02917 Advanced Topics in Embedded Systems

Model Checking for Duration Calculus using Presburger Arithmetic

Michael R. Hansen

DTU Informatics Department of Informatics and Mathematical Modelling

Overview

∙ Overview of fundamental (un)decidability results

- ∙ A basic decidability results
	- with non-elementary complexity
- ∙ Towards efficient model checking based on approximations
-

Overview

- ∙ Overview of fundamental (un)decidability results
- ∙ A basic decidability results
	- with non-elementary complexity
- ∙ Towards efficient model checking based on approximations
-
- ∙ Overview of fundamental (un)decidability results
- ∙ A basic decidability results
	- with non-elementary complexity
- ∙ Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
-
- ∙ Overview of fundamental (un)decidability results
- ∙ A basic decidability results
	- with non-elementary complexity
- ∙ Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- ∙ Decision procedure for Presburger Arithmetic
- ∙ Overview of fundamental (un)decidability results
- ∙ A basic decidability results
	- with non-elementary complexity
- ∙ Towards efficient model checking based on approximations Using Presburger Arithmetic: first-order logic of natural numbers with addition
- ∙ Decision procedure for Presburger Arithmetic

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- \cdot [S]
- $\bullet \neg \phi, \phi \lor \psi, \phi \land \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- \cdot [S]
- $\bullet \neg \phi, \phi \lor \psi, \phi \cap \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

٢

Restricted Duration Calculus:

- $•$ [S]
- $\bullet \neg \phi, \phi \lor \psi, \phi \land \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

 $_{\odot}$

 \mathbf{r}

Zhou Hansen Sestoft 93

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- $•$ [S]
- $\bullet \neg \phi, \phi \lor \psi, \phi \land \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

 $_{\odot}$

 \mathbf{r}

Zhou Hansen Sestoft 93

Restricted Duration Calculus:

- $•$ [S]
- $\bullet \neg \phi, \phi \lor \psi, \phi \land \psi$

Satisfiability is reduced to emptiness of regular languages

Decidable result for both discrete and continuous time

Seemingly small extensions give undecidable subsets

 \bigodot

 \mathbf{r}

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit.

-
-
-

וודח

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit.

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- ∙ Satisfiability problem for RDC is decidable

וודח

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit.

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- ∙ Satisfiability problem for RDC is decidable

ntii

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit.

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- ∙ Satisfiability problem for RDC is decidable

ntii

Satisfiability is reduced to emptiness of regular languages Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit.

 $\mathcal{L}(\lceil \mathcal{S} \rceil)$ = $(DNF(\mathcal{S}))^+$ $\mathcal{L}(\varphi \vee \psi) = \mathcal{L}(\varphi) \cup \mathcal{L}(\psi)$ $\mathcal{L}(\neg\varphi) \qquad = \quad \Sigma^* \setminus \mathcal{L}(\varphi)$ $\mathcal{L}(\varphi\ \widehat{\ }\ \psi) \quad = \quad \mathcal{L}(\varphi)\, \mathcal{L}(\psi)$

- $\mathcal{L}(\phi)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\phi) \neq \emptyset$
- ∙ Satisfiability problem for RDC is decidable

non-elementary complexity

- ∙ A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- ∙ Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

- ∙ A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- ∙ Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

- ∙ A DC fragment based on (propositional logic and chop) with almost no notion of duration has non-elementary complexity. No existing tool is used on a daily basis.
- ∙ Fragments (propositional logic and chop) having simple notions of duration are undecidable.

So what about tool support?

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold? every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $K \models \Box(\ell < 4 \Rightarrow \int\!\! p < 3)?$ YES

Branching-time approximations for efficient verification FränzleHansen 08.09

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold? every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $K \models \Box(\ell < 4 \Rightarrow \int p < 3)$? $\qquad \qquad \text{YES}$

Branching-time approximations for efficient verification FränzleHansen 08.09

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold? every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $K \models \Box(\ell < 4 \Rightarrow \int\!\! p < 3)$? YES

∙ Example run:

 $tr = (1 : \neg p) (2 : p) (1 : \neg p) (2 : p) (1 : \neg p) (2 : p) (3 : \square)$

satisfies $\square(\ell < 4 \Rightarrow \int p < 3)$

Branching-time approximations for efficient verification FranzleHansen 08,09 ¨

Given Kripke structure K and a (certain kind of) DC formula ϕ .

