CounterExample-Guided
Abstraction Refinement

(CEGAR)

Martin Franzle®
(with many slides (¢) S. Ratschan®)

2 Carl von Ossietzky Universitat, Oldenburg, Germany
® Czech Academy of Sciences, Prague, Czech Rep.

02917: CEGAR for HS — p.1/32

The problem

* Abstraction is a powerful method for verifying systems

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification

* but finding the right abstraction is hard

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification

* but finding the right abstraction is hard
* may be too coarse ~~ verification fails

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification
* but finding the right abstraction is hard
* may be too coarse ~~ verification fails
* may be too fine ~~ state-space exploration impossible

02917: CEGAR for HS — p.2/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification
* but finding the right abstraction is hard
* may be too coarse ~~ verification fails
* may be too fine ~~ state-space exploration impossible
* may even be too fine in some places and too coarse in others

02917: CEGAR for HS — p.2/32

The idea

In manual verification, we often add information on demand:
* Upon a failing proof, we analyze the reasons and
* add preconditions as necessary.

02917: CEGAR for HS —p.3/32

The idea

In manual verification, we often add information on demand:
* Upon a failing proof, we analyze the reasons and
* add preconditions as necessary.

Can we do the same within abstraction-based model checking?

* Upon a failing proof, let the model-checker analyze the reasons
and

* refine the abstraction as necessary.

02917: CEGAR for HS —p.3/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

02917: CEGAR for HS — p.4/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

(=

02917: CEGAR for HS — p.4/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

(=

e |f abstraction safe, done

02917: CEGAR for HS — p.4/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

o

e |f abstraction safe, done
e while abstraction not safe, refine it

02917: CEGAR for HS — p.4/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

o

e |f abstraction safe, done
e while abstraction not safe, refine it

* counter-example based: refine to remove a given spurious
counter-example (Clarke et al. 03, Alur et al. 03)

02917: CEGAR for HS — p.4/32

Basic CEGAR

02917: CEGAR for HS — p.5/32

Spurious counterexample

Def: Let A > C be an homomorphic abstraction wrt. abstraction
function h. Let ¢ be an VCTL formula and @ = (cq,c,...) be an
anchored path of C witnessing violation of ¢ on C.

Then mtis called a counterexample for ¢ on C.

02917: CEGAR for HS — p.6/32

Spurious counterexample

Def: Let A > C be an homomorphic abstraction wrt. abstraction
function h. Let ¢ be an VCTL formula and @ = (cq,c,...) be an
anchored path of C witnessing violation of ¢ on C.

Then mtis called a counterexample for ¢ on C.

Furthermore, h(mt) = (h(cq), h(c2),...) thenis an anchored path
of A which violates ¢, i.e. a counterexample on A. We do then
call h(7) the abstract counterexample corresponding to 7t and
we call 7t the concrete counterexample corresponding to h(7).

02917: CEGAR for HS — p.6/32

Spurious counterexample

Def:

Def:

Let A > C be an homomorphic abstraction wrt. abstraction
function h. Let ¢ be an VCTL formula and @ = (cq,c,...) be an
anchored path of C witnessing violation of ¢ on C.

Then mtis called a counterexample for ¢ on C.

Furthermore, h(mt) = (h(cq), h(c2),...) thenis an anchored path
of A which violates ¢, i.e. a counterexample on A. We do then
call h(mt) the abstract counterexample corresponding to 7t and
we call 7t the concrete counterexample corresponding to h(7).

If T4 IS @ counterexample on the abstraction A > C which has
no corresponding concrete counterexample on C then we call
Tta @ Spurious counterexample.

02917: CEGAR for HS — p.6/32

Abstraction Refinement

Def: If C < A’ < A then A and A’ are called abstraction of C and
A’ is called an abstraction refinement of A.

02917: CEGAR for HS — p.7/32

Abstraction Refinement

Def: If C < A’ < A then A and A’ are called abstraction of C and
A’ is called an abstraction refinement of A.

