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∙ Overview of fundamental (un)decidability results

∙ A basic decidability results
– with non-elementary complexity

∙ Towards efficient model checking based on approximations
Using Presburger Arithmetic: first-order logic of natural numbers
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∙ Decision procedure for Presburger Arithmetic
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Basic Decidability Properties of Duration Calculus

Zhou Hansen Sestoft 93
Restricted Duration Calculus:

∙ ⌈⌈S⌉⌉

∙ ¬�, � ∨  , �⌢ 

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time) RDC2 RDC3

∙ ℓ = r , ⌈⌈S⌉⌉

∙ ¬�, � ∨  , �⌢ 

∙
∫

S1 =
∫

S2

∙ ¬�, � ∨  , �⌢ 

∙ ℓ = x , ⌈⌈S⌉⌉

∙ ¬�, � ∨  , �⌢ 

∙ (∃x)�
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Decidability of RDC for Discrete Time

Satisfiability is reduced to emptiness of regular languages
Idea: a ∈ Σ describes a piece of an interpretation, e.g. P1 ∧¬P2 ∧ P3

Discrete time — one letter corresponds to one time unit.

ℒ(⌈⌈S⌉⌉) = (DNF (S))+

ℒ(' ∨  ) = ℒ(') ∪ ℒ( )

ℒ(¬') = Σ∗ ∖ ℒ(')

ℒ('⌢ ) = ℒ(')ℒ( )

∙ ℒ(�) is regular

∙ � is satisfiable iff ℒ(�) ∕= ∅

∙ Satisfiability problem for RDC is decidable

non-elementary complexity
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Status

∙ A DC fragment based on (propositional logic and chop) with
almost no notion of duration has non-elementary complexity.
No existing tool is used on a daily basis.

∙ Fragments (propositional logic and chop) having simple notions
of duration are undecidable.

So what about tool support?
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An example

Given Kripke structure K and a (certain kind of) DC formula �.

∙ Does K ∣= � hold? every trace t r satisfies �
non-elementary

Example: A simple Kripke structure K :

¬p
1

p
32 4

¬pp

Problem: K ∣= □(ℓ < 4 ⇒
∫

p < 3)? YES

∙ Example run:

tr = (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (1 : ¬p) (2 : p) (3 : )

satisfies □(ℓ < 4 ⇒
∫

p < 3)

Branching-time approximations for efficient verification
FränzleHansen 08,09
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Branching-time approximations: Counting semantics

Ideas:

∙ All traces between two vertices are treated uniformly

∙ Add information on the frequency of visits to vertices.

m : Mset = V
part
−→ ℕ a multiset

The counting semantics: K [[�]]c : V → V → Mset → 2B:

∙ K [[�]]c i j m = {true} when t r ∣=K �, for any run t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {false} when t r ∕∣=K �, for any t r from i to j
which is consistent with m

∙ K [[�]]c i j m = {true, false} if K is not consistent with m, i , j

∙ K [[�]]c i j m = ∅ otherwise.

We aim at a symbolic treatment of multisets
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Model checking: Main idea

Given K , � and a vector m = dom m of variables.

We mark situation pairs (i , j), with ( ,b, lin(m)), b ∈ {true, false},
where  is a subformula of �

∙ and lin(m) is a side-condition (Presburger formula) with m as
free variables.

Key properties for marking ( , true, lin(m)):

∙

true ∈ K [[ ]] i j m for any m satisfying lin(m)

There are similar properties for a marking ( , false, lin(m))
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A Condition for Consistency

C(K , i0, j0,m) is a system of linear equations:

m-consistency wrt. K , i0 and j0
is equivalent to satisfiability of C(K , i0, j0,m)

Variables:

∙ xi for every i ∈ V ,

∙ xij for every edge (i , j) ∈ E

∙ m[k] for every k ∈ dom m

Main ideas:

∙ The ”inflow” is the same as the ”outflow” for any vertex k .

∙ i0 has an extra inflow of 1 and j0 has an extra outflow of 1.

∙ xk = m[k] for every k ∈ dom m.

