
TrueTime: Simulation of Networked and
Embedded Control Systems

Anton Cervin

Department of Automatic Control
Lund University

Sweden

Anton Cervin TrueTime

Dept. of Automatic Control at Lund University

Founded in 1965 by Karl Johan Åström (IEEE Medal of Honor in 1993)

Approx. 50 persons

Anton Cervin TrueTime

Dept. of Automatic Control at Lund University

Basic and advanced control education for almost all engineering
disciplines at the faculty of engineering ((1000 students/year)

Research in many areas, including

modelling and control of complex systems
real-time systems and control
process control

Diverse applications:

robotics
medicine
telecommunication
automotive
windpower
. . .

Anton Cervin TrueTime

Real-time systems and control

 Control
Engineering

 Computer
Engineering

Real−Time
 Systems

All control systems are real-time systems

Many real-time systems are control systems

Anton Cervin TrueTime

Real-time systems and control

Control engineers need real-time systems to implement
their systems.

Computer engineers need control theory to build
“controllable” systems

Many interesting research problems in the interface

Anton Cervin TrueTime

Embedded real-time control systems

Limited computer resources
Cheap, embedded micro-controllers
Communication networks with limited bandwidth

The computer and the network are shared resources,
which must be scheduled

Delay and jitter from the implementation [control
performance degradation

Anton Cervin TrueTime

Tentative Schedule

Wednesday:

09:30–12:00 Introduction to automatic control

13:15–15:00 TrueTime tutorial 1

15:15–17:00 Computer exercise 1

Thursday:

09:00–12.00 TrueTime tutorial 2

13:15–16:00 Computer exercise 2 (miniproject)

Anton Cervin TrueTime

Acknowledgments

Some of the content has previously appeared in the ARTIST2
Graduate Course on Embedded Control Systems (held in
Valencia 2005, Prague 2006, Lund 2007 and Stockholm 2008)

Developed in close collaboration with Karl-Erik Årzén, with
important contributions from Dan Henriksson and Martin Ohlin.

Anton Cervin TrueTime

Lecture 1

Introduction to Automatic Control

TrueTime Lecture 1 – Introduction to Automatic Control

Outline of Lecture

1 Basic concepts
2 Computer control
3 An example: PID
4 Integrated control and scheduling (if time permits)

TrueTime Lecture 1 – Introduction to Automatic Control

Automatic control

Use of models and feedback

Activities:

Modeling

Analysis

Simulation

Control design

Implementation

TrueTime Lecture 1 – Introduction to Automatic Control

Automatic control

Sometimes called “the hidden
technology”:

Widely used

Very successful

Seldom talked about, except
when disaster strikes!

TrueTime Lecture 1 – Introduction to Automatic Control

What control system is (was!) this?

TrueTime Lecture 1 – Introduction to Automatic Control

TrueTime Lecture 1 – Introduction to Automatic Control

Example: track following in a DVD player

Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens

Pit

Track

trackpitch

[Bo Lincoln, Automatic Control LTH, 2003]

TrueTime Lecture 1 – Introduction to Automatic Control

Example: optimal growth of bacteria

Feed

Stirrer

Air

Exhaust
gas

[Lena de Maré, Automatic Control LTH, 2006]

TrueTime Lecture 1 – Introduction to Automatic Control

Example: stabilization of vehicle dynamics

U

V

r

d

af

ar

b

[Brad Schofield, Automatic Control LTH, 2007]

TrueTime Lecture 1 – Introduction to Automatic Control

More examples of control

Control of the economy using the central bank interest rate

Control of the blood glucose level in the human body

Congestion control in the TCP protocol

Recent textbook aimed at computer science students:

Hellerstein, Diao, Parekh and Tilbury (2004): Feedback Control
of Computing Systems

TrueTime Lecture 1 – Introduction to Automatic Control

Basic Setting

r
u y

Disturbances

Controller Process

Must handle two tasks:

Make the measurement signal y follow the reference r

Compensate for disturbances

How to

do several things with the control signal u

TrueTime Lecture 1 – Introduction to Automatic Control

Two fundamental control principles

Feedforward control

Feedback control

TrueTime Lecture 1 – Introduction to Automatic Control

Feedforward control

r u

Disturbances

Feedforward
Controller Process

y

Adjust the control signal based on the reference signal,
using knowledge of how the process works

Open loop

Real-world examples?