Idea: Whenever there is a spurious counterexample in A, identify an
abstraction refinement A’ that lacks that particular spurious
counterexample.

02917: CEGAR for HS — p.7/32

CEGAR algorithm (simple version: invariants)

To verify C = AGp do

1.
2. model-check A = AGp,

3.

4. otherwise validate the counterexample on C, i.e., find a

build finite Kripke structure A > C,

if this holds then report C = AGp and stop,

corresponding concrete counterexample,

If a corresponding concrete counterexample exists then report
C £ AGp and stop,

otherwise use the spurious counterexample to refine A and
restart from 2.

02917: CEGAR for HS —p.8/32

The crucial ingredients of CEGAR

* Model checking,
* validation/concretization of counterexample,
* guided refinement of abstraction.

02917: CEGAR for HS —p.9/32

Validation of counterexample

Given: A > C and an abstract counterexample ¢ = (a,ay,...,an,)
on A.

Alg: Provided we can effectively manipulate pre-images of the
abstraction morphism h, proceed as follows:

1. Compute S; :=h '(a;) N Ic, where Ic is the set of initial
states of C,

2. Fori=2ton, compute S; :=h '(a;) N Post(S;i_;).
Abort as soon as some S; becomes ().

In this case, the counterexample has been shown to be
spurious.

3. In case of proper termination of the loop, the counterexample
IS real.

02917: CEGAR for HS — p.10/32

Validation of counterexample

Given: A > C and an abstract counterexample ¢ = (a,ay,...,an,)
on A.

Alg: Provided we can effectively manipulate pre-images of the
abstraction morphism h, proceed as follows:

1. Compute S; :=h '(a;) N Ic, where Ic is the set of initial
states of C,

2. Fori=2ton, compute S; :=h '(a;) N Post(S;i_;).
Abort as soon as some S; becomes ().

In this case, the counterexample has been shown to be
spurious.

3. In case of proper termination of the loop, the counterexample
IS real.

N.B. Assumes that h—'(a;), Post(S;), and their intersections are
computable (in the sense of an effective emptiness test)!

02917: CEGAR for HS — p.10/32

State splitting

Idea: For aset C; = h~'(a;) of concrete states represented by an abstract state
a; occurring in the spurious counterexample, split it into

C; N Post(h~'(ai_1)) and C; \ Post(h~'(a;_1)), provided both non-empty
(orinto Cy NIcand Cy \Icincasei=1).

02917: CEGAR for HS — p.11/32

State splitting

Idea: For aset C; = h~'(a;) of concrete states represented by an abstract state
a; occurring in the spurious counterexample, split it into

C; N Post(h~'(ai_1)) and C; \ Post(h~'(a;_1)), provided both non-empty
(orinto Cy NIcand Cy \Icincasei=1).

Approach: Replace a; by two states a;” and a; representing
CiN POSt(h_] (aj_1)) and C; \ POSt(h_] (ai_1)), resp.

02917: CEGAR for HS — p.11/32

State splitting

Idea: For aset C; = h~'(a;) of concrete states represented by an abstract state
a; occurring in the spurious counterexample, split it into

C; N Post(h~'(ai_1)) and C; \ Post(h~'(a;_1)), provided both non-empty
(orinto Cy NIcand Cy \Icincasei=1).

Approach: Replace a; by two states a;” and a; representing
CiN POSt(h_] (ai_1)) and C; \ POSt(h_] (ai_1)), resp.
Technique: Replace the Kripke structure A = (V,E,L,I) by A’ = (V',E’, L', I')
with
* V' =V\{ai}Ula{, q
* E'= EN(V' xV)U{(a,ay),(a;,a{)}U{(a,ai) | (a,ai) € E}U
{((1, ai) | (Cl, ai) S E) a # ai—1}U{(ai+> Cl), (ai—> Cl) | (ai> Cl) < F—}

o (/i Liv) ifvey,
L) = {L(ai) if v € {a1 ,a; b,

a. }, where the latter are € V,

o [/ _ I ifCiNIc =0,
- | I\{ai}u{ai} otherwise.

