02917 Advanced Topics in Embedded Systems

Model Checking for Duration Calculus using Presburger Arithmetic

Michael R. Hansen

DTU Informatics Department of Informatics and Mathematical Modelling

Overview

• Overview of fundamental (un)decidability results

- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- Decision procedure for Presburger Arithmetic

- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- Decision procedure for Presburger Arithmetic

- Overview of fundamental (un)decidability results
- A basic decidability results
 - with non-elementary complexity
- Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- Decision procedure for Presburger Arithmetic

- Overview of fundamental (un)decidability results
- A basic decidability results
 with non-elementary complexity
- Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- Decision procedure for Presburger Arithmetic

- Overview of fundamental (un)decidability results
- A basic decidability results
 with non-elementary complexity
- Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- Decision procedure for Presburger Arithmetic

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- [S]
- $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time)	RDC_2	RDC ₃

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- [S]
- $\bullet \ \neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time)	RDC_2	RDC ₃

Restricted Duration Calculus:

- [S]
- $\bullet \ \neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time)	RDC_2	RDC₃
 <i>ℓ</i> = <i>r</i>, [<i>S</i>] ¬φ, φ ∨ ψ, φ ¬ψ 	• $\int S_1 = \int S_2$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	 ℓ = x, [S] ¬φ, φ ∨ ψ, φ ∩ ψ (∃x)φ

..

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- [S]
- $\bullet \ \neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time)	RDC_2	RDC₃
 ℓ = r, [S] ¬φ, φ ∨ ψ, φ ¬ψ 	• $\int S_1 = \int S_2$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	• $\ell = \mathbf{x}, \lceil \mathbf{S} \rceil$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$ • $(\exists \mathbf{x}) \phi$

٢

..

Zhou Hansen Sestoft 93

DTU

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- [S]
- $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

RDC1 (Cont. time)	RDC_2	RDC₃
 ℓ = r, [S] ¬φ, φ ∨ ψ, φ ¬ψ 	• $\int S_1 = \int S_2$ • $\neg \phi, \phi \lor \psi, \phi \frown \psi$	 ℓ = x, [S] ¬φ, φ ∨ ψ, φ ∩ ψ (∃x)φ

..

DTU

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit.

 $\begin{array}{lll} \mathcal{L}(\lceil S\rceil) &=& (DNF(S))^+ \\ \mathcal{L}(\varphi \lor \psi) &=& \mathcal{L}(\varphi) \cup \mathcal{L}(\psi) \\ \mathcal{L}(\neg \varphi) &=& \Sigma^* \setminus \mathcal{L}(\varphi) \\ \mathcal{L}(\varphi \frown \psi) &=& \mathcal{L}(\varphi) \, \mathcal{L}(\psi) \end{array}$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for RDC is decidable

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit.

 $\begin{array}{lll} \mathcal{L}(\lceil S \rceil) & = & (DNF(S))^+ \\ \mathcal{L}(\varphi \lor \psi) & = & \mathcal{L}(\varphi) \cup \mathcal{L}(\psi) \\ \mathcal{L}(\neg \varphi) & = & \Sigma^* \setminus \mathcal{L}(\varphi) \\ \mathcal{L}(\varphi \frown \psi) & = & \mathcal{L}(\varphi) \, \mathcal{L}(\psi) \end{array}$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for RDC is decidable

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit.

 $\begin{array}{lll} \mathcal{L}(\lceil S \rceil) & = & (DNF(S))^+ \\ \mathcal{L}(\varphi \lor \psi) & = & \mathcal{L}(\varphi) \cup \mathcal{L}(\psi) \\ \mathcal{L}(\neg \varphi) & = & \Sigma^* \setminus \mathcal{L}(\varphi) \\ \mathcal{L}(\varphi \frown \psi) & = & \mathcal{L}(\varphi) \, \mathcal{L}(\psi) \end{array}$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for RDC is decidable

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit.

 $\begin{array}{lll} \mathcal{L}(\lceil S \rceil) & = & (DNF(S))^+ \\ \mathcal{L}(\varphi \lor \psi) & = & \mathcal{L}(\varphi) \cup \mathcal{L}(\psi) \\ \mathcal{L}(\neg \varphi) & = & \Sigma^* \setminus \mathcal{L}(\varphi) \\ \mathcal{L}(\varphi \frown \psi) & = & \mathcal{L}(\varphi) \, \mathcal{L}(\psi) \end{array}$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for RDC is decidable

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \land \neg P_2 \land P_3$

Discrete time — one letter corresponds to one time unit.