TrueTime Lecture 1 – Introduction to Automatic Control

Feedforward from Measurable Disturbances

r

u y

Measurable Disturbances
Other Disturbances

Feedforward
Controller Process

If some disturbances are measurable, they may be
compensated for

Corrective action before an error has occurred in the
process output

TrueTime Lecture 1 – Introduction to Automatic Control

Properties of Feedforward Control

+ Allows fast response to set-point changes

+ Allows efficient supression of measurable disturbances

− Requires an accurate process model

− Requires a stable process

TrueTime Lecture 1 – Introduction to Automatic Control

Feedback Control

A very powerful principle, that often leads to revolutionary
changes in the way systems are designed

The primary paradigm in automatic control

r u y

Disturbances

e

Σ

−1

Controller Process

Corrective action based on an error that has occurred

Closed loop

TrueTime Lecture 1 – Introduction to Automatic Control

Properties of Feedback Control

+ Reduces influence of disturbances

+ Reduces effect of component variations

+ Does not require exact models

− Feeds sensor noise into the system

− May lead to instability

TrueTime Lecture 1 – Introduction to Automatic Control

Putting It All Together

r u y

Measurable Disturbances
Other Disturbances

Controller Process

A good controller uses both feedback and feedforward

TrueTime Lecture 1 – Introduction to Automatic Control

Example: Cruise Control Using Feedforward

Desired
speed Throttle

Lookup
Table Car

Slope of road

Measured
speed

Open loop

Problems?

TrueTime Lecture 1 – Introduction to Automatic Control

Example: Cruise Control Using Feedback

Desired
speed Throttle

Feedback
controller Car

−1

Slope of road

Error

Σ

Measured
speed

Closed loop
Controller:

Error > 0: increase throttle
Error < 0: decrease throttle
But how much?

TrueTime Lecture 1 – Introduction to Automatic Control

Exempel: Cruise Control Using Combination

Desired
speed Feedback

controller Car

−1

Slope of road
Lookup
Table

Σ Σ

Measured
speed

Both proactive and reactive

TrueTime Lecture 1 – Introduction to Automatic Control

The servo problem

Focus on setpoint changes:

Typical design criteria:

Rise time, Tr
Overshoot, M

Settling time, Ts
Steady-state error, e0
. . .

TrueTime Lecture 1 – Introduction to Automatic Control

The regulator problem

Focus on process disturbances:

Typical design criteria:

Output variance

Control signal
variance

TrueTime Lecture 1 – Introduction to Automatic Control

Mathematical Models

Time domain:

Differential equations, e.g.

ÿ+ a1 ẏ+ a2y= b0u̇+ b1u

State space form
ẋ = Ax + Bu

y= Cx + Du

Frequency domain (linear systems only):

Laplace transform of signals and systems

Transfer function, G(s) = C(sI − A)−1B + D

Frequency response, G(iω)

TrueTime Lecture 1 – Introduction to Automatic Control

Outline of Lecture

1 Basic concepts
2 Computer control
3 An example: PID
4 Integrated control and scheduling (if time permits)

TrueTime Lecture 1 – Introduction to Automatic Control

Computer-controlled systems

Mix of continuous-time and discrete-time signals

TrueTime Lecture 1 – Introduction to Automatic Control

Networked control systems

Extra delay, possibly lost packets

TrueTime Lecture 1 – Introduction to Automatic Control

Sampling

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

DA-converter acts as a hold device

Normally, zero-order-hold is used [piecewise constant control
signals

TrueTime Lecture 1 – Introduction to Automatic Control

Aliasing

ω s =
2π
h
= sampling frequency

ω N =
ω s
2
= Nyquist frequency

Frequencies above the Nyquist frequency are folded and
appear as low-frequency signals.

