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What you’ll learn

1. Rationale behind declarative specifications:
• Why operational style is insufficient

2. Computation Tree Logic CTL:
• Syntax
• Semantics: Kripke models

3. Explicit-state model checking of CTL:
• Recursive coloring
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Operational models
Nowadays, a lot of ES design is based on executable behavioral
models of the system under design, e.g. using
• Statecharts (a syntactically sugared variant of Moore automata)
• VHDL.

Such operational models are good at
• supporting system analysis
• simulation / virtual prototyping

• supporting incremental design
• executable models

• supporting system deployment
• executable model as “golden device”
• code generation for rapid prototyping or final product
• hardware synthesis
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Operational models

...are bad at
• supporting non-operational descriptions:
• What instead of how.
• E.g.: Every request is eventually answered.

• supporting negative requirements:
• “Thou shalt not...”
• E.g.: The train ought not move, unless it is manned.

• providing a structural match for requirement lists:
• System has to satisfy R1 and R2 and ...
• If system fails to satisfy R1 then R2 should be satisfied.
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Multiple viewpoints
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Model checking

Device Specification

Device Descript.
architecture behaviour
of processor is

process fetch
  if halt=0 then
    if mem_wait=0 then
      nextins <= dport
  ...
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Exhaustive state-space search

Automatic verification/falsification of invariants
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The gate model

Open

Opening

~enter?

enter?

~leave?

leave?

Closing

Closed

Track model
— safe abstraction —

leave!

enter!
Empty Appr. In

02917: CTL & Model Checking – p.9/37



Automatic check
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Verification result
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Computation Tree Logic
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Syntax of CTL

We start from a countable set AP of atomic propositions.
The CTL formulae are then defined inductively:
• Any proposition p ∈ AP is a CTL formula.
• The symbols ⊥ and > are CTL formulae.
• If φ and ψ are CTL formulae, so are

¬φ, φ∧ψ, φ∨ ψ, φ→ ψ

EXφ, AXφ
EFφ, AFφ
EGφ, AGφ
φEUψ, φAUψ
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Semantics (informal)

• E and A are path quantifiers:
• A: for all paths in the computation tree . . .
• E: for some path in the computation tree . . .

• X, F, G und U are temporal operators which refer to the path
under investigation, as known from LTL:
• Xφ (Next) : evaluate φ in the next state on the path
• Fφ (Finally) : φ holds for some state on the path
• Gφ (Globally) : φ holds for all states on the path
• φUψ (Until) : φ holds on the path at least until ψ holds

N.B. Path quantifiers and temporal operators are compound in
CTL: there never is an isolated path quantifier or an isolated tem-
poral operator. There is a lot of things you can’t express in CTL
because of this...
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Semantics (formal)

CTL formulae are interpreted over Kripke structures.:
A Kripke structure K is a quadruple K = (V, E, L, I) with
• V a set of vertices (interpreted as system states),
• E ⊆ V × V a set of edges (interpreted as possible transitions),
• L ∈ V → P(AP) labels the vertices with atomic propositions that

apply in the individual vertices,
• I ⊆ V is a set of initial states.

q1

q
q3 q4

p
q2

p,q

p,r
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Paths in Kripke structures

A path π in a Kripke structure K = (V, E, L, I) is an edge-consistent
infinite sequence of vertices:
• π ∈ Vω,
• (πi, πi+1) ∈ E for each i ∈ IN.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

trπ = L(π)
def
= 〈L(π0), L(π1), L(π2), . . .〉

that path formulae (Xφ,Fφ,Gφ,φUψ) can be interpreted on.
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Semantics (formal)

Let K = (V, E, L, I) be a Kripke structure and v ∈ V a vertex of K.
• v, K |= >
• v, K 6|= ⊥
• v, K |= p for p ∈ AP iff p ∈ L(v)
• v, K |= ¬φ iff v, K 6|= φ,
• v, K |= φ∧ψ iff v, K |= φ and v, K |= ψ,
• v, K |= φ∨ψ iff v, K |= φ or v, K |= ψ,
• v, K |= φ⇒ ψ iff v, K 6|= φ or v, K |= ψ.
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Semantics (contd.)

