Model-Based Development and Validation of Multirobot Cooperative System

Jüri Vain

Dept. of Computer Science

Tallinn University of Technology

Goals of the course

- To give a "work in progress" style intro to the field of collaborative robotics.
- To attract interest to some fast evolving and rich problem domains inspired by nature,e.g.
 - "swarm intelligence"
 - "human adaptive robotics".
- Real life examples on how to apply FMs to handle problems of collaborative robotics.

Structure

Modules:

- introduction
- theoretical background,
- applications
- hands-on exercises

Syllabus

Monday morning: (9:00 - 13.30)

- 9:00 10:30 Intro: Model-Based Development and Validation of Multirobot Cooperative System (MCS)
- 10:30 12:00 MCS model construction and learning
- 12:00 13:30 Model-based testing with reactive planning testers

■ Tuesday morning: (9:00 – 12.30)

- 9:00 10:30 Model checking Multirobot Cooperative Systems
- 10:30 12:00 Hands-on: Distributed intruder capture protocol

Lecture #L1 : Introduction Lecture Plan

- From single robot to multi-robot systems (MCS)
 - Single-robot systems
 - Examples
 - Advantages/Disadvantages
 - Multi-robot systems and swarms
 - Lessons from nature
 - What makes the MRS special?
 - How can a swarm function: 3-tier architecture
 - Formal Methods for Multi-robot Cooperative System
 - Why formal methods?
 - Problems and methods

From single-robot to multi-robot systems

□ Single super-robots:

Autonomous space explorers:

NASA's Mars Exploration Rover

Humanoids:

Asimo (Honda),

Tara

Manufacturing/service robot

complexes

Doctoral course 'Advanced topics in Embedded Systems'. Lyngby'10

Traditional single-robot systems

Advantages:

- Able to mimic human/pets' behaviour, e.g., home assitant Tara, cyberdog Aibo,
- Capable of operating autonomously for long time (Mars Rover)
- High performance in well-defined tasks,.e.g car composing

Disadvantages:

- Advanced robots are very! expensive
- Inefficient in teamwork and spatially distributed activities
 □ A group of super-robots ≠ supergroup
- HW/SW failures whole mission can fail if the robot fails

Multi-robot systems: swarms Learning from nature

Simple organisms like ants and termites are able to conduct amazingly complex cooperative tasks: carring loads, building bridges, nests etc.

Swarm intelligence (SI)

- SI systems are typically made up of a population of <u>simple agents</u> who
 - interact
 - directly local pairwise interaction
 - indirectly through environment (stigmery).
 - act
 - following very simple common rules
 - without centralized control that tells how individual agents should behave.
- That results in a complex global behavior, COLLECTIVE EMERGENT BEHAVIOR

Examples of swarm intelligence

- ant colonies,
- bird flocking,
- animal herding,
- bacterial growth,
- fish schooling
- etc

Trail Laying/Following

Ant Bridges

Examples of swarm intelligence: Bird Flocking

Energy saving V-Formations:

- Geese flying in Vs can extend their range by over 70%
- Each bird rides on the vortex cast off by the wing-tip of the one in front

Corpse Aggregation in the Ant Messor Sancta

Reduction of the spread of infection? Chretien (1996)

Examples of swarm intelligence: Fish Schooling

Dealing with predators. Ex.:

- Reactivity (flash expansion, fountain effect)
- Schooling may confuse the predator

Examples of swarm intelligence: Collective Hunting Strategies

Benefits of Collective Hunting

- Maximizing prey localization
- Minimizing prey catching effort

What makes a swarm/collective intelligent?

Coordination

- distributed control
- individual autonomy (within the limits of global rules)
- (bounded) self-organization

Communication

- direct (peer-to-peer) local communication
- indirect communication through signs in the environment (stigmergy)

Robustness

- individual simplicity
- redundancy multiple agents with same functionality
- balance exploitation/exploration

How does it work?

- Collective intelligence appears in
 - consensus-based decision making,
 - i.e., respecting a set of uniform behavioral rules

e.g., traffic rules.

- +Meta-rules the rules about how
 - the new rules are created
 - and obsolete ones discarded

Why does it work? Stigmeric Communication

Since the rules are dynamic and/or location specific a feasible way keeping and communicating the rules is to use the *environment as media*.