The fundamental alias for a frequency f1 is given by

f = p(f1 + fN) mod (fs) − fN p

Above: f1 = 0.9, fs = 1, fN = 0.5, f = 0.1

TrueTime Lecture 1 – Introduction to Automatic Control

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the
Nyquist frequency

Analog filter
2-6th order Bessel or Butterworth filter
Difficulties with changing h (sampling interval)

Analog + digital filter
Fixed, fast sampling with fixed analog filter
Downsampling using digital LP-filter
Control algorithm at the lower rate
Easy to change sampling interval

The filter may have to be included in the control design

TrueTime Lecture 1 – Introduction to Automatic Control

Example – Prefiltering

ω d = 0.9, ω N = 0.5, ωalias = 0.1

6th order Bessel filter with ω B = 0.25

TrueTime Lecture 1 – Introduction to Automatic Control

Design approaches

Digital controllers can be designed in two different ways:

Discrete-time design – sampled control theory
Sample the continuous system
Design a digital controller for the sampled system

Z-transform domain
discrete state-space domain

Continuous time design + discretization
Design a continuous controller for the continuous system
Approximate the continuous design
Use fast sampling

TrueTime Lecture 1 – Introduction to Automatic Control

Disk drive example

Control of the arm of a disk drive (double integrator)

G(s) =
k

Js2

Continuous time controller

U(s) =
bK

a
Uc(s) − K

s+ b

s+ a
Y(s)

Discretized controller

u(tk) = K (
b
a
uc(tk) − y(tk) + x(tk))

x(tk + h) = x(tk) + h ((a− b)y(tk) − ax(tk))

TrueTime Lecture 1 – Introduction to Automatic Control

Disk drive example

y := adin(in2)

u := K*(b/a*uc-y+x)

dout(u)

x := x+h*((a-b)*y-a*x)

Sampling period h = 0.2/ω 0

TrueTime Lecture 1 – Introduction to Automatic Control

Increased sampling period

a) h = 0.5/ω 0 b) h = 1.08/ω 0

TrueTime Lecture 1 – Introduction to Automatic Control

Better performance?

Dead-beat control, h = 1.4/ω 0

u(tk) = t0uc(tk) + t1uc(tk−1) − s0y(tk) − s1y(tk−1) − r1u(tk−1)

TrueTime Lecture 1 – Introduction to Automatic Control

Sampling of systems

Look at the system from the point of view of the computer

Zero-order-hold sampling

Let the inputs be piecewise constant

Look at the sampling points tk only

Solve the system equation

TrueTime Lecture 1 – Introduction to Automatic Control

Sampling a continuous-time system

Process:
dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Solve the system equation:

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′)Bu(s′) ds′

= eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′) ds′ Bu(tk) (u const.)

= eA(t−tk)x(tk) +

∫ t−tk

0

eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

TrueTime Lecture 1 – Introduction to Automatic Control

Periodic sampling

Assume periodic sampling, i.e. tk = kh. Then

x(kh+ h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =

∫ h

0

eAs ds B

Time-invariant linear system!

TrueTime Lecture 1 – Introduction to Automatic Control

Example: Sampling of double integrator

dx

dt
=









0 1

0 0








x +









0

1








u

y=


1 0


 x

We get

Φ = eAh =









1 h

0 1









Γ =

∫ h

0









s

1








ds =









h2/2
h









Several ways to calculate Φ and Γ. Matlab

TrueTime Lecture 1 – Introduction to Automatic Control

Stability region

In continuous time the stability region is the complex left
half plane, i.e., the system is stable if all the poles are in
the left half plane.

In discrete time the stability region is the unit circle.

1

1

TrueTime Lecture 1 – Introduction to Automatic Control

Control design

A large variety of control design methods are available in digital
control theory, e.g.:

state-feedback control – pole-placement

LQ control

observer-based state feedback control

LQG control

. . .