02917: CEGAR for HS — p.11/32

Resulting morphism

if c € C;N Post(h~"(ai_1)),
if c € C;\ Post(h'(a;_1)),
) otherwise.

(o
1
h(c

h'(c) = < q;

02917: CEGAR for HS — p.12/32

Refining E’: transition pruning

Observation: Pre- and post-images of h'~'(a;") or h/~'(a;) may well
have empty intersections with sets that the pre- or post-set of
h'~'(a;) did intersect with.

In such cases, E’ contains spurious edges.

02917: CEGAR for HS — p.13/32

Refining E’: transition pruning

Observation: Pre- and post-images of h'~'(a;") or h/~'(a;) may well
have empty intersections with sets that the pre- or post-set of
h'~'(a;) did intersect with.

In such cases, E’ contains spurious edges.

Solution: Remove such edges by pruning E’ to

E” ={(s,t) € E'| Post(h/7'(s)) N h'7'(t) # ()

02917: CEGAR for HS — p.13/32

CEGAR algorithm (simple version: invariants)

To verify C = AGp do
1. build finite Kripke structure A > C,
2. model-check A = AGp,
3. if this holds then report C = AGp and stop,
4

. otherwise validate the counterexample on C, i.e., find a
corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report
C £ AGp and stop,

6. otherwise use the spurious counterexample to split states in A,
/. perform transition pruning on the resulting refinement A’,
8. goto 2.

02917: CEGAR for HS — p.14/32

CEGAR algorithm (simple version: invariants)

To verify C = AGp do
1. build finite Kripke structure A > C,
2. model-check A = AGp,
3. if this holds then report C = AGp and stop,
4

. otherwise validate the counterexample on C, i.e., find a
corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report
C £ AGp and stop,

6. otherwise use the spurious counterexample to split states in A,
7. perform transition pruning on the resulting refinement A’,
8. goto 2.

Concrete version is just an example, variants of split/prune rules abound.

02917: CEGAR for HS — p.14/32

Application to hybrid systems

e Above procedure is effective if h='(a;), Post(S;), and their
Intersections are computable (in the sense of an effective
emptiness test).

* This is in general not true for hybrid systems.

= Need to embed an appropriate form of approximation of the
above sets into CEGAR.

02917: CEGAR for HS — p.15/32

CEGAR on hybrid states

Conservative approximation of state sets

02917: CEGAR for HS — p.16/32

Application to hybrid systems

* “Naive” CEGAR procedure is effective if h~'(a;), Post(S;), and
their intersections are computable (in the sense of an effective
emptiness test).

* |In general not true for hybrid systems, thus embed an
appropriate form of approximation of the above sets into
CEGAR.

* Main difficulty is computation of successor states: explicit
(jumps) and implicit transitions (flows, defined by ODE)

* Multiple shapes of overapproximation can be used
* various effective representations of subsets of R™:
rectangular boxes, zonotopes, polyhedra, ellipsoids, .. .,
* multiple techniques for conservatively approximating hybrid
transitions (jumps & flows)
* can be combined to obtain an adaptive CEGAR algorithm
* e.g., proceeds from coarse to fine, investing computational
effort to increase precision when necessary.

02917: CEGAR for HS — p.17/32

Computing successors

* CEGAR algorithm applies different approximations of successor
computation in sequence,

* proceeds from coarse to fine, investing more computational
effort to increase precision only when necessary,

* hope is that crucial deductions (absence of counterexamples,
non-concretizability of a certain counter-example) can often be
obtained on coarse abstractions,

* CEGAR needs to compute different relative successors
Succ(X,Y) = Post(X)NY, where X, Y € P (R").

* Can approximate these by any operation
SUCC: P (R™) x P (R™) — P (R™) with
1. Overapproximation: SUCC(X,Y) D Post(X) NY,
2. Reasonability: SUCC(X,Y) C Y.

02917: CEGAR for HS — p.18/32

Validation of counterexample

Given: A > C and an abstract counterexample ¢ = (a;,ay,...,a,)
on A.