• Does $K \models \phi$ hold? every trace tr satisfies ϕ non-elementary

Example: A simple Kripke structure K:

Problem: $K \models \Box(\ell < 4 \Rightarrow \int\!\! p < 3)$? YES

∙ Example run:

 $tr = (1 : \neg p) (2 : p) (1 : \neg p) (2 : p) (1 : \neg p) (2 : p) (3 : \square)$

satisfies $\square(\ell < 4 \Rightarrow \int p < 3)$

Branching-time approximations for efficient verification FranzleHansen 08,09 ¨

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

The *counting semantics: K* [ϕ]] $_c:V\to V\to \mathrm{Mset}\to 2^{\mathbb{B}}$:

-
-
-
-

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The *counting semantics: K* [ϕ]] $_c:V\to V\to \mathrm{Mset}\to 2^{\mathbb{B}}$:

-
-
-
-

וודח

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The counting semantics: $K[\![\phi]\!]_c: V \to V \to \mathrm{Mset} \to 2^{\mathbb{B}}$:

- K[ø]_c i j m = {true} when tr \models _K ϕ , for any run tr from i to j which is consistent with m
- K[ø]_c i j m = {false} when tr $\not\models$ _K ϕ , for any tr from i to j which is *consistent* with *m*
- $K[\![\phi]\!]_c$ i j $m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c$ i j $m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The counting semantics: $K[\![\phi]\!]_c: V \to V \to \mathrm{Mset} \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c$ i j $m = \{$ true $\}$ when $tr \models_K \phi$, for any run tr from i to j which is *consistent* with m
- K[ø]_c i j m = {false} when tr $\not\models$ _K ϕ , for any tr from i to j which is *consistent* with *m*
- $K[\![\phi]\!]_c$ i j $m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c$ i j $m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The counting semantics: $K[\![\phi]\!]_c: V \to V \to \mathrm{Mset} \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c$ i j $m = \{$ true $\}$ when $tr \models_K \phi$, for any run tr from i to j which is *consistent* with m
- K[ϕ]_c i j m = {false} when tr $\not\models K \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c$ i j $m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c$ i j $m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

ntii

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The counting semantics: $K[\![\phi]\!]_c: V \to V \to \mathrm{Mset} \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c$ i j $m = \{$ true $\}$ when $tr \models_K \phi$, for any run tr from i to j which is *consistent* with m
- K[ϕ]_c i j m = {false} when tr $\not\models K \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c$ i j $m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c$ i j $m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

DTU

Ideas:

- ∙ All traces between two vertices are treated uniformly
- ∙ Add information on the frequency of visits to vertices.

 $m: \text{Mset} = V \stackrel{\text{part}}{\longrightarrow}$ −→ ℕ a multiset

The counting semantics: $K[\![\phi]\!]_c: V \to V \to \mathrm{Mset} \to 2^{\mathbb{B}}$:

- $K[\![\phi]\!]_c$ i j $m = \{$ true $\}$ when $tr \models_K \phi$, for any run tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c$ i j $m = \{\text{false}\}\}$ when $tr \not\models_K \phi$, for any tr from i to j which is *consistent* with m
- $K[\![\phi]\!]_c$ i j $m = \{$ true, false $\}$ if K is not consistent with m, i, j
- $K[\![\phi]\!]_c$ i j $m = \emptyset$ otherwise.