Outside the scope of this course

TrueTime Lecture 1 – Introduction to Automatic Control

Computational Delay

Problem: u(tk) cannot be generated instantaneously at time tk
when y(tk) is sampled

Control delay (computational delay) due to computation time

LOOP
 wait for clock interrupt;
 read analog input;
 perform calculations;
 set analog output;
END;

Control delay

y

Time

Time

u

y(t)
k

k+1y(t)

k+2y(t)

k+3y(t)

k

k+1
k+2

k+3

u(t)
u(t)

u(t)
u(t)

Control
delay

TrueTime Lecture 1 – Introduction to Automatic Control

Three approaches

1. Ignore the computational delay

often justified, if it is small compared to h
write the code so that the delay is minimized, i.e., minimize
the operations performed between AD and DA
divide the code into two parts: CalculateOutput and
UpdateStates

2. Design the controller to be robust against variations in the
computational delay

complicated

3. Compensate for the computational delay

include the computational delay in model and the design
write the code so that the delay is constant, e.g. one
sample delay

TrueTime Lecture 1 – Introduction to Automatic Control

Minimize Control Delays

General controller representation:

x(k+ 1) = Fx(k) + Gy(k) + Gryre f (k)

u(k) = Cx(k) + Dy(k) + Dryre f (k)

Do as little as possible between AdIn and DaOut:

PROCEDURE Regulate;

BEGIN

AdIn(y);

(* CalculateOutput *)

u := u1 + D*y + Dr*yref;

DaOut(u);

(* UpdateStates *)

x := F*x + G*y + Gr*yref;

u1 := C*x;

END Regulate;

TrueTime Lecture 1 – Introduction to Automatic Control

Sampling Interval

Number of samples per rise time, Tr, of the closed loop system

Nr =
Tr

h
(4− 10

With long sampling intervals it may take long before
disturbances are detected

TrueTime Lecture 1 – Introduction to Automatic Control

Discretization of continuous-time controllers

Basic idea: Reuse the analog design

Want to get:

A/D + Algorithm + D/A (G(s)

Methods:

Approximate derivatives by differences

Other discretization methods (Matlab)

TrueTime Lecture 1 – Introduction to Automatic Control

Some common discretization methods

Forward Difference (Euler’s method):

dx(t)

dt
(
x(tk+1) − x(tk)

h

Backward Difference:

dx(t)

dt
(
x(tk) − x(tk−1)

h

Tustin:
dx(t)
dt
+ dx(tk+1)

dt

2
(
x(tk+1) − x(tk)

h

TrueTime Lecture 1 – Introduction to Automatic Control

Stability of discretizations

How is the continuous-time stability region (left half plane)
mapped?

TrueTime Lecture 1 – Introduction to Automatic Control

Outline of Lecture

1 Basic concepts
2 Computer control
3 An example: PID
4 Integrated control and scheduling (if time permits)

TrueTime Lecture 1 – Introduction to Automatic Control

An Example: PID Control

Proportional-Integral-Derivative control

The oldest controller type (early 1900’s)
The most widely used

Pulp & paper 86%
Steel 93%
Oil refineries 93%

Much to learn!

TrueTime Lecture 1 – Introduction to Automatic Control

The Textbook Algorithm

u(t) = K
(

e(t) + 1
Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)

U(s) = KE(s) +
K

sTi
E(s) + KTdsE(s)

= P + I + D

TrueTime Lecture 1 – Introduction to Automatic Control

Proportional Term

u =











umax e > e0

K e+ u0 −e0 < e < e0

umin e < −e0

TrueTime Lecture 1 – Introduction to Automatic Control

Properties of P-Control

0 5 10 15 20
0

0.5

1

1.5
Set point and measured variable

0 5 10 15 20

-2

0

2

4

6 Control variable

Kc=5

Kc=2

Kc=1

Kc=5

Kc=2
Kc=1

stationary error

increased K means faster speed, increased noise
sensitivity, worse stability

TrueTime Lecture 1 – Introduction to Automatic Control

Errors with P-control

Control signal:
u = K e+ u0

Error:
e =
u− u0
K

Error removed if:

1 K equals infinity
2 u0 = u

Solution: Automatic way to obtain u0

TrueTime Lecture 1 – Introduction to Automatic Control

Integral Term

u = K e+ u0

u = K

(

e+
1

Ti

∫

e(t)dt

)

