
TrueTime: Simulation of Networked and
Embedded Control Systems

Anton Cervin

Department of Automatic Control
Lund University

Sweden

Contributions from Dan Henriksson, Martin Ohlin, and Karl-Erik Årzén

Anton Cervin TrueTime



Outline of Lecture

1 Time and scheduling
2 Interrupt handlers and task synchronization
3 The network blocks
4 Summary
5 Specification of “mini-project”

Anton Cervin TrueTime



Time primitives

Simulink provides a global time base

Each kernel block has its own local clock, with possible
offset and drift

Tasks may self-suspend (sleep)

ttCurrentTime

ttCurrentTime(time)

ttSleep(duration)

ttSleepUntil(time)

Anton Cervin TrueTime



Priority functions

The ready queue of the kernel is sorted by a priority
function, which is a function of the task attributes

Pre-defined priority functions exist for fixed-priority
(prioFP), deadline-monotonic (prioDM), and
earliest-deadline-first scheduling (prioEDF)

Individual tasks can be made non-preemptible
(ttNonpreemptible)

Example: the EDF priority function (C++):

double prioEDF(UserTask* t)

return t->absDeadline;

}

Anton Cervin TrueTime



Scheduling Hooks (C++ only)

Pieces of user code that are executed at different stages during
the execution of a task

Arrival hook – when a job is created

Release hook – when the job is first inserted in the ready
queue

Start hook – when the job executes its first segment

Suspend hook – when the job is preempted, blocked or
voluntarily goes to sleep

Resume hook – when the job resumes execution

Finish hook – when the job has executed its last segment

ttAttachHook(char* taskname, int ID, void (*hook)(UserTask*))

Anton Cervin TrueTime



Constant Bandwidth Servers (CBS)

Version 2.0 has built-in support for CBS scheduling [Abeni
and Buttazzo, 1998]

Assumes an EDF kernel (prioEDF must be selected)
A CBS is characterized by

a period Ts
a budget Qs

A task associated with a CBS cannot execute more than
the server budget period each server period (“sandboxing”)

Implemented using scheduling hooks

ttCreateCBS(name, Qs, Ts, type)

ttAttachCBS(taskname, CBSname)

ttSetCBSParameters(name, Qs, Ts)

Anton Cervin TrueTime



Multicore Scheduling

Version 2.0 supports partitioned multicore scheduling
One ready queue per core
The same local scheduling policy in each core

Tasks can be migrated between cores during runtime

ttSetNumberOfCPUs(nbr)

ttSetCPUAffinity(taskname, CPUnbr)

Anton Cervin TrueTime



Data Logging

Arbitrary events, intervals and values may be logged from
the user code

Written to MATLAB workspace when the simulation
terminates
Automatic task attribute logging provided for

Response time
Release latency
Start latency
Task execution time

ttCreateLog(logname, variable, size)

ttLogNow(logname)

ttLogStart(logname)

ttLogStop(logname)

ttLogValue(logname,value)

ttCreateLog(taskname, type, variable, size)

Anton Cervin TrueTime



Example: Three Controllers on one CPU

Three controller tasks controlling three different DC-servo
processes

Sampling periods hi = [0.006 0.005 0.004] s

Execution time of 0.002 s for all three tasks for a total
utilization of U = 1.23

Evaluate the effect of various scheduling policies on the
control performance

Use the logging functionality to monitor the response times
and sampling latency under the different scheduling
schemes

Anton Cervin TrueTime



Outline of Lecture

1 Time and scheduling
2 Interrupt handlers and task synchronization
3 The network blocks
4 Summary
5 Specification of “mini-project”

Anton Cervin TrueTime



Interrupt Handlers

Code executed in response to interrupts

Scheduled on a higher priority level than
tasks, using fixed priorities
Interrupt types

Timers (periodic or one-shot)
External (hardware) interrupts
Task overruns
Network interface

ttCreateHandler(hdlname, priority, codeFcn, data)

ttCreateTimer(timername, time, hdlname)

ttCreatePeriodicTimer(timername, start, period, hdlname)

ttRemoveTimer(timername)

ttAttachTriggerHandler(trignbr, hdlname)

Anton Cervin TrueTime



Overrun Handlers

Two special interrupt handlers may be associated with
each task (similar to Real-time Java)

A deadline overrun handler
An execution time overrun handler

Can be used to dynamically handle prolonged
computations and missed deadlines

Implemented by internal timers and scheduling hooks

ttAttachDLHandler(taskname, hdlname)

ttAttachWCETHandler(taskname, hdlname)