• v, K |= EXφ iff there is a path π in K s.t. v = π1 and π2, K |= φ,
• v, K |= AXφ iff all paths π in K with v = π1 satisfy π2, K |= φ,

• v, K |= EFφ iff there is a path π in K s.t. v = π1 and πi, K |= φ for some i,
• v, K |= AFφ iff all paths π in K with v = π1 satisfy πi, K |= φ for some i (that

may depend on the path),

• v, K |= EGφ iff there is a path π in K s.t. v = π1 and πi, K |= φ for all i,
• v, K |= AGφ iff all paths π in K with v = π1 satisfy πi, K |= φ for all i,

• v, K |= φEUψ , iff there is a path π in K s.t. v = π1 and some k ∈ IN s.t.
πi, K |= φ for each i < k and πk, K |= ψ,

• v, K |= φAUψ , iff all paths π in K with v = π1 have some k ∈ IN s.t.
πi, K |= φ for each i < k and πk, K |= ψ.

A Kripke structure K = (V, E, L, I) satisfies φ iff all its initial states satisfy φ,

i.e. iff is, K |= φ for all is ∈ I.

02917: CTL & Model Checking – p.18/37



CTL Model Checking

Explicit-state algorithm
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Rationale

We will extend the idea of verification/falsification by exhaustive
state-space exploration to full CTL.
• Main technique will again be breadth-first search, i.e. graph

coloring.
• Need to extend this to other modalities than AG ..
• Need to deal with nested modalities.
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Model-checking CTL: General layout

Given: a Kripke structure K = (V, E, L, I) and a CTL formula φ

Core algorithm: find the set Vφ ⊆ V of vertices in K satisfying φ by
1. for each atomic subformula p of φ, mark the set Vp ⊆ V of

vertices in K satisfying φ
2. for increasingly larger subformulae ψ of φ, synthesize the

marking Vψ ⊆ V of nodes satisfying ψ from the markings for
ψ’s immediate subformulae

until all subformulae of φ have been processed
(including φ itself)

Result: report “K |= φ” iff Vφ ⊇ I
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Reduction

The tautologies

φ∨ψ ⇔ ¬(¬φ∧ ¬ψ)

AXφ ⇔ ¬EX¬φ

AGφ ⇔ ¬EF¬φ

EFφ ⇔ >EUφ
EGφ ⇔ ¬AF¬φ

φAUψ ⇔ ¬((¬ψ)EU¬(φ∨ψ)) ∧ AFψ

indicate that we can rewrite each formula to one only containing
atomic propositions, ¬,∧,EX , EU ,AF .

After preprocessing, our algorithm need only tackle these!
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Model-checking CTL: Atomic propositions

Given: A finite Kripke structure with vertices V and edges E and a
labelling function L assigning atomic propositions to vertices.

Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: O(|V |)
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Model-checking CTL: ¬φ

Given: A set Vφ of vertices satisfying formula φ.

Algorithm: Mark all vertices not belonging to Vφ.

Complexity: O(|V |)
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Model-checking CTL: φ∧ψ

Given: Sets Vφ and Vψ of vertices satisfying formulae φ or ψ, resp.

Algorithm: Mark all vertices belonging to Vφ ∩ Vψ.

Complexity: O(|V |)
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Model-checking CTL: EXφ

Given: Set Vφ of vertices satisfying formulae φ.

Algorithm: Mark all vertices that have a successor state in Vφ.

Complexity: O(|V | + |E|)
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Model-checking CTL: φEUψ

Given: Sets Vφ and Vψ of vertices satisfying formulae φ or ψ, resp.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vψ.
2. Repeat

if there is a state in Vφ that has some successor state
marked then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of Vφ ⊂ V .

Complexity: O(|V | + |E|) if breadth-first search is used.
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Model-checking CTL: AFφ

Given: Set Vφ of vertices satisfying formula φ.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vφ.
2. Repeat

if there is a state in V that has all successor states marked
then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of V .

Complexity: O(|V | · (|V | + |E|)).

02917: CTL & Model Checking – p.28/37



Model-checking CTL: EGφ, for efficiency

Given: Set Vφ of vertices satisfying formula φ.