(PI)

e

t

–

+

Stationary error present →
∫

edt increases → u increases → y
increases → the error is not stationary

TrueTime Lecture 1 – Introduction to Automatic Control

Properties of PI-Control

0 5 10 15 20
0

0.5

1

1.5
Set point and measured variable

0 5 10 15 20
0

1

2

Control variable

Ti=1
Ti=2

Ti=5

Ti=¥

Ti=1

Ti=2

Ti=5

Ti=¥

removes stationary error

smaller Ti implies worse stability, faster steady-state error
removal

TrueTime Lecture 1 – Introduction to Automatic Control

Prediction

A PI-controller contains no prediction

The same control signal is obtained for both these cases:

TrueTime Lecture 1 – Introduction to Automatic Control

Derivative Part

P:
u(t) = K e(t)

PD:

u(t) = K

(

e(t) + Td
de(t)

dt

)

(K e(t+ Td)

Td = Prediction horizon

TrueTime Lecture 1 – Introduction to Automatic Control

Properties of PD-Control

0 5 10 15 20
0

0.5

1

Set point and measured variable

0 5 10 15 20

-2

0

2

4

6 Control variable

Td=0.1

Td=0.5

Td=2

Td=0.1
Td=0.5
Td=2

Td too small, no influence

Td too large, decreased performance

In industrial practice the D-term is often turned off.

TrueTime Lecture 1 – Introduction to Automatic Control

Algorithm Modifications

Modifications are needed to make the controller practically
useful

Limitations of derivative gain

Derivative weighting

Setpoint weighting

Handle control signal limitations

TrueTime Lecture 1 – Introduction to Automatic Control

Limitations of derivative gain

We do not want to apply derivation to high frequency
measurement noise, therefore the following modification is
used:

sTd (
sTd

1+ sTd/N

N = maximum derivative gain, often 10− 20

TrueTime Lecture 1 – Introduction to Automatic Control

Derivative weighting

The setpoint is often constant for long periods of time

Setpoint often changed in steps → D-part becomes very large.

Derivative part applied on part of the setpoint or only on the
measurement signal.

D(s) =
sTd

1+ sTd/N
(γ Ysp(s) − Y(s))

Often, γ = 0 in process control, γ = 1 in servo control

TrueTime Lecture 1 – Introduction to Automatic Control

Setpoint weighting

An advantage to also use weighting on the setpoint.

u = K (ysp − y)

replaced by
u = K (β ysp − y)

0 ≤ β ≤ 1

A way of introducing feedforward from the reference signal

Improved set-point responses.

TrueTime Lecture 1 – Introduction to Automatic Control

Setpoint weighting

0 20 40 60
0

0.5

1

1.5 Set point and measured variable

0 20 40 60
0

1

2

3 Control variable

beta=1

beta=0.5
beta=0

beta=1
beta=0.5

beta=0

TrueTime Lecture 1 – Introduction to Automatic Control

Control Signal Limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue
to grow – integrator (reset) windup.

When the control signal saturates the integral part will integrate
up to a very large value. This may cause large overshoots.

0 10 20
0

0.5

1

1.5

2 Output y and yref

0 10 20

-0.2

0

0.2

Control variable u

TrueTime Lecture 1 – Introduction to Automatic Control

Anti-Reset Windup

Several solutions exist:

limit the setpoint variations (saturation never reached)

conditional integration (integration is switched off when the
control is far from the steady-state)

tracking (back-calculation)

TrueTime Lecture 1 – Introduction to Automatic Control

Tracking

when the control signal saturates, the integral is
recomputed so that its new value gives a control signal at
the saturation limit

to avoid resetting the integral due to, e.g., measurement
noise, the recomputation is done dynamically, through a
LP-filter with a time constant Tt.