 $\begin{array}{lll} \mathcal{L}(\lceil S \rceil) & = & (DNF(S))^+ \\ \mathcal{L}(\varphi \lor \psi) & = & \mathcal{L}(\varphi) \cup \mathcal{L}(\psi) \\ \mathcal{L}(\neg \varphi) & = & \Sigma^* \setminus \mathcal{L}(\varphi) \\ \mathcal{L}(\varphi \frown \psi) & = & \mathcal{L}(\varphi) \, \mathcal{L}(\psi) \end{array}$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- Satisfiability problem for RDC is decidable

- A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

- A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

- A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold?

every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $K \models \Box(\ell < 4 \Rightarrow \int p < 3)$?

YES

• Example run:

 $tr = (1:\neg p) (2:p) (1:\neg p) (2:p) (1:\neg p) (2:p) (3:_)$ satisfies $\Box(\ell < 4 \Rightarrow \int p < 3)$

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold?

every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $\mathcal{K} \models \Box(\ell < 4 \Rightarrow \int \mathcal{P} < 3)$?

YES

• Example run:

 $tr = (1:\neg p) (2:p) (1:\neg p) (2:p) (1:\neg p) (2:p) (3:_)$ atisfies $\Box (\ell < 4 \Rightarrow \lfloor p < 3 \rfloor)$

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold?

every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $\mathcal{K} \models \Box(\ell < 4 \Rightarrow \int \mathcal{p} < 3)$?

YES

• Example run:

 $tr = (1:\neg p)(2:p)(1:\neg p)(2:p)(1:\neg p)(2:p)(3:_)$

satisfies $\Box(\ell < 4 \Rightarrow \int p < 3)$

17/6/2010

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold?

every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $\mathcal{K} \models \Box(\ell < 4 \Rightarrow \int \mathcal{p} < 3)$?

YES

• Example run:

 $tr = (1:\neg p)(2:p)(1:\neg p)(2:p)(1:\neg p)(2:p)(3:_)$

satisfies $\Box(\ell < 4 \Rightarrow \int \rho < 3)$

Branching-time approximations: Counting semantics

Ideas:

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- K[[φ]]_c i j m = {true} when tr ⊨_K φ, for any run tr from i to j which is consistent with m
- K[[φ]]_c i j m = {false} when tr ⊭_K φ, for any tr from i to j which is consistent with m
- K[[\phi]]_c i j m = {true, false} if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

Branching-time approximations: Counting semantics

Ideas:

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The *counting semantics:* $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- K[[φ]]_c i j m = {true} when tr ⊨_K φ, for any run tr from i to j which is consistent with m
- K[[φ]]_c i j m = {false} when tr ⊭_K φ, for any tr from i to j which is consistent with m
- K[[\phi]]_c i j m = {true, false} if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c i j m = \{\text{true}\}$ when $tr \models_{\kappa} \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{\text{false}\}$ when $tr \not\models_{\kappa} \phi$, for any tr from i to j which is *consistent* with m
- $K[\phi]_c i j m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c i j m = \{ true \}$ when $tr \models_{\kappa} \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{ \text{false} \}$ when $tr \not\models_{\kappa} \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c i j m = \{ true \}$ when $tr \models_{\kappa} \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{ \text{false} \}$ when $tr \not\models_{\kappa} \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

ntii

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c i j m = \{ true \}$ when $tr \models_{\kappa} \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{ \text{false} \}$ when $tr \not\models_{\kappa} \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{\text{true}, \text{false}\} \text{ if } K \text{ is not consistent with } m, i, j$
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

- · All traces between two vertices are treated uniformly
- Add information on the frequency of visits to vertices.

 $m: Mset = V \xrightarrow{part} \mathbb{N}$ a multiset

The counting semantics: $K[\![\phi]\!]_c : V \to V \to Mset \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c i j m = \{ true \}$ when $tr \models_{\kappa} \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c i j m = \{ \text{false} \}$ when $tr \not\models_{\kappa} \phi$, for any tr from i to j which is *consistent* with m
- $K[\phi]_c i j m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c i j m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

ntii

Model checking: Main idea

Given *K*, ϕ and a vector $\overline{m} = dom m$ of variables.

We mark situation pairs (i, j), with $(\psi, b, lin(\overline{m}))$, $b \in \{\text{true}, \text{false}\}$, where ψ is a subformula of ϕ

• and *lin*(*m*) is a side-condition (Presburger formula) with *m* as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

```
true \in K[\![\psi]\!] i j m for any \overline{m} satisfying lin(\overline{m})
```

Given *K*, ϕ and a vector $\overline{m} = dom m$ of variables.

We mark situation pairs (i, j), with $(\psi, b, lin(\overline{m}))$, $b \in \{\text{true}, \text{false}\}$, where ψ is a subformula of ϕ

• and *lin*(*m*) is a side-condition (Presburger formula) with *m* as free variables.

```
Key properties for marking (\psi, true, lin(\overline{m})):
• true \in K[\![\psi]\!] i j m for any \overline{m} satisfying lin
```

Given *K*, ϕ and a vector $\overline{m} = dom m$ of variables.

