
02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

02917 Advanced Topics in Embedded Systems
Model Checking for Duration Calculus
using Presburger Arithmetic

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Overview

∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
with addition

∙ Decision procedure for Presburger Arithmetic

2 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Overview

∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
with addition

∙ Decision procedure for Presburger Arithmetic

3 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Overview

∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
with addition

∙ Decision procedure for Presburger Arithmetic

4 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Overview

∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
with addition

∙ Decision procedure for Presburger Arithmetic

5 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Overview

∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
with addition

∙ Decision procedure for Presburger Arithmetic

6 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨ , �⌢

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙ (∃x)�

7 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨ , �⌢

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙ (∃x)�

8 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨ , �⌢

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙ (∃x)�

9 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨ , �⌢

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙ (∃x)�

10 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨ , �⌢

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨ , �⌢

∙ (∃x)�

11 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨) = ℒ(') ∪ ℒ()

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢) = ℒ(')ℒ()

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity

12 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨) = ℒ(') ∪ ℒ()

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢) = ℒ(')ℒ()

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity

13 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨) = ℒ(') ∪ ℒ()

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢) = ℒ(')ℒ()

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity

14 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨) = ℒ(') ∪ ℒ()

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢) = ℒ(')ℒ()

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity

15 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨) = ℒ(') ∪ ℒ()

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢) = ℒ(')ℒ()

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity

16 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Status

∙ A DC fragment based on (propositional logic and chop) with
almost no notion of duration has non-elementary complexity.
No existing tool is used on a daily basis.

∙ Fragments (propositional logic and chop) having simple notions
of duration are undecidable.

So what about tool support?

17 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Status

∙ A DC fragment based on (propositional logic and chop) with
almost no notion of duration has non-elementary complexity.
No existing tool is used on a daily basis.

∙ Fragments (propositional logic and chop) having simple notions
of duration are undecidable.

So what about tool support?

18 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Status

∙ A DC fragment based on (propositional logic and chop) with
almost no notion of duration has non-elementary complexity.
No existing tool is used on a daily basis.

∙ Fragments (propositional logic and chop) having simple notions
of duration are undecidable.

So what about tool support?

19 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

An example

Given Kripke structure K and a (certain kind of) DC formula �.

∙ Does K ∣= � hold? every trace t r satisfies �
non-elementary

Example: A simple Kripke structure K :

¬p
1

p
32 4

¬pp

Problem: K ∣= □(ℓ < 4 ⇒
∫

p < 3)? YES

∙ Example run:

tr = (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (3 :)

satisfies □(ℓ < 4 ⇒
∫

p < 3)

Branching-time approximations for efficient verification
FränzleHansen 08,09

20 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

An example

Given Kripke structure K and a (certain kind of) DC formula �.

∙ Does K ∣= � hold? every trace t r satisfies �
non-elementary

Example: A simple Kripke structure K :

¬p
1

p
32 4

¬pp

Problem: K ∣= □(ℓ < 4 ⇒
∫

p < 3)? YES

∙ Example run:

tr = (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (3 :)

satisfies □(ℓ < 4 ⇒
∫

p < 3)

Branching-time approximations for efficient verification
FränzleHansen 08,09

21 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

An example

Given Kripke structure K and a (certain kind of) DC formula �.

∙ Does K ∣= � hold? every trace t r satisfies �
non-elementary

Example: A simple Kripke structure K :

¬p
1

p
32 4

¬pp

Problem: K ∣= □(ℓ < 4 ⇒
∫

p < 3)? YES

∙ Example run:

tr = (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (3 :)

satisfies □(ℓ < 4 ⇒
∫

p < 3)

Branching-time approximations for efficient verification
FränzleHansen 08,09

22 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

An example

Given Kripke structure K and a (certain kind of) DC formula �.

∙ Does K ∣= � hold? every trace t r satisfies �
non-elementary

Example: A simple Kripke structure K :

¬p
1

p
32 4

¬pp

Problem: K ∣= □(ℓ < 4 ⇒
∫

p < 3)? YES

∙ Example run:

tr = (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (3 :)

satisfies □(ℓ < 4 ⇒
∫

p < 3)

Branching-time approximations for efficient verification
FränzleHansen 08,09

23 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

24 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

25 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

26 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

27 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

28 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

29 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets

30 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Main idea

Given K , � and a vector m = dom m of variables.

We mark situation pairs (i , j), with (,b, lin(m)), b ∈ {true, false},
where is a subformula of �

∙ and lin(m) is a side-condition (Presburger formula) with m as
free variables.

Key properties for marking (, true, lin(m)):

∙

true ∈ K [[]] i j m for any m satisfying lin(m)

There are similar properties for a marking (, false, lin(m))

31 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Main idea

Given K , � and a vector m = dom m of variables.