Anton Cervin TrueTime



Hooks for Overrun Handling

Release hook : Set up a timer to expire at the absolute
deadline of the task. The associated deadline overrun
handler is called if the timer expires
Start hook : Set up a timer corresponding to the
worst-case execution time (WCET) of the task
Suspend hook : Update execution time budget and
remove WCET timer
Resume hook : Set up the WCET timer for the remaining
budget
Finish hook : Remove both overrun timers

τ

t

Release Start Suspend Resume Finish

Anton Cervin TrueTime



Task synchronization and communication

Four different simulated mechanisms of synchronization and
communcation are supported:

Monitors

Events

Mailboxes

Semaphores

Anton Cervin TrueTime



Monitors

Monitors are used to model mutual exclusion between
tasks that share common data

Tasks waiting for monitor access are arranged according to
their respective priorities

The implementation supports standard priority inheritance
to avoid priority inversion

ttCreateMonitor(name)

ttEnterMonitor(name) (blocking)

ttExitMonitor(name)

Anton Cervin TrueTime



Events

Events are used for task synchronization and may be free
or associated with a monitor (condition variable)

ttNotifyAll will move all waiting tasks to the monitor
waiting queue or directly to the ready queue (if it is a free
event)

Events may, e.g., be used to trigger event-based
controllers from an interrupt handler

ttCreateEvent(name, monitorname)

ttWait(name) (blocking)

ttNotifyAll(name)

Anton Cervin TrueTime



Mailboxes

Communication of data between tasks is supported by
mailboxes

A ring buffer is used to store incoming messages

ttCreateMailbox(name, maxsize)

ttTryPost(name, msg)

ttPost(name, msg) (blocking)
msg = ttTryFetch(name)

ttFetch(name) (blocking)

msg = ttRetrieve(name)

Anton Cervin TrueTime



Semaphores

Tasks can also be synchronized using counting
semaphores

ttCreateSemaphone(name, initval, maxval)

ttTake(name) (blocking)

ttGive(name)

Anton Cervin TrueTime



Readers–Writers Example

Shared memory area must be protected using mutual
exclusion

Writers must wait for the buffer to be non-full

Readers must wait for the buffer to be non-empty

More sophisticated versions are possible (e.g. allowing
multiple readers but only one writer)

Anton Cervin TrueTime



Outline of Lecture

1 Time and scheduling
2 Interrupt handlers and task synchronization
3 The network blocks
4 Summary
5 Specification of “mini-project”

Anton Cervin TrueTime



The Network Blocks

Wired, wireless and ultrasound network blocks

Each network is identified by a unique number
Automatic connections between the kernel and network
blocks (via hidden Goto blocks)

Needed only to trigger the blocks – no data is passed
through the Simulink block connections

Anton Cervin TrueTime



The Wired Network Block

Supports eight common MAC layer
policies:

CSMA/CD (Ethernet)
CSMA/AMP (CAN)
Round Robin (Token bus)
FDMA
TDMA
Switched Ethernet
Flexray
PROFINET IO

Policy-dependent network parameters

Generates a transmission schedule

Anton Cervin TrueTime



Network Communication

Each node (kernel block) may be connected to several
network blocks
A dedicated interrupt handler may be associated with each
network

Triggered as a packet arrives

The actual message data can be an arbitrary MATLAB
variable (scalar, struct, cell array, etc)

Broadcast by specifying receiver number 0

ttSendMsg([network receiver], data, length, priority)

ttGetMsg(network)

ttAttachNetworkHandler(network, hdlname)

Anton Cervin TrueTime



Stand-Alone Network Interface Blocks

Eliminates the need of Kernel blocks

Event-triggered transmission of vector values

Anton Cervin TrueTime



Example: Networked Control Loop

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

Sensor/actuator node with time-driven sampler and
event-driven actuator

Event-driven controller node

Disturbance node generating high-priority traffic

Anton Cervin TrueTime



The Wireless Network Block

Used in basically the same way as the
wired network block

Supports two common MAC layer
policies:

802.11b/g (WLAN)
802.15.4 (ZigBee)

Variable network parameters

x and y inputs for node locations

Generates a transmission schedule

Anton Cervin TrueTime



The Wireless Network Model

Isotropic antennas
Default path-loss formula:

1

da

d – distance between nodes
(

=
√

(x1 − x2)2 + (y1 − y2)2
)

a – environment parameter (e.g., 2–4)

User-defined path-loss formula can be used to simulate
e.g. Rayleigh fading

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

db

sample

Rayleigh fading

Anton Cervin TrueTime



Transmission Errors

The signal-to-interference ratio in the receiver is calculated

Assuming additive Gaussian noise, the number of bit
errors is drawn from a probability distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