We mark situation pairs (i, j), with $(\psi, b, lin(\overline{m}))$, $b \in \{\text{true}, \text{false}\}$, where ψ is a subformula of ϕ

• and *lin*(*m*) is a side-condition (Presburger formula) with *m* as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

٠

true $\in K[\![\psi]\!]$ *i j m* for any \overline{m} satisfying $lin(\overline{m})$

Given *K*, ϕ and a vector $\overline{m} = dom m$ of variables.

We mark situation pairs (i, j), with $(\psi, b, lin(\overline{m}))$, $b \in \{\text{true}, \text{false}\}$, where ψ is a subformula of ϕ

• and *lin*(*m*) is a side-condition (Presburger formula) with *m* as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

٠

true $\in K[\psi]$ *i j m* for any \overline{m} satisfying $lin(\overline{m})$

A Condition for Consistency

 $C(K, i_0, j_0, \overline{m})$ is a system of linear equations:

m-consistency wrt. *K*, i_0 and j_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ij} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and j_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E} x_{lk} = x_k \text{ and } x_k = \Sigma_{(k,l)\in E} x_{kl}$

A Condition for Consistency

 $C(K, i_0, j_0, \overline{m})$ is a system of linear equations:

m-consistency wrt. *K*, i_0 and j_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ij} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and j_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E} x_{lk} = x_k \text{ and } x_k = \Sigma_{(k,l)\in E} x_{kl}$

A Condition for Consistency

 $C(K, i_0, j_0, \overline{m})$ is a system of linear equations:

m-consistency wrt. *K*, i_0 and j_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ij} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and j_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E} x_{lk} = x_k \text{ and } x_k = \Sigma_{(k,l)\in E} x_{kl}$

A Condition for Consistency

 $C(K, i_0, j_0, \overline{m})$ is a system of linear equations:

m-consistency wrt. *K*, i_0 and j_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ij} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and j_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E} x_{lk} = x_k \text{ and } x_k = \Sigma_{(k,l)\in E} x_{kl}$ Model checking: Case $\psi = \int S < k$

DTU

Markings for (*i*, *j*):

•
$$\left(\int S < k, \text{true}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] < k\right)\right)$$

•
$$\left(\int S < k, \text{false}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] \ge k\right)\right)$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^{n} c_i \int S_i \lhd k$

where $\lhd \in \{<, \leq, =, \geq, >\}$.

Model checking: Case $\psi = \int S < k$

Markings for (*i*, *j*):

•
$$\left(\int S < k, \text{true}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] < k\right)\right)$$

•
$$\left(\int S < k, \text{false}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] \ge k\right)\right)$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^{n} c_i \int S_i \lhd k$

where $\lhd \in \{<, \leq, =, \geq, >\}$.

Model checking: Case $\psi = \int S < k$

Markings for (*i*, *j*):

•
$$\left(\int S < k, \text{true}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] < k\right)\right)$$

•
$$\left(\int S < k, \text{false}, \left(C(K, i, j, \overline{m}, \overline{e}) \land \sum_{v \in \text{dom } m, v \models S} m[v] \ge k\right)\right)$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^{n} c_i \int S_i \lhd k$

where $\lhd \in \{<,\leq,=,\geq,>\}.$

- The true marking is $(\psi_1 \land \psi_2, \text{true}, \mu \land \nu)$ iff (i, j) is marked with $(\psi_1, \text{true}, \mu)$ and $(\psi_2, \text{true}, \nu)$
- The false marking is $(\psi_1 \land \psi_2, \text{false}, \mu \lor \nu)$ iff (i, j) is marked with $(\psi_1, \text{false}, \mu)$ and $(\psi_2, \text{false}, \nu)$

- The true marking is (ψ₁ ∧ ψ₂, true, μ ∧ ν) iff (*i*, *j*) is marked with (ψ₁, true, μ) and (ψ₂, true, ν)
- The false marking is (ψ₁ ∧ ψ₂, false, μ ∨ ν) iff (i, j) is marked with (ψ₁, false, μ) and (ψ₂, false, ν)

Model checking: Case $\phi = \neg \psi$

- The true marking is (¬ψ, true, μ) iff (i, j) is marked with (ψ, false, μ)
- The false marking is (¬ψ, false, ν) iff (i, j) is marked with (ψ, true, ν)

