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Syllabus
� Monday morning: (9:00 – 13.30)

� 9:00 – 10:30 Intro: Model-Based Development and Validation of 
Multirobot Cooperative System (MCS)

� 10:30 – 12:00 MCS model construction and learning
� 12:00 – 13:30 Model-based testing with reactive planning testers

� Tuesday morning:  (9:00 – 12.30)
� 9:00 – 10:30 Model checking Multirobot Cooperative Systems
� 10:30 – 12:00 Hands-on: Distributed intruder capture protocol
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Lecture #L2 : Model construction & learning
Motivation

� Model construction is one of the bottlenecks in MBD
� is time consuming
� needs understanding of the system modelled
� needs understanding why it is modelled
� needs understanding how has to be modelled

� Choose the right modelling formalism that:
� is intuitive
� has right modelling power
� has efficient decision procedures
� has good tool support

� UPTA
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Model construction techniques

� Model extraction from program code 

� Text analysis (used in some UML tools)

� Pattern-based model construction

� Model learning
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Terminology of machine learning

� Passive vs active 

� Supervised vs unsupervised

� Reinforcement learning (reward guided)

� Computational structures used:

� FSA

� Hidden Markov Model

� Kohonen Map

� NN

� Timed Automata

� etc
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Learning XTA (lecture plan)

� Problem context

� Assumptions: 

� I/O observability

� Fully observable (output determinism)

� Generally non-deterministic models

� The learning algorithm

� Evaluating the quality of learning
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Scrub Nurse Robot (SNR): Motion analysis

Camera2

Marker

Photos from CEO on HAM, Tokyo Denki University

Demo
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3rd generation Scrub Nurse 

Robot “Michael”
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Motion recognition using statistical 

models

- working->extracting,   - extracting->passing,   - passing->waiting,    -
waiting->receiving,    - receiving->inserting,    - inserting->working
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High-level behavior learning of SNR
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(Timed) automata learning algorithm

� Input:
� Definition of actors’ Observable inputs/outputs X

obs

� Rescaling operator  R: X
Obs

→ X
XTA 

� where X
XTA 

is a model state space

� Equivalence relation “~” defining the quotient state 
space X /~

� Time-stamped sequence of observed i/o events (timed 
trace TTr(Obs))

� Output:
� Uppaal timed automaton A s.t. 

TTr(A) ⊇RTIOCO R(TTr(Obs))/~
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� Initialization

L ← {l0} % L – set of locations, l0 – (auxiliary) initial location
T ← ∅ % T – set of transitions
k,k’ ← 0,0 % k,k’–indexes distinguishing transitions between same 

location pairs
h ← l0 % h – history variable storing the id of the motion

currently processed in the TTr FIFO E
h’ ← l0 % h’ – variable storing the id of the motion before previous
hcl ← 0 % hcl – clock reset history
l ← l0 % l – destination location of the current switching event
cl ← 0 % cl – local clock variable of the automaton being learned
g_cl ← ∅ % g_cl - 3D matrix of clock reset intervals
g_x ← ∅ % g_x - 4D matrix of state intervals that define state 

switching conditions
%  E TTr FIFO, consisting of switching triples: 

[target_action_ID, switching time, switching state]

Algorithm 1: model compilation (one learning session)
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Match 
with  
existing 
eq.class

Encode 
new 
motion

Encode 
motion 
previously 
observed

Extend 
existing 
eq.class

Create  
a new 
eq.class

1: while E ≠ ∅ do
2: e ← get(E ) % get the motion switching event record from buffer E
3: h’← h, h ← l
4: l ← e[1], cl ← (e[2] - hcl), X ← e[3]
5: if l ∉ L then % if the motion has never occurred before 
6: L ← L ∪ {l},
7: T ← T ∪ {t(h,l,1)} % add transition to that motion
8: g_cl(h,l,1) ← [cl, cl] % add clock reset point in time
9: for all xi ∈ X do
10: g_x(h,l,1,xi) ← [xi, xi] % add state switching point 
11: end for
12: else % if switching e in existing equivalence class
13: if ∃k∈ [1,|t(h,l,.)|], ∀xi∈ X,: xi ∈ g_x(h,l,k,xi) ∧ cl ∈ g_cl(h,l,k) then 
14: goto 34
15: else % if switching e extends existing equival. class
16: if ∃k∈ [1,|t(h,l,.)|], ∀xi∈ X:  xi ∈ g_x(h,l,k,xi)↨Ri ∧ cl ∈ g_cl(h,l,k)↨Rcl

