Computation Tree Logic (CTL) &
Basic Model Checking Algorithms

Martin Fränzle

Carl von Ossietzky Universität
Dpt. of Computing Science
Res. Grp. Hybride Systeme
Oldenburg, Germany
What you’ll learn

1. **Rationale behind declarative specifications:**
 - Why operational style is insufficient

2. **Computation Tree Logic CTL:**
 - Syntax
 - Semantics: Kripke models

3. **Explicit-state model checking of CTL:**
 - Recursive coloring
Operational models

Nowadays, a lot of ES design is based on executable behavioral models of the system under design, e.g. using

- Statecharts (a syntactically sugared variant of Moore automata)
- VHDL.

Such operational models are good at

- supporting system analysis
 - simulation / virtual prototyping
- supporting incremental design
 - executable models
- supporting system deployment
 - executable model as “golden device”
 - code generation for rapid prototyping or final product
 - hardware synthesis
...are bad at

- supporting non-operational descriptions:
 - *What* instead of *how*.
 - E.g.: Every request is eventually answered.

- supporting negative requirements:
 - “Thou shalt not...”
 - E.g.: The train ought not move, unless it is manned.

- providing a structural match for requirement *lists*:
 - System has to satisfy R_1 *and* R_2 *and* ...
 - If system fails to satisfy R_1 then R_2 should be satisfied.
Multiple viewpoints

Requirements analysis

Aspects
"What?"

Tests & proofs
"Consistent?"

Validation / verification

Programming

Algorithmics
"How?"
Model checking

Device specification

Device Descript.

architecture behaviour of processor is

process fetch
if halt=0 then
 if mem_wait=0 then
 nextins <= dport
 ...

Specification

\(\models (\pi \iff \phi) \)

Model Checker

Approval/Counterexample
Exhaustive state-space search

Automatic verification/falsification of invariants
Safety requirement: Gate has to be closed whenever a train is in “In”.
The gate model

Open

~enter?

enter?

Opening

Closing

~leave?

leave?

Closed

Track model

— safe abstraction —

Empty

Appr.

In

enter!

leave!
Gate reaction: Open, Closing, Closed, Opening, Open, Open.
Computation Tree Logic
Syntax of CTL

We start from a countable set \mathcal{AP} of atomic propositions. The CTL formulae are then defined inductively:

- Any proposition $p \in \mathcal{AP}$ is a CTL formula.
- The symbols \bot and \top are CTL formulae.
- If ϕ and ψ are CTL formulae, so are

 \begin{align*}
 &\neg \phi, \phi \land \psi, \phi \lor \psi, \phi \rightarrow \psi \\
 &\text{EX } \phi, \text{AX } \phi \\
 &\text{EF } \phi, \text{AF } \phi \\
 &\text{EG } \phi, \text{AG } \phi \\
 &\phi \text{ EU } \psi, \phi \text{ AU } \psi
 \end{align*}
Semantics (informal)

- \(E \) and \(A \) are **path quantifiers**:
 - \(A \): for **all paths** in the computation tree . . .
 - \(E \): for **some path** in the computation tree . . .

- \(X, F, G \) and \(U \) are **temporal operators** which refer to the path under investigation, as known from LTL:
 - \(X\phi \) (**Next**): evaluate \(\phi \) in the next state on the path
 - \(F\phi \) (**Finally**): \(\phi \) holds for some state on the path
 - \(G\phi \) (**Globally**): \(\phi \) holds for all states on the path
 - \(\phi U \psi \) (**Until**): \(\phi \) holds on the path at least until \(\psi \) holds

N.B. Path quantifiers and temporal operators are compound in CTL: there never is an isolated path quantifier or an isolated temporal operator. There is a lot of things you can’t express in CTL because of this...
CTL formulae are interpreted over Kripke structures. A **Kripke structure** K is a quadruple $K = (V, E, L, I)$ with