We aim at a symbolic treatment of multisets

DTU

Model checking: Main idea

Given K, ϕ and a vector $\overline{m} = \text{dom } m$ of variables.

```
We mark situation pairs (i, j), with (\psi, b, \text{lin}(\overline{m})), b \in \{\text{true}, \text{false}\},where \psi is a subformula of \phi
```
• and *lin*(\overline{m}) is a side-condition (Presburger formula) with \overline{m} as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

```
true ∈ K\psi i i m for any \overline{m} satisfying lin(\overline{m})
```
There are similar properties for a marking $(\psi, \text{false}, \text{lin}(\overline{m}))$

∙

Given K, ϕ and a vector $\overline{m} = \text{dom } m$ of variables.

We mark situation pairs (i, j) , with $(\psi, b, \text{lin}(\overline{m}))$, $b \in \{\text{true}, \text{false}\},$ where ψ is a subformula of ϕ

• and $\lim(\overline{m})$ is a side-condition (Presburger formula) with \overline{m} as free variables.

```
Key properties for marking (\psi, true, lin(\overline{m})):
∙
                  true \in K[\![\psi]\!] i i m for any \overline{m} satisfying lin(\overline{m})
```
There are similar properties for a marking $(\psi, \text{false}, \text{lin}(\overline{m}))$

Given K, ϕ and a vector $\overline{m} = \text{dom } m$ of variables.

We mark situation pairs (i, j) , with $(\psi, b, \text{lin}(\overline{m}))$, $b \in \{\text{true}, \text{false}\},$ where ψ is a subformula of ϕ

• and $\lim(\overline{m})$ is a side-condition (Presburger formula) with \overline{m} as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

∙

true $\in K[\![\psi]\!]$ *i* j m for any \overline{m} satisfying lin(\overline{m})

There are similar properties for a marking $(\psi, \text{false}, \text{lin}(\overline{m}))$

Given K, ϕ and a vector $\overline{m} = \text{dom } m$ of variables.

We mark situation pairs (i, j) , with $(\psi, b, \text{lin}(\overline{m}))$, $b \in \{\text{true}, \text{false}\},$ where ψ is a subformula of ϕ

• and $\lim(\overline{m})$ is a side-condition (Presburger formula) with \overline{m} as free variables.

Key properties for marking $(\psi, true, lin(\overline{m}))$:

∙

true $\in K[\![\psi]\!]$ *i* j m for any \overline{m} satisfying lin(\overline{m})

There are similar properties for a marking $(\psi, \text{false}, \text{lin}(\overline{m}))$

 $C(K, i_0, i_0, \overline{m})$ is a system of linear equations:

 m -consistency wrt. K, i_0 and i_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ii} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- ∙ The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and i_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, i_0\}$: $\Sigma_{(l,k)\in E}$ X_{lk} = X_k and X_k = $\Sigma_{(k,l)\in E}$ X_{kl}

 $C(K, i_0, i_0, \overline{m})$ is a system of linear equations:

 m -consistency wrt. K, i_0 and i_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ii} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- ∙ The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and i_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, i_0\}$: $\Sigma_{(l,k)\in E}$ X_{lk} = X_k and X_k = $\Sigma_{(k,l)\in E}$ X_{kl}

 $C(K, i_0, i_0, \overline{m})$ is a system of linear equations:

 m -consistency wrt. K, i_0 and i_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ii} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- ∙ The "inflow" is the same as the "outflow" for any vertex k.
- $i₀$ has an extra inflow of 1 and $i₀$ has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E}$ X_{lk} = X_k and X_k = $\Sigma_{(k,l)\in E}$ X_{kl}

 $C(K, i_0, i_0, \overline{m})$ is a system of linear equations:

 m -consistency wrt. K, i_0 and i_0 is equivalent to satisfiability of $C(K, i_0, j_0, \overline{m})$

Variables:

- x_i for every $i \in V$,
- x_{ii} for every edge $(i, j) \in E$
- $\overline{m}[k]$ for every $k \in \text{dom } m$

Main ideas:

- ∙ The "inflow" is the same as the "outflow" for any vertex k.
- i_0 has an extra inflow of 1 and i_0 has an extra outflow of 1.
- $x_k = \overline{m}[k]$ for every $k \in \text{dom } m$.