Alg: For a sequence of successively tighter overapproximations

(SUCCy)i—
1.
2.

,,,,, 1, proceed as follows:
Start with i = 1, i.e., the coarsest approximation.

Compute St := overapproxi(h '(a;) N Ic), where I¢ is the
set of initial states of C,

. Forj =2ton, compute S} := SUCC;(S} ;,h~'(ay))

j—1)
Abort as soon as some S} becomes ().
In this case, the counterexample is spurious.

. In case of proper termination of the inner loop, restart at 1.

withi:=1+1, i.e., the next finer approximation, if 1 < k.

. If the inner loop terminates regularly for 1 = k, then the

abstract counterexample can’t be refuted by any of the
overapproximations. (Probably is real.)

02917: CEGAR for HS — p.19/32

HSolver

Overapproximation via Constraint-based Reasoning

Stefan Ratschan, Czech Academy of Sciences
Shikun She, MPII, Saarbrlicken

02917: CEGAR for HS — p.20/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

02917: CEGAR for HS — p.21/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

T N 0

4) A :

\ ' \ \
0N) N

4) : :

\ ' \ \
0N T rN

* put transitions between all neighboring hyperrectangles (boxes),
mark all as initial/unsafe

02917: CEGAR for HS — p.21/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

4

-

x € [-5,—1]

* put transitions between all neighboring hyperrectangles (boxes),

mark all as initial/unsafe

* remove impossible transitions/marks (interval arithmetic check

on boundaries/boxes)

02917: CEGAR for HS — p.21/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

4

-

x € [—5,1]

* put transitions between all neighboring hyperrectangles (boxes),

mark all as initial/unsafe

* remove impossible transitions/marks (interval arithmetic check

on boundaries/boxes)

02917: CEGAR for HS — p.21/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

4

-

x € [—5,1]

* put transitions between all neighboring hyperrectangles (boxes),

mark all as initial/unsafe

* remove impossible transitions/marks (interval arithmetic check

on boundaries/boxes)
Result: finite abstraction

02917: CEGAR for HS — p.21/32

Interval arithmetic

Is a method for calculating an interval covering the possible values
of a real operator if its arguments range over intervals:

(a,A] +
[a,A] -

O

b, B

- [b, B

min ([a, A, [b, B])

(©)

sin (la, Al)

(©)

f ([a, Al, [b,B],..

)

a+b,A + B]
min{ab, aB, Ab, AB}, max{ab, aB, Ab, AB}|
min{a, b}, min{A, B}|

min{sinx | x € [a, Al},
max{sinx | x € [a, A]}

min{f(X) | X € [a, A] X
max{f(x) | X [a,A]

b, B] x ..
b, B] x ..

3
g

02917: CEGAR for HS — p.22/32

Interval arithmetic

Is a method for calculating an interval covering the possible values
of a real operator if its arguments range over intervals:

(a,A] + [b,B]
[a,A] - [b,B]
min ([a, Al, [b, B])

(©)

sin (la, Al)

(©)

f (la,Al],[b,B],...)

+b, A + B]

— |[min{ab, aB, Ab, AB}, max{ab, aB, Ab, AB}]
— [min{a, b}, min{A, B}]

min{sinx | x € [a, Al},
max{sinx | x € [a, A]}

min{f(X) | X € [a, A] X
max{f(x) | X [a»/\]

Theorem: For each term t with free variables v:

t(vi— x) | X € la, Al x

b, B] x

b, B] x ..
b, B] x ..

3
g

.} C t(viela,Alva— [b,Bl,...)

02917: CEGAR for HS — p.22/32

Is the approximation tight?

1. In the limit: yes!

@)

tvi—=X) = t(vi—= xi,x1],v2—= [x2,%20,...)

imt(vi— [x1—¢e,x1+¢el,vo—[xo—¢,x2+¢€],...)

t(v — x) lim

provided t is uniformly continuous.

02917: CEGAR for HS — p.23/32

Is the approximation tight?