17: then 
18: if cl < g_cl(h,l,k)- then g_cl(h,l,k) ← [cl, g_cl(h,l,k)+] end if
19:   if cl > g_cl(h,l,k)+ then g_cl(h,l,k) ← [g_cl(h,l,k)-, cl]  end if
20: for all xi ∈ X  do
21: if xi < g_x(h,l,k,xi)- then g_x(h,l,k,xi) ← [xi, g_x(h,l,k,xi)+] end if
22: if xi > g_x(h,l,k,xi)+ then g_x(h,l,k,xi) ← [g_x(h,l,k,xi)-, xi] end if
23: end for
24: else % if switching e exceeds allowed limits of existing eqv. class
25: k ←|t(h,l,.)| +1
26: T ← T ∪ {t(h,l,k)} % add new transition
27: g_cl(h,l,k) ← [cl, cl] % add clock reset point in time
28: for all xi ∈ X do
29: g_x(h,l,k,xi) ← [xi, xi] % add state switching point 
30: end for
31: end if
32: end if
33: a(h’,h,k’) ← a(h’,h,k’) ∪ Xc % add assignment to previous transition
34: end while

Create  
a new 
eq.class
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HRI learning algorithm (3)

35: for all t(li,lj,k) ∈ T do % compile transition guards and updates

36: g(li,lj,k) ← ‘cl ∈ g_cl(li,lj,k) ∧ /\s ∈[1,|X|] xi ∈ g_x(li, lj, k, xs)’

37: a(li,lj,k) ← ‘Xc ← random(a(li,lj,k)), cl ← 0’ % assign random value in a

38: end for

39: for all li ∈ L do

40: inv(li) ← ‘/\k g(tki) /\ ¬ \/j g(tij)’ % compile location invariants 

41: end for

Interval extension operator:
[.,.]↨R : [x-, x+]↨R = [x- - δ, x+ + δ], where δ = R - (x+- x-)

Finalize 
TA 
syntax 
formattin
g
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� Given

� Observation sequence  
E =

� System configuration

� Rescaling operator with 
region [0,30] for all xi

� Granularity of the 
quotient space X /~:   2 

Learning example (1)

nY

sY

nXsX

NurseSurgeon
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Learning example (2)

||
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Does XTA exhibit the same behavior as the 

traces observed?

� Question 1: How to choose the equivalence 
relation “~” to define a feasible quotient 
space?

� Question 2: How to choose the equivalence 
relation to compare traces TTr(XTA) and 
TTr(Obs)?

TTr(XTA) = R (TTr(Obs)) /~ ?
↓↓↓↓

TTr(XTA) ⊇RTIOCO R(TTr(Obs)) /~
21
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How to choose the equivalence relation 

“~” do define a feasible quotient space?

� State space granularity parameter γi defines the 
maximum length of an interval [x-i,x

+
i), of 

equivalent (regarding ~) values of xi where x
-
i,x

+
i

∈ Xi for all Xi (i = [1,n]).

� Partitioning of dom Xi (i = [1,n]) to intervals (see 
line 16 of the algorithm) is implemented using 
interval expansion operator [.,.]↨R :

Interval extension operator:
[.,.]↨R: [x-, x+]↨R = [x--δ, x++δ], where δ=R-(x+-x-)
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On Question 2:

� Possible candidates:

� Equivalence of languages?

� Simulation relation?

� Conformace relation?

� ...?
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Conclusions

� Proposed UPTA learning method makes the on-
line synthesis of model-based planning
controllers for HA robots feasible. 

� Other practical aspects:

o learning must be incremental, i.e., knowledge about the 
previous observations can be re-used; 

o UPTA models can be verified - functional correctness and 
performance can be verified on the model before used 
e.g., for planner synthesis;

o adjustable level of abstraction of the generated model to 
keep the analysis tractable.
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