02917 Advanced Topics in Embedded Systems

Brief Introduction to Duration Calculus

Michael R. Hansen

DTU Informatics Department of Informatics and Mathematical Modelling

A motivating example wireless sensor networks

- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 with pop-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 with non-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 with non-elementary complexit
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

- A motivating example wireless sensor networks
- Brief introduction to Duration Calculus
- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking for Duration Calculus based on approximations
- A decision procedure for Presburger Arithmetic

Nodes with solar panels

A node of a wireless sensor network has a solar panel:

DTU

☱

Energy consumption depends on usage

A node has a platform consisting of several components:

DTU

=

A wireless sensor network can be modelled by parallel automata:

- WSN = $\|_{i=1}^{n}$ (Node_i $\|$ Environment_i)
- Node_i = SolarPanel_i \parallel Application_i
- Environment_i = Sun_i
- Application_{*i*} = $\|_{j=1}^{m_i} \operatorname{Program}_j \| \operatorname{Platform}_i$
- Platform_i = Processor_i \parallel Sensor_i \parallel Memory_i \parallel Radio_i

Requirements can be modelled by Duration Calculus

There should be sufficient energy during the lifetime:

$$\Box_{p} (\ell \leq K \Rightarrow E_{0} + \underbrace{\sum_{i} c_{i} \int sun_{i}}_{\text{stored energy}} - \underbrace{\sum_{j} k_{j} \int program_{j}}_{\text{consumed energy}} > 0)$$

- Succinct formulation
- Tool support

Requirements can be modelled by Duration Calculus

There should be sufficient energy during the lifetime:

$$\Box_{\rho} (\ell \leq K \Rightarrow E_{0} + \underbrace{\sum_{i} c_{i} \int sun_{i}}_{\text{stored energy}} - \underbrace{\sum_{j} k_{j} \int program_{j}}_{\text{consumed energy}} > 0)$$

- Succinct formulation
- Tool support

Requirements can be modelled by Duration Calculus

There should be sufficient energy during the lifetime:

$$\Box_{\rho} (\ell \leq K \Rightarrow E_0 + \underbrace{\sum_i c_i \int sun_i}_{stored energy} - \underbrace{\sum_j k_j \int program_j}_{consumed energy} > 0)$$

- Succinct formulation ⁽²⁾
- Tool support

Requirements can be modelled by Duration Calculus

There should be sufficient energy during the lifetime:

$$\Box_{\rho} (\ell \leq K \Rightarrow E_0 + \underbrace{\sum_i c_i \int sun_i}_{stored energy} - \underbrace{\sum_j k_j \int program_j}_{consumed energy} > 0)$$

- Succinct formulation ⁽²⁾
- Tool support 😕

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
- Sørensen Ravn Rischel

• Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

Duration of states
 Duration Calculus
 — an Interval Temporal Logic

Zhou Hoare Ravn 91 Ialpern Moszkowski Manna

- Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104) Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel

- Intervals properties Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...
- Duration of states

- Logical Calculi, Applications, Mechanical Support
- •

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel
 - Intervals properties
 Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit
 Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel,
 Lichtenstein, Pnueli, ...
 - Duration of states
 Duration Calculus
 an Interval Temporal Logic

Zhou Hoare Ravn 91 Halpern Moszkowski Manna

- Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel
 - Intervals properties Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...
 - Duration of states
 Duration Calculus
 - an Interval Temporal Logic

Zhou Hoare Ravn 91 Halpern Moszkowski Manna

- · Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel
 - Intervals properties Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...
 - Duration of states
 Duration Calculus
 an Interval Temporal Logic

Zhou Hoare Ravn 91 Halpern Moszkowski Manna

- Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104) Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel
 - Intervals properties Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...
 - Duration of states
 Duration Calculus
 an Interval Temporal Logic

Zhou Hoare Ravn 91 Halpern Moszkowski Manna

- · Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

A ProCoS Case Study: Gas Burner System

State variables modelling Gas and Flame:

