairs of neigbbour
traps of πj

� unfold loops using gfp for termination

� for constructing the gain function of πj record (when traversing πj):
� traps remaining on the path πj and
� The lengths of inter-trap paths

� construct the gain function for full path πj using trap-to-trap
distances on that path and the vector of trap variables.

� Global data constraint for the path is a conjunction of data
constraints pairwise traps of πj

Online computation of data

constraints

1: for paths πj ∈Π(si) departing from si
evaluate the gain vector Γ

2: IF ∃πj ∈Π(si).unchecked(πj) THEN choose
the path with highest gain ELSE STOP

3: Solve the data constraint C(πj) for πj
4: If [|C(πj)|] = ∅ THEN
unchecked(πj)=true; GOTO 2

ELSE

execute ti , t
1
i ∈ πj

Summary

� RP always drives the execution towards still
unsatisfied subgoals.

� Efficiency of planning:
� Number of rules that have to be evaluated at each step is
relatively small (i.e., = the number of outgoing transitions
of current state)

� The execution of decision rules is significantly faster than
looking through all potential alternatives at runtime.

� Provides test sequences that are lengthwise close to
optimal.

Questions?

Thank You!