Model checking: Case $\phi = \neg \psi$

- The true marking is (¬ψ, true, μ) iff (i, j) is marked with (ψ, false, μ)
- The false marking is (¬ψ, false, ν) iff (i, j) is marked with (ψ, true, ν)

true marking

DTU

Case $\psi = \psi_1 \frown \psi_2$

true marking

where μ is

 $\bigvee_{k \in V} \left\{ \begin{array}{c} \exists \overline{m}_1, \overline{m}_2 : Split(k, \overline{m}, \overline{m}_1, \overline{m}_2) \\ \land \quad \forall \overline{m}_1, \overline{m}_2 : Split(k, \overline{m}, \overline{m}_1, \overline{m}_2) \Rightarrow (\mu_1[\overline{m}_1/\overline{m}] \land \mu_2[\overline{m}_2/\overline{m}]) \end{array} \right\}$ and $Split(k, \overline{m}, \overline{m}_1, \overline{m}_2)$ is $\overline{m} = \overline{m}_1 + \overline{m}_2 \land C(i, k, \overline{m}_1) \land C(k, j, \overline{m}_2)$

Model Checking for Duration Calculus, using Presburger Arithmetic MRI

false marking

DTU

48

Case $\psi = \psi_1 \frown \psi_2$

false marking

where ν is

 $C(i,j,\overline{m}) \wedge \bigwedge_{k \in V} \forall \overline{m}_1, \overline{m}_2 : (Split(k,\overline{m},\overline{m}_1,\overline{m}_2) \Rightarrow \nu_1[\overline{m}_1/\overline{m}] \vee \nu_2[\overline{m}_2/\overline{m}])$

Model checking 2: Example. Simplified markings

For dom $m = \{1, 2, 4\}$ and $\zeta = \int true < 4 \land \neg \int p < 3$. Notice $\Box(\int true < 4 \Rightarrow \int p < 3) \iff \neg \Diamond \zeta$.

<i>i</i> , <i>j</i>	<i>C(m)</i>	markings (ψ , false, η) for $\psi =$				
	after simplification	∫true < 4	∫ <i>p</i> < 3			
1,1	m[1] = m[2]	<i>m</i> [1] > 2				
1,2	m[1] = m[2] + 1	m[1] > 2	<i>m</i> [1] < 3	true	true	
1,3	m[1] = m[2] > 0	m[1] > 1	<i>m</i> [1] < 3	true	true	
1,4	m[1] = m[2] > 0	$m[1] > 1 \lor m[4] > 0$	$m[1] \leq 1$	true	true	
$2, \{1, 3\}$	m[2] = m[1] + 1	m[1] > 1	<i>m</i> [1] < 2	true	true	
3, {1, 2}	false	true	true	true	true	
3,3	true	false	true	true	true	

ntii

For dom $m = \{1, 2, 4\}$ and $\zeta = \int \text{true} < 4 \land \neg \int p < 3$. Notice $\Box(\int \text{true} < 4 \Rightarrow \int p < 3) \iff \neg \Diamond \zeta$.

<i>i</i> , <i>j</i>	<i>C</i> (<i>m</i>)	markings (ψ , false, η) for $\psi =$				
	after simplification	∫true < 4	ºp < 3	ζ	$\Diamond \zeta$	
1,1	m[1] = m[2]	<i>m</i> [1] > 2	<i>m</i> [1] < 3	true	true	
1,2	m[1] = m[2] + 1	<i>m</i> [1] > 2	<i>m</i> [1] < 3	true	true	
1,3	m[1] = m[2] > 0	<i>m</i> [1] > 1	<i>m</i> [1] < 3	true	true	
1,4	m[1] = m[2] > 0	$m[1] > 1 \lor m[4] > 0$	<i>m</i> [1] ≤ 1	true	true	
2, {1, 3}	m[2] = m[1] + 1	<i>m</i> [1] > 1	<i>m</i> [1] < 2	true	true	
		:				
3, {1, 2} 3, 3	false true	true false	true true	true true	true true	
		:				

ntii

Algorithm is correct.

- Procedure is 4-fold exponential.
 - Size of generated formula is exponential in the chop-depth.
 - Presburger formulas are checked in triple-exponential time

- Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- Algorithm is correct.
- Procedure is 4-fold exponential.
 - Size of generated formula is exponential in the chop-depth.
 - Presburger formulas are checked in triple-exponential time.

- Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

17/6/2010

- Algorithm is correct.
- Procedure is 4-fold exponential.
 - Size of generated formula is exponential in the chop-depth.
 - Presburger formulas are checked in triple-exponential time.

- Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- Algorithm is correct.
- Procedure is 4-fold exponential.
 - Size of generated formula is exponential in the chop-depth.
 - Presburger formulas are checked in triple-exponential time.

- Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- Algorithm is correct.
- Procedure is 4-fold exponential.
 - Size of generated formula is exponential in the chop-depth.
 - Presburger formulas are checked in triple-exponential time.

- Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.