We mark situation pairs (i , j), with (,b, lin(m)), b ∈ {true, false},
where is a subformula of �

∙ and lin(m) is a side-condition (Presburger formula) with m as
free variables.

Key properties for marking (, true, lin(m)):

∙

true ∈ K [[]] i j m for any m satisfying lin(m)

There are similar properties for a marking (, false, lin(m))

32 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Main idea

Given K , � and a vector m = dom m of variables.

We mark situation pairs (i , j), with (,b, lin(m)), b ∈ {true, false},
where is a subformula of �

∙ and lin(m) is a side-condition (Presburger formula) with m as
free variables.

Key properties for marking (, true, lin(m)):

∙

true ∈ K [[]] i j m for any m satisfying lin(m)

There are similar properties for a marking (, false, lin(m))

33 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Main idea

Given K , � and a vector m = dom m of variables.

We mark situation pairs (i , j), with (,b, lin(m)), b ∈ {true, false},
where is a subformula of �

∙ and lin(m) is a side-condition (Presburger formula) with m as
free variables.

Key properties for marking (, true, lin(m)):

∙

true ∈ K [[]] i j m for any m satisfying lin(m)

There are similar properties for a marking (, false, lin(m))

34 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

A Condition for Consistency

C(K , i0, j0,m) is a system of linear equations:

m-consistency wrt. K , i0 and j0
is equivalent to satisfiability of C(K , i0, j0,m)

Variables:

∙ xi for every i ∈ V ,

∙ xij for every edge (i , j) ∈ E

∙ m[k] for every k ∈ dom m

Main ideas:

∙ The ”inflow” is the same as the ”outflow” for any vertex k .

∙ i0 has an extra inflow of 1 and j0 has an extra outflow of 1.

∙ xk = m[k] for every k ∈ dom m.

For example, for every k ∈ V ∖ {i0, j0}:
Σ(l,k)∈E xlk = xk and xk = Σ(k,l)∈E xkl

35 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

A Condition for Consistency

C(K , i0, j0,m) is a system of linear equations:

m-consistency wrt. K , i0 and j0
is equivalent to satisfiability of C(K , i0, j0,m)

Variables:

∙ xi for every i ∈ V ,

∙ xij for every edge (i , j) ∈ E

∙ m[k] for every k ∈ dom m

Main ideas:

∙ The ”inflow” is the same as the ”outflow” for any vertex k .

∙ i0 has an extra inflow of 1 and j0 has an extra outflow of 1.

∙ xk = m[k] for every k ∈ dom m.

For example, for every k ∈ V ∖ {i0, j0}:
Σ(l,k)∈E xlk = xk and xk = Σ(k,l)∈E xkl

36 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

A Condition for Consistency

C(K , i0, j0,m) is a system of linear equations:

m-consistency wrt. K , i0 and j0
is equivalent to satisfiability of C(K , i0, j0,m)

Variables:

∙ xi for every i ∈ V ,

∙ xij for every edge (i , j) ∈ E

∙ m[k] for every k ∈ dom m

Main ideas:

∙ The ”inflow” is the same as the ”outflow” for any vertex k .

∙ i0 has an extra inflow of 1 and j0 has an extra outflow of 1.

∙ xk = m[k] for every k ∈ dom m.

For example, for every k ∈ V ∖ {i0, j0}:
Σ(l,k)∈E xlk = xk and xk = Σ(k,l)∈E xkl

37 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

A Condition for Consistency

C(K , i0, j0,m) is a system of linear equations:

m-consistency wrt. K , i0 and j0
is equivalent to satisfiability of C(K , i0, j0,m)

Variables:

∙ xi for every i ∈ V ,

∙ xij for every edge (i , j) ∈ E

∙ m[k] for every k ∈ dom m

Main ideas:

∙ The ”inflow” is the same as the ”outflow” for any vertex k .

∙ i0 has an extra inflow of 1 and j0 has an extra outflow of 1.

∙ xk = m[k] for every k ∈ dom m.

For example, for every k ∈ V ∖ {i0, j0}:
Σ(l,k)∈E xlk = xk and xk = Σ(k,l)∈E xkl

38 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case =

∫
S < k

Markings for (i , j):

∙
(

∫

S < k , true,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] < k
))

∙
(

∫

S < k , false,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] ≥ k
))

This is easily generalized to formulas of the form:

Σn
i=1ci

∫

Si ⊲ k

where ⊲ ∈ {<,≤,=,≥, >}.

39 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case =

∫
S < k

Markings for (i , j):

∙
(

∫

S < k , true,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] < k
))

∙
(

∫

S < k , false,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] ≥ k
))

This is easily generalized to formulas of the form:

Σn
i=1ci

∫

Si ⊲ k

where ⊲ ∈ {<,≤,=,≥, >}.