- V a set of vertices (interpreted as system states),
- $E \subseteq V \times V$ a set of edges (interpreted as possible transitions),
- $L \subseteq V \rightarrow \mathcal{P}(AP)$ labels the vertices with atomic propositions that apply in the individual vertices,
- $I \subseteq V$ is a set of initial states.
A path π in a Kripke structure $K = (V, E, L, I)$ is an edge-consistent infinite sequence of vertices:

- $\pi \in V^\omega$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in \mathbb{N}$.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

$$tr_{\pi} = L(\pi) \overset{\text{def}}{=} \langle L(\pi_0), L(\pi_1), L(\pi_2), \ldots \rangle$$

that path formulae ($X\phi$, $F\phi$, $G\phi$, $\phi U \psi$) can be interpreted on.
Semantics (formal)

Let $K = (V, E, L, I)$ be a Kripke structure and $v \in V$ a vertex of K.

- $v, K \models \top$
- $v, K \not\models \bot$
- $v, K \models p$ for $p \in AP$ iff $p \in L(v)$
- $v, K \models \neg \phi$ iff $v, K \not\models \phi$,
- $v, K \models \phi \land \psi$ iff $v, K \models \phi$ and $v, K \models \psi$,
- $v, K \models \phi \lor \psi$ iff $v, K \models \phi$ or $v, K \models \psi$,
- $v, K \models \phi \Rightarrow \psi$ iff $v, K \not\models \phi$ or $v, K \models \psi$.
Semantics (contd.)

- $v, K \models \text{EX } \phi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_2, K \models \phi$,
- $v, K \models \text{AX } \phi$ iff all paths π in K with $v = \pi_1$ satisfy $\pi_2, K \models \phi$,
- $v, K \models \text{EF } \phi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_i, K \models \phi$ for some i,
- $v, K \models \text{AF } \phi$ iff all paths π in K with $v = \pi_1$ satisfy $\pi_i, K \models \phi$ for some i (that may depend on the path),
- $v, K \models \text{EG } \phi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_i, K \models \phi$ for all i,
- $v, K \models \text{AG } \phi$ iff all paths π in K with $v = \pi_1$ satisfy $\pi_i, K \models \phi$ for all i,
- $v, K \models \phi \text{ EU } \psi$, iff there is a path π in K s.t. $v = \pi_1$ and some $k \in \mathbb{N}$ s.t. $\pi_i, K \models \phi$ for each $i < k$ and $\pi_k, K \models \psi$,
- $v, K \models \phi \text{ AU } \psi$, iff all paths π in K with $v = \pi_1$ have some $k \in \mathbb{N}$ s.t. $\pi_i, K \models \phi$ for each $i < k$ and $\pi_k, K \models \psi$.

A Kripke structure $K = (V, E, L, I)$ satisfies ϕ iff all its initial states satisfy ϕ,

i.e. iff $is, K \models \phi$ for all $is \in I$.
CTL Model Checking

Explicit-state algorithm
Rationale

We will extend the idea of verification/falsification by exhaustive state-space exploration to full CTL.

- Main technique will again be breadth-first search, i.e. graph coloring.
- Need to extend this to other modalities than AG.
- Need to deal with nested modalities.
Model-checking CTL: General layout

Given: a Kripke structure $K = (V, E, L, I)$ and a CTL formula ϕ

Core algorithm: find the set $V_\phi \subseteq V$ of vertices in K satisfying ϕ by

1. for each atomic subformula p of ϕ, mark the set $V_p \subseteq V$ of vertices in K satisfying ϕ
2. for increasingly larger subformulae ψ of ϕ, synthesize the marking $V_\psi \subseteq V$ of nodes satisfying ψ from the markings for ψ’s immediate subformulae until all subformulae of ϕ have been processed (including ϕ itself)

Result: report “$K \models \phi$” iff $V_\phi \supseteq I$
Reduction

The tautologies

\[
\begin{align*}
\phi \lor \psi & \iff \neg (\neg \phi \land \neg \psi) \\
AX \phi & \iff \neg EX \neg \phi \\
AG \phi & \iff \neg EF \neg \phi \\
EF \phi & \iff T \ EU \phi \\
EG \phi & \iff \neg AF \neg \phi \\
\phi \ AU \psi & \iff \neg ((\neg \psi) \ EU \neg (\phi \lor \psi)) \land AF \psi
\end{align*}
\]

indicate that we can rewrite each formula to one only containing atomic propositions, \(\neg, \land, EX, EU, AF\).