Example: Solving routing problem

Ants world: Formation of the ants' trail

Robots' world: Virtual Pheromones on smart dust

Back to (swarm) basics

- Swarms are made up of a population of <u>agents</u>
- Agents follow <u>simple rules</u>
- The rules must be coherent with some <u>common</u> goal
- No centralized control telling how individual agents should behave,
- Local interactions between agents lead to the *global emergent behavior*.

ROBOSWARM ground concepts (1): agent-service view

Swarm system= robots+knowledge infrastructure

- Swarm system is a <u>distributed agent system</u> where agents populating both robots and their environment act & interact based on uniform principles encoded in rules;
- The agents learn, adapt and organise by changing their sets of rules.
- Functionalities of agents are organised externally as <u>services</u> the agents can expose/invoke;
- Unifying paradigm for addressing swarm system functionality is a <u>Service Based Architecture.</u>

ROBOSWARM ground concepts (2): computational view

- Agents live in the ambient computing environment:
 - <u>Memory everywhere</u> real and computational objects have images in spatially distributed memory space (rfid tags, on-board DB, web,...)
 - Memory and computation units (CUs) may be <u>mobile</u> and <u>temporarily not co-located</u>
 - Only those <u>agents</u> being <u>in accessible</u> to CUs <u>memory</u> <u>space get activated</u>.
 - Service orchestration techniques provide the unified organizing principle of computation
- ⇒ ROBOTIC CLOUD COMPUTING

Web service orchestration (J.Reynolds)

Service Orchestration-

the way in which separate Web Services can be brought together in a consistent manner to provide a higher value service. Orchestration includes the management of the transactions between the individual services, including any necessary error handling, as well as describing the overall process.

Orchestration == Executable Process

relates to the execution of specific business processes and languages for defining processes that can be executed on an orchestration engine.

Choreography == Multi-party Collaboration

 relates to describing externally observable interactions between web services.

ROBOSWARM 3-tier swarm control architecture

- "Big Brother" strategy planner prepares the swarm mission:
 - analyzes the goals given by human(s)
 - generates ext./int. service requests
 - synthesizes behavioural constraints and rules
 - communicates the rules to T2 and T3 robots
- "Scouts" mission preparation and maintanance team on spot:
 - area exploration, semantic mapping
 - deploying RFID tags (create mission infrastructure)
 - write the mission context on tags (create context awareness)
 - "Swarm of Workers" mission performers
 - accomplish main workoperations
 - coordinate tasks locally (e.g., using auxion)
 - propagate mission relevant knowledge

ROBOSWARM Worker: iRobot Create (extended)

ROBOSWARM: RFID-based smart environment for exploration and cleaning

The tags deployed in the environment by Scouts explore and deploy a graph

hotspot

"Smart" environment on RFID tags

- Nearby Nodes
 - Relative nodes positions
- Information about current exploration process
 - Best node to visit in order to continue exploration process
- Environment information

Information about the cleaning process

- Time of last cleaning operation
- Best algorithm to clean the area (Corridor, Room, Corner etc.)

Demo

..\Juhendamine\Jaagup
Irve\ExampleCostAwareLarge.mov

11

13

16

Node ID

Area Type
2 #Corridor#
Nearby Nodes:

9/4

RFID information: Time of last visit:

Cleaning status: #not cleaned#

ID / Passages

Multirobot Cooperative Systems (Part II): Human assisting robots: Scrub Nurse Robot (SNR)

□ analysis 1 2.wmv

SNR Demo

- ASULA handing2-1.wmv
- SNR Assisted Surgery
- Model-based control of SNR
- ..\Juhendamine\Jaagup Irve\ExampleCostAwareLarge.mov
- □ D-MINT Project.htm

SNR Control Architecture

Conclusions (1)

- Present state-of-the-art in cooperative robotics:
 - Resesarch still largely in conceptualization phase
 - No "strong" theory of swarms or cooperative robotics
 - No swarm system design discipline yet "invent & verify" → "stepwise refinement"????
 - Large part of research on multi-agent systems is reusable

Conclusions (2)

- Critical tasks in MRS are model-based control and planning, including:
 - automated model construction and learning
 - efficient model-based decision algorithms for planning and coordination
 - combining semi-formal heuristic planning/optimization methods with FM-s

Aspects covered in the course

- Timed automata, model learning
- Techniques of model checking MRS
- On-line testing with reactive planning (handling non-stationary MRS-s)

Questions?