 $G,F:\mathbb{T}ime \to \{0,1\}$

State expression modelling that gas is Leaking

 $L \mathrel{\widehat{=}} G \land \neg F$

Requirement

• Gas must at most be leaking 1/20 of the elapsed time

 $(e-b) \ge 60 \,\mathrm{s} \ \Rightarrow \ 20 \int_b^e \mathrm{L}(t) dt \le (e-b)$

A ProCoS Case Study: Gas Burner System

State variables modelling Gas and Flame:

 $G, F : \mathbb{T}ime \rightarrow \{0, 1\}$

State expression modelling that gas is Leaking

 $L \mathrel{\widehat{=}} G \land \neg F$

Requirement

• Gas must at most be leaking 1/20 of the elapsed time

$$(e-b) \ge 60 \,\mathrm{s} \ \Rightarrow \ 20 \int_b^e \mathrm{L}(t) dt \le (e-b)$$

A ProCoS Case Study: Gas Burner System

State variables modelling Gas and Flame:

```
G, F : \mathbb{T}ime \rightarrow \{0, 1\}
```

State expression modelling that gas is Leaking

 $L \mathrel{\widehat{=}} G \land \neg F$

Requirement

· Gas must at most be leaking 1/20 of the elapsed time

$$(e-b) \ge 60 \,\mathrm{s} \ \Rightarrow \ 20 \int_{b}^{e} \mathrm{L}(t) dt \le (e-b)$$

Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \leq c < d \leq e.(L[c, d] \Rightarrow (d - c) \leq 1 s)$$

where

$$P[c,d] \stackrel{c}{=} \int_c^d P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

• At least 30s between leaks:

$$(c, d, r, s : b \le c < r < s < d \le e.$$

 $(L[c, r] \land \neg L[r, s] \land L[s, d]) \Rightarrow (s - r) \ge 30 s$

Proof obligation: Conjunction of design decisions implies the requirements. Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \leq c < d \leq e.(L[c, d] \Rightarrow (d - c) \leq 1 s)$$

where

$$P[c,d] \stackrel{c}{=} \int_c^d P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

• At least 30s between leaks:

$$\begin{aligned} \forall c, d, r, s : b \leq c < r < s < d \leq e. \\ (L[c, r] \land \neg L[r, s] \land L[s, d]) \Rightarrow (s - r) \geq 30 s \end{aligned}$$

Proof obligation: Conjunction of design decisions implies the requirements. Gas Burner example: Design decisions

• Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \leq c < d \leq e.(L[c, d] \Rightarrow (d - c) \leq 1 s)$$

where

$$P[c,d] \stackrel{c}{=} \int_c^d P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

• At least 30s between leaks:

$$orall c, d, r, s : b \leq c < r < s < d \leq e. \ (L[c, r] \land \neg L[r, s] \land L[s, d]) \Rightarrow (s - r) \geq 30 \, \mathrm{s}$$

Proof obligation: Conjunction of design decisions implies the requirements.

Terms: $\theta ::= \mathbf{x} | \mathbf{v} | \theta_1 + \theta_n | \dots$ Temporal Variable $\mathbf{v} : \operatorname{Intv} \to \mathbb{R}$ Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists \mathbf{x}) \phi | \dots$ chop $\phi : \operatorname{Intv} \to \{\operatorname{tt}, \operatorname{ff}\}$

Chop:

In DC: Intv $= \{ [a, b] \mid a, b \in \mathbb{R} \land a \leq b \}$

Terms: $\theta ::= \mathbf{x} | \mathbf{v} | \theta_1 + \theta_n | \dots$ Temporal Variable $\mathbf{v} : \operatorname{Intv} \to \mathbb{R}$ Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists \mathbf{x}) \phi | \dots$ chop $\phi : \operatorname{Intv} \to \{\operatorname{tt}, \operatorname{ff}\}$

Chop:

In DC: Intv = { $[a, b] \mid a, b \in \mathbb{R} \land a \le b$ }

Terms: $\theta ::= \mathbf{x} | \mathbf{v} | \theta_1 + \theta_n | \dots$ $\mathbf{v} : \text{Intv} \to \mathbb{R}$ Formulas: $\phi ::= \theta_1 = \theta_n | \neg \phi | \phi \lor \psi | \phi \frown \psi | (\exists \mathbf{x}) \phi | \dots$ chop $\phi : \text{Intv} \to \{\text{tt,ff}\}$

