
Computation Tree Logic (CTL) &
Basic Model Checking Algorithms

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of Computing Science

Res. Grp. Hybride Systeme

Oldenburg, Germany

02917: CTL & Model Checking – p.1/37

What you’ll learn

1. Rationale behind declarative specifications:
• Why operational style is insufficient

2. Computation Tree Logic CTL:
• Syntax
• Semantics: Kripke models

3. Explicit-state model checking of CTL:
• Recursive coloring

02917: CTL & Model Checking – p.2/37

Operational models
Nowadays, a lot of ES design is based on executable behavioral
models of the system under design, e.g. using
• Statecharts (a syntactically sugared variant of Moore automata)
• VHDL.

Such operational models are good at
• supporting system analysis
• simulation / virtual prototyping

• supporting incremental design
• executable models

• supporting system deployment
• executable model as “golden device”
• code generation for rapid prototyping or final product
• hardware synthesis

02917: CTL & Model Checking – p.3/37

Operational models

...are bad at
• supporting non-operational descriptions:
• What instead of how.
• E.g.: Every request is eventually answered.

• supporting negative requirements:
• “Thou shalt not...”
• E.g.: The train ought not move, unless it is manned.

• providing a structural match for requirement lists:
• System has to satisfy R1 and R2 and ...
• If system fails to satisfy R1 then R2 should be satisfied.

02917: CTL & Model Checking – p.4/37

Multiple viewpoints

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Consistent?

Requirements
analysis

Programming

"How?"

Algorithmics
"What?"

Aspects

Consistent?

"Consistent?"

Tests & proofs

Validation / verification

02917: CTL & Model Checking – p.5/37

Model checking

Device Specification

Device Descript.
architecture behaviour
of processor is

process fetch
 if halt=0 then
 if mem_wait=0 then
 nextins <= dport
 ...

Model Checker

♦(π ⇐ φ)

Hello world

This is DeDuCe V 1.4

Give me your design

Approval/
Counterexample

02917: CTL & Model Checking – p.6/37

Exhaustive state-space search

Automatic verification/falsification of invariants

02917: CTL & Model Checking – p.7/37

InApproach EmptyEmpty

en
te

r!

le
av

e!

Safety requirement: Gate has to be closed whenever a train is in “In”.

02917: CTL & Model Checking – p.8/37

The gate model

Open

Opening

~enter?

enter?

~leave?

leave?

Closing

Closed

Track model
— safe abstraction —

leave!

enter!
Empty Appr. In

02917: CTL & Model Checking – p.9/37

Automatic check

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open
~enter

~leave

~enter

~leave

~enter

~leave

enter

enter ~enter

~leave ~leave

leave

leave

Empty Appr. In

Appr. InEmpty

Empty

Empty

Appr.

Appr. In

In

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

1

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

1

2 2

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

1

2 2

3

4

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

1

2 2

3

4 5

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In0

1

2 2

3

4 5

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In

02917: CTL & Model Checking – p.10/37

Verification result

0

1

2 2

3

4 5

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty App.

App.

App.

App.

In

In

In

In

Stimuli: Empty, Approach, In , Empty , Approach, In.
Gate reaction: Open , Closing , Closed, Opening, Open , Open.

02917: CTL & Model Checking – p.11/37

Computation Tree Logic

02917: CTL & Model Checking – p.12/37

Syntax of CTL

We start from a countable set AP of atomic propositions.
The CTL formulae are then defined inductively:
• Any proposition p ∈ AP is a CTL formula.
• The symbols ⊥ and > are CTL formulae.
• If φ and ψ are CTL formulae, so are

¬φ, φ∧ψ, φ∨ ψ, φ→ ψ

EXφ, AXφ
EFφ, AFφ
EGφ, AGφ
φEUψ, φAUψ

02917: CTL & Model Checking – p.13/37

Semantics (informal)

• E and A are path quantifiers:
• A: for all paths in the computation tree . . .
• E: for some path in the computation tree . . .