After preprocessing, our algorithm need only tackle these!
Given: A finite Kripke structure with vertices V and edges E and a labelling function L assigning atomic propositions to vertices. Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: $O(|V|)$
Model-checking CTL: $\neg \phi$

Given: A set V_ϕ of vertices satisfying formula ϕ.

Algorithm: Mark all vertices not belonging to V_ϕ.

Complexity: $O(|V|)$
Model-checking CTL: $\phi \land \psi$

Given: Sets V_ϕ and V_ψ of vertices satisfying formulae ϕ or ψ, resp.

Algorithm: Mark all vertices belonging to $V_\phi \cap V_\psi$.

Complexity: $O(|V|)$
Given: Set V_ϕ of vertices satisfying formulae ϕ.

Algorithm: Mark all vertices that have a successor state in V_ϕ.

Complexity: $O(|V| + |E|)$
Model-checking CTL: $\phi \text{EU} \psi$

Given: Sets V_ϕ and V_ψ of vertices satisfying formulae ϕ or ψ, resp.

Algorithm: Incremental marking by

1. Mark all vertices belonging to V_ψ.
2. Repeat
 - if there is a state in V_ϕ that has some successor state marked then mark it also
 until no new state is found.

Termination: Guaranteed due to finiteness of $V_\phi \subset V$.

Complexity: $O(|V| + |E|)$ if breadth-first search is used.
Given: Set V_{ϕ} of vertices satisfying formula ϕ.

Algorithm: Incremental marking by

1. Mark all vertices belonging to V_{ϕ}.
2. Repeat
 if there is a state in V that has all successor states marked then mark it also until no new state is found.

Termination: Guaranteed due to finiteness of V.

Complexity: $O(|V| \cdot (|V| + |E|))$.
Model-checking CTL: $\text{EG} \phi$, for efficiency

Given: Set V_ϕ of vertices satisfying formula ϕ.

Algorithm: Incremental marking by

1. Strip Kripke structure to V_ϕ-states:
 $$(V, E) \leadsto (V_\phi, E \cap (V_\phi \times V_\phi)).$$
 Complexity: $O(|V| + |E|)$

2. Mark all states belonging to loops in the reduced graph.
 Complexity: $O(|V_\phi| + |E_\phi|)$ by identifying strongly connected components.

3. Repeat
 if there is a state in V_ϕ that has some successor states marked then mark it also until no new state is found.
 Complexity: $O(|V_\phi| + |E_\phi|)$

Complexity: $O(|V| + |E|)$.
Theorem: It is decidable whether a finite Kripke structure (V, E, L, I) satisfies a CTL formula ϕ.

The complexity of the decision procedure is $O(|\phi| \cdot (|V| + |E|))$, i.e.

- linear in the size of the formula, given a fixed Kripke structure,
- linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in number of parallel components in the system model.
Appendix

Fair Kripke Structures &
Fair CTL Model Checking
A fair Kripke structure is a pair \((K, \mathcal{F}) \), where

- \(K = (V, E, L, I) \) is a Kripke structure
- \(\mathcal{F} \subseteq \mathcal{P}(V) \) is set of vertex sets, called a fairness condition.

A fair path \(\pi \) in a fair Kripke structure \(((V, E, L, I), \mathcal{F}) \) is an edge-consistent infinite sequence of vertices which visits each set \(F \in \mathcal{F} \) infinitely often:

- \(\pi \in V^\omega \),
- \((\pi_i, \pi_{i+1}) \in E \) for each \(i \in \mathbb{N} \),
- \(\forall F \in \mathcal{F}. \exists \infty i \in \mathbb{N}. \pi_i \in F \).