TrueTime Lecture 1 – Introduction to Automatic Control

Tracking

TrueTime Lecture 1 – Introduction to Automatic Control

Tracking

0 10 20 30
0

0.5

1

0 10 20 30
-0.05

0.05

0.15

0 10 20 30
-0.8

-0.4

0

r

y

u

I

TrueTime Lecture 1 – Introduction to Automatic Control

Discretization

P-part:

uP(k) = K (β ysp(k) − y(k))

TrueTime Lecture 1 – Introduction to Automatic Control

Discretization

I-part:

I(t) =
K

Ti

t
∫

0

e(τ)dτ

dI

dt
=
K

Ti
e

Forward difference

I(tk+1) − I(tk)

h
=
K

Ti
e(tk)

I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part can be precalculated in UpdateStates

Backward difference
The I-part cannot be precalculated, i(k) = f(e(k))

TrueTime Lecture 1 – Introduction to Automatic Control

Discretization

D-part (assume γ = 0):

D = K
sTd

1+ sTd/N
(−Y(s))

Td

N

dD

dt
+ D = −KTd

dy

dt

Forward difference (unstable for small Td)

Backward difference

Td

N

D(tk) − D(tk−1)

h
+ D(tk) = −KTd

y(tk) − y(tk−1)

h

D(tk) =
Td

Td + Nh
D(tk−1) −

KTdN

Td + Nh
(y(tk) − y(tk−1))

TrueTime Lecture 1 – Introduction to Automatic Control

Discretization

Tracking:

v := P + I + D;

u := sat(v,umax,umin);

I := I + (K*h/Ti)*e + (h/Tt)*(u - v);

TrueTime Lecture 1 – Introduction to Automatic Control

Tuning

Parameters: K ,Ti,Td,N, β ,γ ,Tt

Methods:

empirically, rules of thumb, tuning charts

model-based tuning, e.g., pole-placement
automatic tuning experiments

Ziegler–Nichols’ methods
relay method

TrueTime Lecture 1 – Introduction to Automatic Control

PID code

PID-controller with anti-reset windup (γ = 0).

y = yIn.get();

e = yref - y;

D = ad * D - bd * (y - yold);

v = K*(beta*yref - y) + I + D;

u = sat(v,umax,umin)

uOut.put(u);

I = I + (K*h/Ti)*e + (h/Tt)*(u - v);

yold = y

ad and bd are precalculated parameters given by the backward
difference approximation of the D-term.

TrueTime Lecture 1 – Introduction to Automatic Control

Industrial Reality

Canadian paper mill audit. Average paper mill: 2000 loops,
97% use PI, remaining 3% are PID, adaptive, ...

default settings often used

poor performance due to bad tuning and actuator problems

TrueTime Lecture 1 – Introduction to Automatic Control

Outline of Lecture

1 Basic concepts
2 Computer control
3 An example: PID
4 Integrated control and scheduling (if time permits)

TrueTime Lecture 1 – Introduction to Automatic Control

Control system development today

TrueTime Lecture 1 – Introduction to Automatic Control

Problems

The control engineer does not care about the
implementation

“trivial”
“buy a fast computer”

The software engineer does not understand controller
timing

“τ i = (Ti, Di, Ci)”
“hard deadlines”

Control theory and real-time scheduling theory have
evolved as separate subjects for thirty years

TrueTime Lecture 1 – Introduction to Automatic Control

In the beginning. . .

Liu and Layland (1973): “Scheduling algorithms for
multiprogramming in a hard-real-time environment.” Journal of
the ACM, 20:1.

Rate-monotonic (RM) scheduling

Earliest-deadline-first (EDF) scheduling
Motivated by process control

Samples “arrive” periodically
Control response computed before end of period
“Any control loops closed within the computer must be
designed to allow at least an extra unit sample delay.”

TrueTime Lecture 1 – Introduction to Automatic Control

Common assumptions about control tasks

In the simple task model, a task τ i is described by

a fixed period Ti
a fixed, known worst-case execution time Ci
a hard relative deadline Di = Ti

Is this model suitable for control tasks?

TrueTime Lecture 1 – Introduction to Automatic Control

Fixed period?

Not necessarily:

Different sampling periods could be appropriate for
different operating modes

Some controllers are not sampled against time but are
invoked by events

The sampling period could be adjusted on-line by a
supervisory task (“feedback scheduling”)

TrueTime Lecture 1 – Introduction to Automatic Control

Fixed and known WCET?