• X, F, G und U are temporal operators which refer to the path
under investigation, as known from LTL:
• Xφ (Next) : evaluate φ in the next state on the path
• Fφ (Finally) : φ holds for some state on the path
• Gφ (Globally) : φ holds for all states on the path
• φUψ (Until) : φ holds on the path at least until ψ holds

N.B. Path quantifiers and temporal operators are compound in
CTL: there never is an isolated path quantifier or an isolated tem-
poral operator. There is a lot of things you can’t express in CTL
because of this...

02917: CTL & Model Checking – p.14/37

Semantics (formal)

CTL formulae are interpreted over Kripke structures.:
A Kripke structure K is a quadruple K = (V, E, L, I) with
• V a set of vertices (interpreted as system states),
• E ⊆ V × V a set of edges (interpreted as possible transitions),
• L ∈ V → P(AP) labels the vertices with atomic propositions that

apply in the individual vertices,
• I ⊆ V is a set of initial states.

q1

q
q3 q4

p
q2

p,q

p,r

02917: CTL & Model Checking – p.15/37

Paths in Kripke structures

A path π in a Kripke structure K = (V, E, L, I) is an edge-consistent
infinite sequence of vertices:
• π ∈ Vω,
• (πi, πi+1) ∈ E for each i ∈ IN.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

trπ = L(π)
def
= 〈L(π0), L(π1), L(π2), . . .〉

that path formulae (Xφ,Fφ,Gφ,φUψ) can be interpreted on.

02917: CTL & Model Checking – p.16/37

Semantics (formal)

Let K = (V, E, L, I) be a Kripke structure and v ∈ V a vertex of K.
• v, K |= >
• v, K 6|= ⊥
• v, K |= p for p ∈ AP iff p ∈ L(v)
• v, K |= ¬φ iff v, K 6|= φ,
• v, K |= φ∧ψ iff v, K |= φ and v, K |= ψ,
• v, K |= φ∨ψ iff v, K |= φ or v, K |= ψ,
• v, K |= φ⇒ ψ iff v, K 6|= φ or v, K |= ψ.

02917: CTL & Model Checking – p.17/37

Semantics (contd.)

• v, K |= EXφ iff there is a path π in K s.t. v = π1 and π2, K |= φ,
• v, K |= AXφ iff all paths π in K with v = π1 satisfy π2, K |= φ,

• v, K |= EFφ iff there is a path π in K s.t. v = π1 and πi, K |= φ for some i,
• v, K |= AFφ iff all paths π in K with v = π1 satisfy πi, K |= φ for some i (that

may depend on the path),

• v, K |= EGφ iff there is a path π in K s.t. v = π1 and πi, K |= φ for all i,
• v, K |= AGφ iff all paths π in K with v = π1 satisfy πi, K |= φ for all i,

• v, K |= φEUψ , iff there is a path π in K s.t. v = π1 and some k ∈ IN s.t.
πi, K |= φ for each i < k and πk, K |= ψ,

• v, K |= φAUψ , iff all paths π in K with v = π1 have some k ∈ IN s.t.
πi, K |= φ for each i < k and πk, K |= ψ.

A Kripke structure K = (V, E, L, I) satisfies φ iff all its initial states satisfy φ,

i.e. iff is, K |= φ for all is ∈ I.

02917: CTL & Model Checking – p.18/37

CTL Model Checking

Explicit-state algorithm

02917: CTL & Model Checking – p.19/37

Rationale

We will extend the idea of verification/falsification by exhaustive
state-space exploration to full CTL.
• Main technique will again be breadth-first search, i.e. graph

coloring.
• Need to extend this to other modalities than AG ..
• Need to deal with nested modalities.

02917: CTL & Model Checking – p.20/37

Model-checking CTL: General layout

Given: a Kripke structure K = (V, E, L, I) and a CTL formula φ

Core algorithm: find the set Vφ ⊆ V of vertices in K satisfying φ by
1. for each atomic subformula p of φ, mark the set Vp ⊆ V of

vertices in K satisfying φ
2. for increasingly larger subformulae ψ of φ, synthesize the

marking Vψ ⊆ V of nodes satisfying ψ from the markings for
ψ’s immediate subformulae

until all subformulae of φ have been processed
(including φ itself)

Result: report “K |= φ” iff Vφ ⊇ I

02917: CTL & Model Checking – p.21/37

Reduction

The tautologies

φ∨ψ ⇔ ¬(¬φ∧ ¬ψ)

AXφ ⇔ ¬EX¬φ

AGφ ⇔ ¬EF¬φ

EFφ ⇔ >EUφ
EGφ ⇔ ¬AF¬φ

φAUψ ⇔ ¬((¬ψ)EU¬(φ∨ψ)) ∧ AFψ

indicate that we can rewrite each formula to one only containing
atomic propositions, ¬,∧,EX , EU ,AF .