Algorithm: Incremental marking by
1. Strip Kripke structure to Vφ-states:

(V, E) (Vφ, E ∩ (Vφ × Vφ)).
 Complexity: O(|V | + |E|)

2. Mark all states belonging to loops in the reduced graph.
 Complexity: O(|Vφ| + |Eφ|) by identifying strongly connected

components.
3. Repeat

if there is a state in Vφ that has some successor states
marked then mark it also

until no new state is found.
 Complexity: O(|Vφ| + |Eφ|)

Complexity: O(|V | + |E|).
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Model-checking CTL: Main result

Theorem: It is decidable whether a finite Kripke structure (V, E, L, I)
satisfies a CTL formula φ.
The complexity of the decision procedure is O(|φ| · (|V | + |E|)),
i.e.
• linear in the size of the formula, given a fixed Kripke structure,
• linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in
number of parallel components in the system model.
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Appendix

Fair Kripke Structures &

Fair CTL Model Checking

02917: CTL & Model Checking – p.31/37



Fair Kripke Structures

A fair Kripke structure is a pair (K,F), where
• K = (V, E, L, I) is a Kripke structure
• F ⊆ P(V) is set of vertice sets, called a fairness condition.

A fair path π in a fair Kripke structure ((V, E, L, I),F) is an
edge-consistent infinite sequence of vertices which visits each set
F ∈ F infinitely often:
• π ∈ Vω,
• (πi, πi+1) ∈ E for each i ∈ IN,
• ∀ F ∈ F .∃∞i ∈ IN. πi ∈ F.

Note the similarity to (generalized) Büchi acceptance!
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Fair CTL: Semantics
• v, K,F |=F EXφ iff there is a fair path π in K s.t. v = π0 and π1, K,F |=F φ,
• v, K,F |=F AXφ iff all fair paths π in K with v = π0 satisfy π1, K,F |=F φ,

• v, K,F |=F EFφ iff there is a fair path π in K s.t. v = π0 and πi, K,F |=F φ for
some i,

• v, K,F |=F AFφ iff all fair paths π in K with v = π0 satisfy πi, K,F |=F φ for
some i (that may depend on the fair path),

• v, K,F |=F EGφ iff there is a fair path π in K s.t. v = π0 and πi, K,F |=F φ for
all i,

• v, K,F |=F AGφ iff all fair paths π in K with v = π0 satisfy πi, K,F |=F φ for
all i,

• v, K,F |=F φEUψ , iff there is a fair path π in K s.t. v = π0 and some k ∈ IN
s.t. πi, K,F |=F φ for each i < k and πk, K,F |=F ψ,

• v, K,F |=F φAUψ , iff all fair paths π in K with v = π0 have some k ∈ IN s.t.
πi, K,F |=F φ for each i < k and πk, K,F |=F ψ.

A fair Kripke structure ((V, E, L, I),F) satisfies φ, denoted ((V, E, L, I),F) |=F φ,
iff all its initial states satisfy φ, i.e. iff is, K,F |=F φ for all is ∈ I.
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Model-checking CTL: Fair states

Lemma: Given a fair Kripke structure (((V, E, L, I),F), the set
Fair ⊆ V of states from which a fair path originates can be
determined algorithmically.

Alg.: This is a problem of finding adequate SCCs:
1. Find all SCCs in K.
2. Select those SCCs that do contain at least one state from

each fairness set F ∈ F .
3. Find all states from which at least one of the selected SCCs

is reachable.
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Model-checking fair CTL: EXφ

Given: Set Vφ of vertices fairly satisfying formulae φ.

Algorithm: Mark all vertices that have a successor state in Vφ∩Fair .

Note that the intersection with Fair is necessary even though the states in Vφ
fairly satisfy φ:
• φ may be an atomic proposition, in which case fairness is irrelevant;
• φ may start with an A path quantifier that is trivially satisfied by non-

existence of a fair path.
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Model-checking fair CTL: φEUψ

Given: Sets Vφ and Vψ of vertices fairly satisfying formulae φ or ψ,
resp.

Algorithm: Incremental marking by
1. Mark all vertices belonging to Vψ∩Fair .
2. Repeat

if there is a state in Vφ that has some successor state
marked then mark it also

until no new state is found.
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Model-checking fair CTL: EGφ

Given: Set Vφ of vertices fairly satisfying formula φ.

Algorithm: Incremental marking by
1. Strip Kripke structure to Vφ-states:

(V, E) (Vφ, E ∩ (Vφ × Vφ)).
2. Mark all states that can reach a fair SCC in the reduced

graph.
(Same algorithm as for finding the set Fair , yet applied to the reduced
graph.)
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