Not always:

WCET analysis is a very hard problem
May have to use estimates or measurements

Some controllers switch between modes with very different
execution times

Hybrid controllers

Some controllers can explicitly trade off execution time for
quality of control

“Any-time” optimization algorithms
Model-predictive control (MPC)
Long execution time [high quality of control

TrueTime Lecture 1 – Introduction to Automatic Control

Hard deadlines?

Often not:

Controller deadlines are often firm rather than hard
Often OK to miss a few outputs, but not too many in a row
Depends on what happens when a deadline is missed:

Task is allowed to complete late – often OK
Task is aborted at the deadline – worse

At the same time, meeting all deadlines does not
guarantee stability of the control loop

Di = Ti is motivated by runability conditions only

TrueTime Lecture 1 – Introduction to Automatic Control

Inputs and outputs?

Completely missing from the simple task model:

When are the inputs (measurement signals) read?
Beginning of period?
When the task starts?

When are the outputs (control signals) written?
When the task finishes?
End of period?

TrueTime Lecture 1 – Introduction to Automatic Control

Inverted pendulum example

Control of three inverted pendulums using one CPU:

y1

y1

y2

y2

y3

y3

u1

u1

u2

u2

u3

u3

CPU
+

RTOS

TrueTime Lecture 1 – Introduction to Automatic Control

The pendulums

ag

l

y

u

A simple second-order model is given by

d2y

dt2
= ω 20 sin y+ uω 20 cos y

where ω 0 =
√

�
l

is the natural frequency of the pendulum.

Lengths l = {1, 2, 3} cm [ω 0 = {31, 22, 18} rad/s

TrueTime Lecture 1 – Introduction to Automatic Control

Control design

Linearization around the upright equilibrium gives the
state-space model

dx

dt
=









0 1

ω 20 0








x +









0

ω 20








u

y=


1 0


 x

Model sampled using periods h = {10, 14.5, 17.5} ms

Controllers based on state feedback from observer,
designed using pole placement

TrueTime Lecture 1 – Introduction to Automatic Control

Control design, Cont’d

State feedback poles specified in continuous time as

s2 + 1.4ω cs+ω 2c = 0

ω c = {53, 38, 31} rad/s

Observer poles specified in continuous time as

s2 + 1.4ω os+ω 2o = 0

ω o = {106, 75, 61} rad/s

TrueTime Lecture 1 – Introduction to Automatic Control

Implementation

A periodic timer interrupt samples the plant output and
triggers control task
Each controller i is implemented as a task:

y := ReadSample(i);

u := CalculateControl(y);

AnalogOut(i,u);

Assumed execution time: C = 3.5 ms

TrueTime Lecture 1 – Introduction to Automatic Control

Simulation 1 – Ideal case

Each controller runs on a separate CPU.

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
ut

pu
t

y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
pu

t
u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

TrueTime Lecture 1 – Introduction to Automatic Control

Schedulability analysis

Assume Di = Ti
CPU utilization U =

∑3
i=1

Ci
Ti
= 0.79

Schedulable under EDF, since U < 1

Schedulable under RM?

U > 3(21/3 − 1) = 0.78 [Cannot say

Compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5
2 14.5 14.5 3.5 7.0
3 17.5 17.5 3.5 14.0

∀i : Ri < Di [Yes

TrueTime Lecture 1 – Introduction to Automatic Control

Simulation 2 – Rate-monotonic scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
ut

pu
t

y
Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
pu

t
u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

10

Time

Loop 3 becomes unstable

TrueTime Lecture 1 – Introduction to Automatic Control

Simulation 3 – Earliest-deadline-first scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
ut

pu
t

y
Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
pu

t
u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

All loops are OK

TrueTime Lecture 1 – Introduction to Automatic Control

Conclusion

Schedulabiliy does not imply stability

Stability does not require schedulability

The relation between scheduling parameters and the
control performance is complex and can be studied
through analysis or simulation

TrueTime Lecture 1 – Introduction to Automatic Control