After preprocessing, our algorithm need only tackle these!

02917: CTL & Model Checking – p.22/37

Model-checking CTL: Atomic propositions

Given: A finite Kripke structure with vertices V and edges E and a
labelling function L assigning atomic propositions to vertices.

Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: O(|V |)

02917: CTL & Model Checking – p.23/37

Model-checking CTL: ¬φ

Given: A set Vφ of vertices satisfying formula φ.

Algorithm: Mark all vertices not belonging to Vφ.

Complexity: O(|V |)

02917: CTL & Model Checking – p.24/37

Model-checking CTL: φ∧ψ

Given: Sets Vφ and Vψ of vertices satisfying formulae φ or ψ, resp.

Algorithm: Mark all vertices belonging to Vφ ∩ Vψ.

Complexity: O(|V |)

02917: CTL & Model Checking – p.25/37

Model-checking CTL: EXφ

Given: Set Vφ of vertices satisfying formulae φ.

Algorithm: Mark all vertices that have a successor state in Vφ.

Complexity: O(|V | + |E|)

02917: CTL & Model Checking – p.26/37

Model-checking CTL: φEUψ

Given: Sets Vφ and Vψ of vertices satisfying formulae φ or ψ, resp.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vψ.
2. Repeat

if there is a state in Vφ that has some successor state
marked then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of Vφ ⊂ V .

Complexity: O(|V | + |E|) if breadth-first search is used.

02917: CTL & Model Checking – p.27/37

Model-checking CTL: AFφ

Given: Set Vφ of vertices satisfying formula φ.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vφ.
2. Repeat

if there is a state in V that has all successor states marked
then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of V .

Complexity: O(|V | · (|V | + |E|)).

02917: CTL & Model Checking – p.28/37

Model-checking CTL: EGφ, for efficiency

Given: Set Vφ of vertices satisfying formula φ.

Algorithm: Incremental marking by
1. Strip Kripke structure to Vφ-states:

(V, E) (Vφ, E ∩ (Vφ × Vφ)).
 Complexity: O(|V | + |E|)

2. Mark all states belonging to loops in the reduced graph.
 Complexity: O(|Vφ| + |Eφ|) by identifying strongly connected

components.
3. Repeat

if there is a state in Vφ that has some successor states
marked then mark it also

until no new state is found.
 Complexity: O(|Vφ| + |Eφ|)

Complexity: O(|V | + |E|).

02917: CTL & Model Checking – p.29/37

Model-checking CTL: Main result

Theorem: It is decidable whether a finite Kripke structure (V, E, L, I)
satisfies a CTL formula φ.
The complexity of the decision procedure is O(|φ| · (|V | + |E|)),
i.e.
• linear in the size of the formula, given a fixed Kripke structure,
• linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in
number of parallel components in the system model.

02917: CTL & Model Checking – p.30/37

Appendix

Fair Kripke Structures &

Fair CTL Model Checking

02917: CTL & Model Checking – p.31/37

Fair Kripke Structures

A fair Kripke structure is a pair (K,F), where
• K = (V, E, L, I) is a Kripke structure
• F ⊆ P(V) is set of vertice sets, called a fairness condition.

A fair path π in a fair Kripke structure ((V, E, L, I),F) is an
edge-consistent infinite sequence of vertices which visits each set
F ∈ F infinitely often:
• π ∈ Vω,
• (πi, πi+1) ∈ E for each i ∈ IN,
• ∀ F ∈ F .∃∞i ∈ IN. πi ∈ F.

Note the similarity to (generalized) Büchi acceptance!