For example, for every $k \in V \setminus \{i_0, j_0\}$: $\Sigma_{(l,k)\in E} x_{lk}$ = x_k and x_k = $\Sigma_{(k,l)\in E} x_{kl}$ Model checking: Case $\psi = \int S < k$

Markings for (i, j) :

$$
\bullet \ \left(\textit{JS} < k, \textsf{true}, \left(\textit{C(K, i, j, \overline{m}, \overline{e})} \wedge \sum_{v \in \textsf{dom } m, v \models S} m[v] < k\right)\right)
$$

$$
\bullet \ \left(\smallint \mathsf{S} < k, \text{false}, \left(\mathsf{C}(K,i,j,\overline{m},\overline{e}) \wedge \sum_{v \in \text{dom } m, v \models \mathsf{S}} m[v] \geq k\right)\right)
$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^n c_i \int \mathcal{S}_i \vartriangleleft k$

where $\lhd \in \{ \langle \langle \langle \langle \rangle = \rangle \rangle \}$.

Model checking: Case $\psi = \int S < k$

Markings for (i, j) :

$$
\bullet \ \ \Big(\text{\sf JS} < k, \text{\sf true}, \Big(C(K, i, j, \overline{m}, \overline{e}) \wedge \sum_{v \in \text{\sf dom } m, v \models S} m[v] < k \Big) \Big)
$$

$$
\bullet \ \left(\textstyle{\int}S < k, \text{false}, \left(C(K,i,j,\overline{m},\overline{e}) \wedge \sum_{v \in \text{dom } m, v \models S} m[v] \geq k\right)\right)
$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^n c_i \int \mathcal{S}_i \vartriangleleft k$

where $\lhd \in \{ \langle \langle \langle \langle \rangle = \rangle \rangle \}$.

Model checking: Case $\psi = \int S < k$

Markings for (i, j) :

$$
\bullet \ \left(\textstyle\int\!\! S < k, \mathsf{true}, \left(\textstyle C(K,i,j,\overline{m},\overline{e}) \wedge \sum_{v \in \mathsf{dom}\, m, v \models S} m[v] < k\right)\right)
$$

$$
\bullet \ \left(\textit{JS} < k, \text{false}, \left(C(K, i, j, \overline{m}, \overline{e}) \wedge \sum_{v \in \text{dom } m, v \models S} m[v] \geq k\right)\right)
$$

This is easily generalized to formulas of the form:

 $\sum_{i=1}^n c_i \int S_i \triangleleft k$

where $\lhd \in \{ \langle \langle \langle \langle \rangle = \rangle \rangle \}$.

Model checking: Case $\phi = \psi_1 \wedge \psi_2$

- The true marking is $(\psi_1 \wedge \psi_2, \text{true}, \mu \wedge \nu)$ iff (i, j) is marked with $(\psi_1, \text{true}, \mu)$ and $(\psi_2, \text{true}, \nu)$
- The false marking is $(\psi_1 \wedge \psi_2)$, false, $\mu \vee \nu$ iff (i, j) is marked with $(\psi_1, \text{false}, \mu)$ and $(\psi_2, \text{false}, \nu)$

Model checking: Case $\phi = \psi_1 \wedge \psi_2$

- The true marking is $(\psi_1 \wedge \psi_2, \text{true}, \mu \wedge \nu)$ iff (i, j) is marked with $(\psi_1, \text{true}, \mu)$ and $(\psi_2, \text{true}, \nu)$
- The false marking is $(\psi_1 \wedge \psi_2, \text{false}, \mu \vee \nu)$ iff (i, j) is marked with $(\psi_1, \text{false}, \mu)$ and $(\psi_2, \text{false}, \nu)$

Model checking: Case $\phi = \neg \psi$

- The true marking is $(\neg \psi, \text{true}, \mu)$ iff (i, j) is marked with $(\psi, \text{false}, \mu)$
- The false marking is $(\neg \psi, \mathsf{false}, \nu)$ iff (i, j) is marked with (ψ, true, ν)