40 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case =

∫
S < k

Markings for (i , j):

∙
(

∫

S < k , true,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] < k
))

∙
(

∫

S < k , false,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v] ≥ k
))

This is easily generalized to formulas of the form:

Σn
i=1ci

∫

Si ⊲ k

where ⊲ ∈ {<,≤,=,≥, >}.

41 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case � = 1 ∧ 2

Markings for (i , j):

∙ The true marking is (1 ∧ 2, true, � ∧ �) iff (i , j) is marked
with (1, true, �) and (2, true, �)

∙ The false marking is (1 ∧ 2, false, � ∨ �) iff (i , j) is marked
with (1, false, �) and (2, false, �)

42 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case � = 1 ∧ 2

Markings for (i , j):

∙ The true marking is (1 ∧ 2, true, � ∧ �) iff (i , j) is marked
with (1, true, �) and (2, true, �)

∙ The false marking is (1 ∧ 2, false, � ∨ �) iff (i , j) is marked
with (1, false, �) and (2, false, �)

43 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case � = ¬

Markings for (i , j):

∙ The true marking is (¬ , true, �)
iff (i , j) is marked with (, false, �)

∙ The false marking is (¬ , false, �)
iff (i , j) is marked with (, true, �)

44 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking: Case � = ¬

Markings for (i , j):

∙ The true marking is (¬ , true, �)
iff (i , j) is marked with (, false, �)

∙ The false marking is (¬ , false, �)
iff (i , j) is marked with (, true, �)

45 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Case = 1 ⌢ 2 true marking

(k .j) : (2, true, �2)

j

(i , k) : (1, true, �1)

i

k

46 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Case = 1 ⌢ 2 true marking

(k .j) : (2, true, �2)

j

(i , k) : (1, true, �1)

i

(i , j) :(1 ⌢ 2, true, �)

k

where � is
⋁

k∈V

{

∃m1,m2 : Split(k ,m,m1,m2)
∧ ∀m1,m2 : Split(k ,m,m1,m2) ⇒ (�1[m1/m] ∧ �2[m2/m])

}

and Split(k ,m,m1,m2) is m = m1 + m2 ∧ C(i , k ,m1) ∧ C(k , j ,m2)

47 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Case = 1 ⌢ 2 false marking

(k .j) : (2, false, �2)

j

i

(i , k) : (1, false, �1)

k

48 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Case = 1 ⌢ 2 false marking

(k , j) : (2, false, �2)

j

i

(i , k) : (1, false, �1)

(i , j) :(1 ⌢ 2, false, �)

k

where � is

C(i , j ,m)∧
⋀

k∈V

∀m1,m2 : (Split(k ,m,m1,m2) ⇒ �1[m1/m] ∨ �2[m2/m])

49 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking 2: Example. Simplified markings

For dom m = {1, 2, 4} and � =
∫

true < 4 ∧ ¬
∫

p < 3.

Notice □(
∫

true < 4 ⇒
∫

p < 3) ⇐⇒ ¬♢�.

i , j C(m) markings (, false, �) for =
after simplification

∫
true < 4 ¬

∫
p < 3 � ♢�

1, 1 m[1] = m[2] m[1] > 2 m[1] < 3 true true
1, 2 m[1] = m[2] + 1 m[1] > 2 m[1] < 3 true true
1, 3 m[1] = m[2] > 0 m[1] > 1 m[1] < 3 true true
1, 4 m[1] = m[2] > 0 m[1] > 1 ∨ m[4] > 0 m[1] ≤ 1 true true
2, {1, 3} m[2] = m[1] + 1 m[1] > 1 m[1] < 2 true true

...
3, {1, 2} false true true true true
3, 3 true false true true true

...

50 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Model checking 2: Example. Simplified markings

For dom m = {1, 2, 4} and � =
∫

true < 4 ∧ ¬
∫

p < 3.

Notice □(
∫

true < 4 ⇒
∫

p < 3) ⇐⇒ ¬♢�.

i , j C(m) markings (, false, �) for =
after simplification

∫
true < 4 ¬

∫
p < 3 � ♢�

1, 1 m[1] = m[2] m[1] > 2 m[1] < 3 true true
1, 2 m[1] = m[2] + 1 m[1] > 2 m[1] < 3 true true
1, 3 m[1] = m[2] > 0 m[1] > 1 m[1] < 3 true true
1, 4 m[1] = m[2] > 0 m[1] > 1 ∨ m[4] > 0 m[1] ≤ 1 true true
2, {1, 3} m[2] = m[1] + 1 m[1] > 1 m[1] < 2 true true

...
3, {1, 2} false true true true true
3, 3 true false true true true

...

51 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.

52 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.

53 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.

54 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.

55 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

02917
Advanced
Topics in

Embedded
Systems

Michael R. Hansen

Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.

56 DTU Informatics, Technical University of Denmark
Model Checking for Duration Calculus, using Presburger Arithmetic MRH

17/6/2010