Chop:

In DC: Intv = { $[a, b] \mid a, b \in \mathbb{R} \land a \le b$ }

Duration Calculus - Zhou Hoare Ravn 91

Extends Interval Temporal Logic as follows:

• State variables P: Time $\rightarrow \{0, 1\}$

Finite Variability

• State expressions $S ::= 0 | 1 | P | \neg S | S_1 \lor S_2$

 $S : \mathbb{T}ime \rightarrow \{0, 1\}$

pointwise defined

• Durations $\int S : Intv \to \mathbb{R}$ defined on [b, e] by

 $\int_{b}^{e} S(t) dt$

- Temporal variables with a structure

Extends Interval Temporal Logic as follows:

- State variables $P : \mathbb{T}ime \rightarrow \{0, 1\}$ Finite Variability
- State expressions $S ::= 0 | 1 | P | \neg S | S_1 \lor S_2$
 - $S:\mathbb{T}\text{ime} \to \{0,1\} \hspace{1cm} \text{pointwise defined}$
- Durations $\int S : Intv \to \mathbb{R}$ defined on [b, e] by

 $\int_{b} S(t) dt$

- Temporal variables with a structure

Extends Interval Temporal Logic as follows:

- State variables $P : \text{Time} \rightarrow \{0, 1\}$ Finite Variability
- State expressions $S ::= 0 | 1 | P | \neg S | S_1 \lor S_2$
 - $S : \mathbb{T}ime \rightarrow \{0, 1\}$

pointwise defined

• Durations $\int S : Intv \to \mathbb{R}$ defined on [b, e] by

 $\int_{b}^{e} S(t) dt$

- Temporal variables with a structure

Example: Gas Burner

Requirement

 $\ell > 60 \Rightarrow 20 \int L < \ell$

Design decisions

$$\begin{array}{rcl} D_1 & \widehat{=} & \Box(\lceil L \rceil \Rightarrow \ell \leq 1) \\ D_2 & \widehat{=} & \Box((\lceil L \rceil \cap \lceil \neg L \rceil \cap \lceil L \rceil) \Rightarrow \ell \geq 30) \end{array}$$

where *l* denotes the *length* of the interval, and

 $\begin{array}{ll} \Diamond \phi & \widehat{=} \text{ true } \frown \phi \frown \text{true} \\ \Box \phi & \widehat{=} \neg \Diamond \neg \phi \\ \llbracket P \rrbracket & \widehat{=} \int P = \ell \land \ell > 0 \end{array}$

"for some sub-interval: ϕ " "for all sub-intervals: ϕ " "*P* holds throughout a non-point interval"

succinct formulation — no interval endpoints

Example: Gas Burner

Requirement

$$\ell \geq 60 \ \Rightarrow \ 20 {\textstyle \int} L \leq \ell$$

Design decisions

$$\begin{array}{rcl} D_1 & \widehat{=} & \Box(\lceil L \rceil \Rightarrow \ell \leq 1) \\ D_2 & \widehat{=} & \Box((\lceil L \rceil \cap \lceil \neg L \rceil \cap \lceil L \rceil) \Rightarrow \ell \geq 30) \end{array}$$

where ℓ denotes the *length* of the interval, and

$$\begin{array}{ll} & & & & & \\ & & & & \\$$

succinct formulation — no interval endpoints

Example: Gas Burner

Requirement

$$\ell \geq 60 \ \Rightarrow \ 20 {\textstyle \int} L \leq \ell$$

Design decisions

$$\begin{array}{rcl} D_1 & \widehat{=} & \Box(\lceil L \rceil \Rightarrow \ell \leq 1) \\ D_2 & \widehat{=} & \Box((\lceil L \rceil \cap \lceil \neg L \rceil \cap \lceil L \rceil) \Rightarrow \ell \geq 30) \end{array}$$

where ℓ denotes the *length* of the interval, and

$$\begin{array}{ll} & & & & & \\ & & & & \\$$

succinct formulation - no interval endpoints