Model checking: Case $\phi = \neg \psi$

- The true marking is $(\neg \psi, \text{true}, \mu)$ iff (i, j) is marked with $(\psi, \text{false}, \mu)$
- The false marking is $(\neg \psi, \text{false}, \nu)$ iff (i, j) is marked with (ψ, true, ν)

DTU

Case $\psi = \psi_1 \cap \psi_2$ true marking

⋁ k∈V $\left\{\begin{array}{cl} &\exists \overline{m}_1,\overline{m}_2:\operatorname{Split}(k,\overline{m},\overline{m}_1,\overline{m}_2)\ \wedge & \forall \overline{m}_1,\overline{m}_2:\operatorname{Split}(k,\overline{m},\overline{m}_1,\overline{m}_2)\Rightarrow (\mu_1[\overline{m}_1/\overline{m}]\wedge \mu_2[\overline{m}_2/\overline{m}])\end{array}\right\}$ and Split(k, \overline{m} , $\overline{m_1}$, $\overline{m_2}$) is $\overline{m} = \overline{m_1} + \overline{m_2} \wedge C(i, k, \overline{m_1}) \wedge C(k, j, \overline{m_2})$

47 DTU Informatics, Technical University of Denmark

Model Checking for Duration Calculus, using Presburger Arithmetic

DTU

where ν is

 $C(i, j, \overline{m}) \wedge \bigwedge \forall \overline{m}_1, \overline{m}_2 : (\text{Split}(k, \overline{m}, \overline{m}_1, \overline{m}_2) \Rightarrow \nu_1[\overline{m}_1/\overline{m}] \vee \nu_2[\overline{m}_2/\overline{m}])$ k∈V

Model checking 2: Example. Simplified markings

For $\text{dom } m = \{1, 2, 4\}$ and $\zeta = \int \text{true} < 4 \land \neg \int p < 3$. Notice $\square($ $\mathsf{True} < 4 \Rightarrow \mathsf{jp} < 3) \iff \neg \Diamond \zeta$.

Model checking 2: Example. Simplified markings

For $\text{dom } m = \{1, 2, 4\}$ and $\zeta = \int \text{true} < 4 \land \neg \int p < 3$. Notice $\square($ $\mathsf{True} < 4 \Rightarrow \mathsf{jp} < 3) \iff \neg \Diamond \zeta$.

DTU

∙ Algorithm is correct.

- ∙ Procedure is 4-fold exponential.
	-
	-

- ∙ Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- ∙ Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- ∙ Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- ∙ Algorithm is correct.
- ∙ Procedure is 4-fold exponential.
	- ∙ Size of generated formula is exponential in the chop-depth.
	- ∙ Presburger formulas are checked in triple-exponential time.

- ∙ Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- ∙ Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- ∙ Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- ∙ Algorithm is correct.
- ∙ Procedure is 4-fold exponential.
	- ∙ Size of generated formula is exponential in the chop-depth.
	- ∙ Presburger formulas are checked in triple-exponential time.

- ∙ Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- ∙ Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- ∙ Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- ∙ Algorithm is correct.
- ∙ Procedure is 4-fold exponential.
	- ∙ Size of generated formula is exponential in the chop-depth.
	- ∙ Presburger formulas are checked in triple-exponential time.

- ∙ Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- ∙ Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- ∙ Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.

- ∙ Algorithm is correct.
- ∙ Procedure is 4-fold exponential.
	- ∙ Size of generated formula is exponential in the chop-depth.
	- ∙ Presburger formulas are checked in triple-exponential time.

- ∙ Preciseness when all chops is under same polarity and all conjunctions under the dual polarity.
- ∙ Quantifier elimination of side-condition is possible when all chops are in negative polarity. Procedure is then "just" 2-fold exponential.
- ∙ Prototype is implemented by William Pihl Heise in a using the solver Z3 as backend. The prototype has just been used on small examples. Algorithm seems promising.