If the number of bit error exceeds the specified error
coding threshold, the packet is lost

Anton Cervin TrueTime



Wireless Network Parameters

Data rate (bits/s)
Transmit power (dBm)

configurable on a per node basis, can be reconfigured
during run-time

Receiver sensitivity (dBm)

Path-loss exponent or used-defined path-loss function

ACK timeout (s)

Maximum number of retransmissions

Error coding threshold

Anton Cervin TrueTime



Higher-level network protocols

Layers above MAC are not supported by TrueTime

Higher-level protocols can however be implemented as
applications
Some examples we have implemented:

TCP with random early detection (RED)
AODV routing

Anton Cervin TrueTime



The Battery Block

Simulation of battery-powered devices
Simple integrator model

Discharged or charged

Energy sinks:
Computations, radio transmissions, usage of
sensors and actuators, . . .

If the power input to a kernel block reaches zero,
the kernel freezes

ttSetKernelParameter(’energyconsumption’,value)

Anton Cervin TrueTime



Dynamic Voltage Scaling

The kernel CPU speed can be changed from the
application (e.g., to consume more or less power)

Independent from the local clock

ttSetKernelParameter(’cpuscaling’,value)

Anton Cervin TrueTime



The Ultrasound Network Block

Works similar to the other network blocks, but also
simulates a propagation delay (speed of sound)

Cannot send messages, but only broadcast ultrasound
pings

ttUltrasoundPing(network)

Anton Cervin TrueTime



Example: Power Control

Control of the DC-servo over a wireless network
Two nodes:

sensor/actuator node
controller node

Communication using wireless radio
Dynamic control of radio transmission power

increase or decrease transmission power depending on link
quality

Anton Cervin TrueTime



Example: Soccer

5+ 5 mobile robots communicating over a wireless network

Anton Cervin TrueTime



Outline of Lecture

1 Time and scheduling
2 Interrupt handlers and task synchronization
3 The network blocks
4 Summary
5 Specification of “mini-project”

Anton Cervin TrueTime



TrueTime – Summary

Co-Simulation of:
computations inside the nodes
tasks, interrupt handlers, scheduling hooks
wired or wireless communication between nodes
sensor and actuator dynamics
mobile robot dynamics
dynamics of the environment
dynamics of the physical plant under control
the batteries in the nodes

Control performance assessment
time domain
cost function calculations (via Monte Carlo simulations)

Anton Cervin TrueTime



Some Limitations

Developed as a research tool rather than as a tool for
system developers
Cannot express tasks and interrupt handlers directly using
production code

Code must be divided into code segments and execution
times must be assigned

The zero-crossing functions generate quite a few events [
large models tend to be slow
No built-in support for, e.g.,

higher-level network protocols
task migration between kernel blocks
. . .

Anton Cervin TrueTime



Outline of Lecture

1 Time and scheduling
2 Interrupt handlers and task synchronization
3 The network blocks
4 Summary
5 Specification of “mini-project”

Anton Cervin TrueTime



“Mini-project”

Simulation of a distributed consensus algorithm

6 mobile nodes should agree upon a location in the plane
to meet

Communication over a wireless network
Each node is modeled by

A Kernel block
Two integrator blocks (for the x and y positions)

Anton Cervin TrueTime



Distributed consensus

A simple algorithm to reach consensus regarding the state of n
integrator agents with dynamics żi = ui can be expressed as

ui(t) = K
∑

j∈N i

(

zj(t) − zi(t)
)

+ bi(t)

where K ăis a gain parameter andN i are the neighbours of
agent i (i.e., the nodes within communication range)

The bias term bi(t) should be zero if the nodes are to meet at a
common location.

Anton Cervin TrueTime



TrueTime Model

A model with six integrator agents connected to a wireless
network is provided (consensus.mdl)

Each kernel block has to be configured – use the same
initialization function and code function(s) for all blocks
The consensus algorithm can be implemented as a simple
periodic task (ttCreatePeriodicTask):

Collect all x and y values sent from your neighbours during
the last period (repeated calls to ttGetMsg)
Read your own x and y coordinates (ttAnalogIn)
Compute the control signals in the x and y directions
according to the formula
Output the control signals (ttAnalogOut)
Broadcast your own x and y position to your neighbours
(ttSendMsg with receiver 0)

Anton Cervin TrueTime



Extensions

Add bias terms to the consensus algorithm to simulate
“formation flight”

Let one node lead (by not running the consensus
algorithm) and let the other ones follow

Anton Cervin TrueTime