For example, for every k ∈ V ∖ {i0, j0}:
Σ(l,k)∈E xlk = xk and xk = Σ(k,l)∈E xkl
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Model checking: Case  =

∫
S < k

Markings for (i , j):

∙
(

∫

S < k , true,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v ] < k
))

∙
(

∫

S < k , false,
(

C(K , i , j ,m, e) ∧
∑

v∈dom m,v∣=S m[v ] ≥ k
))

This is easily generalized to formulas of the form:

Σn
i=1ci

∫

Si ⊲ k

where ⊲ ∈ {<,≤,=,≥, >}.
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Model checking: Case � =  1 ∧  2

Markings for (i , j):

∙ The true marking is ( 1 ∧  2, true, � ∧ �) iff (i , j) is marked
with ( 1, true, �) and ( 2, true, �)

∙ The false marking is ( 1 ∧  2, false, � ∨ �) iff (i , j) is marked
with ( 1, false, �) and ( 2, false, �)
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Model checking: Case � = ¬ 

Markings for (i , j):

∙ The true marking is (¬ , true, �)
iff (i , j) is marked with ( , false, �)

∙ The false marking is (¬ , false, �)
iff (i , j) is marked with ( , true, �)
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Markings for (i , j):
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Case  =  1 ⌢  2 true marking

(k .j) : ( 2, true, �2)

j

(i , k) : ( 1, true, �1)

i

k
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Case  =  1 ⌢  2 true marking

(k .j) : ( 2, true, �2)

j

(i , k) : ( 1, true, �1)

i

(i , j) :( 1 ⌢  2, true, �)

k

where � is
⋁

k∈V

{

∃m1,m2 : Split(k ,m,m1,m2)
∧ ∀m1,m2 : Split(k ,m,m1,m2) ⇒ (�1[m1/m] ∧ �2[m2/m])

}

and Split(k ,m,m1,m2) is m = m1 + m2 ∧ C(i , k ,m1) ∧ C(k , j ,m2)
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Case  =  1 ⌢  2 false marking

(k .j) : ( 2, false, �2)

j

i

(i , k) : ( 1, false, �1)

k
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Case  =  1 ⌢  2 false marking

(k , j) : ( 2, false, �2)

j

i

(i , k) : ( 1, false, �1)

(i , j) :( 1 ⌢  2, false, �)

k

where � is

C(i , j ,m)∧
⋀

k∈V

∀m1,m2 : (Split(k ,m,m1,m2) ⇒ �1[m1/m] ∨ �2[m2/m])
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Model checking 2: Example. Simplified markings

For dom m = {1, 2, 4} and � =
∫

true < 4 ∧ ¬
∫

p < 3.

Notice □(
∫

true < 4 ⇒
∫

p < 3) ⇐⇒ ¬♢�.

i , j C(m) markings ( , false, �) for  =
after simplification

∫
true < 4 ¬

∫
p < 3 � ♢�

1, 1 m[1] = m[2] m[1] > 2 m[1] < 3 true true
1, 2 m[1] = m[2] + 1 m[1] > 2 m[1] < 3 true true
1, 3 m[1] = m[2] > 0 m[1] > 1 m[1] < 3 true true
1, 4 m[1] = m[2] > 0 m[1] > 1 ∨ m[4] > 0 m[1] ≤ 1 true true
2, {1, 3} m[2] = m[1] + 1 m[1] > 1 m[1] < 2 true true

...
3, {1, 2} false true true true true
3, 3 true false true true true

...
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Summary

∙ Algorithm is correct.
∙ Procedure is 4-fold exponential.

∙ Size of generated formula is exponential in the chop-depth.
∙ Presburger formulas are checked in triple-exponential time.

Remember undecidable (non-elementary) starting point

∙ Preciseness when all chops is under same polarity and all
conjunctions under the dual polarity.

∙ Quantifier elimination of side-condition is possible when all
chops are in negative polarity. Procedure is then ”just” 2-fold
exponential.

∙ Prototype is implemented by William Pihl Heise in a using the
solver Z3 as backend. The prototype has just been used on
small examples. Algorithm seems promising.
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