Note the similarity to (generalized) Büchi acceptance!
Fair CTL: Semantics

- \(\nu, K, F \models_F \text{EX } \phi \) iff there is a fair path \(\pi \) in \(K \) s.t. \(\nu = \pi_0 \) and \(\pi_1, K, F \models_F \phi \),
- \(\nu, K, F \models_F \text{AX } \phi \) iff all fair paths \(\pi \) in \(K \) with \(\nu = \pi_0 \) satisfy \(\pi_1, K, F \models_F \phi \),
- \(\nu, K, F \models_F \text{EF } \phi \) iff there is a fair path \(\pi \) in \(K \) s.t. \(\nu = \pi_0 \) and \(\pi_i, K, F \models_F \phi \) for some \(i \),
- \(\nu, K, F \models_F \text{AF } \phi \) iff all fair paths \(\pi \) in \(K \) with \(\nu = \pi_0 \) satisfy \(\pi_i, K, F \models_F \phi \) for some \(i \) (that may depend on the fair path),
- \(\nu, K, F \models_F \text{EG } \phi \) iff there is a fair path \(\pi \) in \(K \) s.t. \(\nu = \pi_0 \) and \(\pi_i, K, F \models_F \phi \) for all \(i \),
- \(\nu, K, F \models_F \text{AG } \phi \) iff all fair paths \(\pi \) in \(K \) with \(\nu = \pi_0 \) satisfy \(\pi_i, K, F \models_F \phi \) for all \(i \),
- \(\nu, K, F \models_F \phi \text{ EU } \psi \), iff there is a fair path \(\pi \) in \(K \) s.t. \(\nu = \pi_0 \) and some \(k \in \mathbb{N} \) s.t. \(\pi_i, K, F \models_F \phi \) for each \(i < k \) and \(\pi_k, K, F \models_F \psi \),
- \(\nu, K, F \models_F \phi \text{ AU } \psi \), iff all fair paths \(\pi \) in \(K \) with \(\nu = \pi_0 \) have some \(k \in \mathbb{N} \) s.t. \(\pi_i, K, F \models_F \phi \) for each \(i < k \) and \(\pi_k, K, F \models_F \psi \).

A fair Kripke structure \(((V, E, L, I), F) \) satisfies \(\phi \), denoted \(((V, E, L, I), F) \models_F \phi \), iff all its initial states satisfy \(\phi \), i.e. iff \(\nu \in I, K, F \models_F \phi \) for all \(\nu \in I \).
Lemma: Given a fair Kripke structure \(((V, E, L, I), \mathcal{F})\), the set \(\text{Fair} \subseteq V\) of states from which a fair path originates can be determined algorithmically.

Alg.: This is a problem of finding adequate SCCs:

1. Find all SCCs in \(K\).
2. Select those SCCs that do contain at least one state from each fairness set \(F \in \mathcal{F}\).
3. Find all states from which at least one of the selected SCCs is reachable.
Model-checking fair CTL: $\text{EX} \, \phi$

Given: Set V_ϕ of vertices fairly satisfying formulae ϕ.

Algorithm: Mark all vertices that have a successor state in $V_\phi \cap \text{Fair}$.

Note that the intersection with Fair is necessary even though the states in V_ϕ fairly satisfy ϕ:

- ϕ may be an atomic proposition, in which case fairness is irrelevant;
- ϕ may start with an \exists path quantifier that is trivially satisfied by non-existence of a fair path.
Model-checking fair CTL: $\phi E U \psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices fairly satisfying formulae ϕ or ψ, resp.

Algorithm: Incremental marking by

1. Mark all vertices belonging to $V_{\psi} \cap Fair$.
2. Repeat

 if there is a state in V_{ϕ} that has some successor state marked then mark it also

 until no new state is found.
Model-checking fair CTL: \texttt{EG} \phi

Given: Set \(V_\phi \) of vertices fairly satisfying formula \(\phi \).

Algorithm: Incremental marking by

1. Strip Kripke structure to \(V_\phi \)-states:
 \((V, E) \rightsquigarrow (V_\phi, E \cap (V_\phi \times V_\phi))\).

2. Mark all states that can reach a *fair* SCC in the *reduced* graph.
 (Same algorithm as for finding the set \textit{Fair}, yet applied to the reduced graph.)