02917: CTL & Model Checking – p.32/37

Fair CTL: Semantics
• v, K,F |=F EXφ iff there is a fair path π in K s.t. v = π0 and π1, K,F |=F φ,
• v, K,F |=F AXφ iff all fair paths π in K with v = π0 satisfy π1, K,F |=F φ,

• v, K,F |=F EFφ iff there is a fair path π in K s.t. v = π0 and πi, K,F |=F φ for
some i,

• v, K,F |=F AFφ iff all fair paths π in K with v = π0 satisfy πi, K,F |=F φ for
some i (that may depend on the fair path),

• v, K,F |=F EGφ iff there is a fair path π in K s.t. v = π0 and πi, K,F |=F φ for
all i,

• v, K,F |=F AGφ iff all fair paths π in K with v = π0 satisfy πi, K,F |=F φ for
all i,

• v, K,F |=F φEUψ , iff there is a fair path π in K s.t. v = π0 and some k ∈ IN
s.t. πi, K,F |=F φ for each i < k and πk, K,F |=F ψ,

• v, K,F |=F φAUψ , iff all fair paths π in K with v = π0 have some k ∈ IN s.t.
πi, K,F |=F φ for each i < k and πk, K,F |=F ψ.

A fair Kripke structure ((V, E, L, I),F) satisfies φ, denoted ((V, E, L, I),F) |=F φ,
iff all its initial states satisfy φ, i.e. iff is, K,F |=F φ for all is ∈ I.

02917: CTL & Model Checking – p.33/37

Model-checking CTL: Fair states

Lemma: Given a fair Kripke structure (((V, E, L, I),F), the set
Fair ⊆ V of states from which a fair path originates can be
determined algorithmically.

Alg.: This is a problem of finding adequate SCCs:
1. Find all SCCs in K.
2. Select those SCCs that do contain at least one state from

each fairness set F ∈ F .
3. Find all states from which at least one of the selected SCCs

is reachable.

02917: CTL & Model Checking – p.34/37

Model-checking fair CTL: EXφ

Given: Set Vφ of vertices fairly satisfying formulae φ.

Algorithm: Mark all vertices that have a successor state in Vφ∩Fair .

Note that the intersection with Fair is necessary even though the states in Vφ
fairly satisfy φ:
• φ may be an atomic proposition, in which case fairness is irrelevant;
• φ may start with an A path quantifier that is trivially satisfied by non-

existence of a fair path.

02917: CTL & Model Checking – p.35/37

Model-checking fair CTL: φEUψ

Given: Sets Vφ and Vψ of vertices fairly satisfying formulae φ or ψ,
resp.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vψ∩Fair .
2. Repeat

if there is a state in Vφ that has some successor state
marked then mark it also

until no new state is found.

02917: CTL & Model Checking – p.36/37

Model-checking fair CTL: EGφ

Given: Set Vφ of vertices fairly satisfying formula φ.

Algorithm: Incremental marking by
1. Strip Kripke structure to Vφ-states:

(V, E) (Vφ, E ∩ (Vφ × Vφ)).
2. Mark all states that can reach a fair SCC in the reduced

graph.
(Same algorithm as for finding the set Fair , yet applied to the reduced
graph.)

02917: CTL & Model Checking – p.37/37

	What you'll learn
	Operational models
	Operational models
	Multiple viewpoints
	Model checking
	
	
	The gate model
	Automatic check
	Verification result
	
	Syntax of CTL
	Semantics (informal)
	Semantics (formal)
	Paths in Kripke structures
	Semantics (formal)
	Semantics (contd.)
	
	Rationale
	Model-checking CTL: General layout
	Reduction
	Model-checking CTL: Atomic propositions
	Model-checking CTL: $
eg phi $
	Model-checking CTL: $phi wedge psi $
	Model-checking CTL: $EX phi $
	Model-checking CTL: $phi {
m EU} psi $
	Model-checking CTL: ${
m AF} phi $
	Model-checking CTL: ${
m EG} phi $, for efficiency
	Model-checking CTL: Main result
	
	Fair Kripke Structures
	Fair CTL: Semantics
	Model-checking CTL: Fair states
	Model-checking fair CTL: $EX phi $
	Model-checking fair CTL: $phi {
m EU} psi $
	Model-checking fair CTL: ${
m EG} phi $