1. In the limit: yes!

@)

tvi—=X) = t(vi—= xi,x1],v2—= [x2,%20,...)

t(V — X)

@)
Iimot (vi—= x1—e,x1+¢el,va— [xo—¢e,x2+¢],...)
e—

provided t is uniformly continuous.
2. In general: No! If a < A then
x —x(x = [a,Al) = [a,A] = [a,A] = [a—A,A—a] # [0,0]

of interval arithmetic:

& Tight bounds only if each variable
occurs at most once!

02917: CEGAR for HS — p.23/32

Interval Grid Method Il

Check safety on resulting finite abstraction

02917: CEGAR for HS — p.24/32

Interval Grid Method Il

Check safety on resulting finite abstraction

iIf safe: finished, otherwise: refine grid;
continue until success

02917: CEGAR for HS — p.24/32

Interval Grid Method Il

Check safety on resulting finite abstraction

iIf safe: finished, otherwise: refine grid;
continue until success

More modes: separate grid for each mode

02917: CEGAR for HS — p.24/32

Interval Grid Method Il

Check safety on resulting finite abstraction

iIf safe: finished, otherwise: refine grid;
continue until success

More modes: separate grid for each mode

Jumps: also check using interval arithmetic

02917: CEGAR for HS — p.24/32

Discussion

Advantages:

02917: CEGAR for HS — p.25/32

Discussion

Advantages:

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

* may require a very fine grid to provide an affirmative answer
(curse of dimensionality)

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

* may require a very fine grid to provide an affirmative answer
(curse of dimensionality)

* ignores the continuous behavior within the grid elements

02917: CEGAR for HS — p.25/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

* may require a very fine grid to provide an affirmative answer
(curse of dimensionality)

* ignores the continuous behavior within the grid elements

Let’'s remove them!

02917: CEGAR for HS — p.25/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

02917: CEGAR for HS — p.26/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

02917: CEGAR for HS — p.26/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

02917: CEGAR for HS — p.26/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

02917: CEGAR for HS — p.26/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

Method: form constraints that hold on reachable parts of state
space, remove non-solutions by constraint solver

02917: CEGAR for HS — p.26/32

Reach Set Pruning

02917: CEGAR for HS — p.27/32

Reach Set Pruning

A point in a box B can be reachable
* from the initial set via a flow in B
e from a jump via a flow in B

* from a neighboring box via a flow in B

B

formulate corresponding constraints, remove all points from box that

do not fulfill one of these constraints

02917: CEGAR for HS — p.27/32

Constraints in Specification

We specify system using constraints:

* Flow(s,X,X) (€.9., s = of £ — % = xsin(x) + 1
* "purely syntactic!
* even implicit and algebraic!

° ILLTTLP(S,)?,S/,%/) (e.g.,
(s=0f£f Ax>10) — (s'=onAx'=0))

* Init(s,x)

02917: CEGAR for HS — p.28/32

Reachability Constraints

Lemma (n-dimensional mean value theorem): For a box B,
mode s, if a point (y1,...,yn) € B is reachable from a point
(x1,...,%xn) € Bvia a flow in B then

HtGRZO /\ 3(11,...,ak,d1,...,dk[(a1,...,Clk) c B A

1<i<n

Flow(s,(a1,...,ak),(c't1,...,('1k)) /\Ui:Xi‘l’ alt]

Denote this constraint by flowg(s, X, y).

02917: CEGAR for HS — p.29/32

Reachability Constraints

Lemma: For a box B C R¥, mode s, if §j € B is reachable from the
Initial set via a flow in B then

Ix € B [Init(s,X) A flowg(s, X, y)]

02917: CEGAR for HS — p.30/32

Reachability Constraints

Lemma: For a box B C R¥, mode s, if §j € B is reachable from the
Initial set via a flow in B then

Ix € B [Init(s,X) A flowg(s, X, y)]

Lemma: For abox B C R¥, mode s, iy € B, (s,) is reachable from
a jump from a box B* and mode s* via a flow in B then

IX* € B*3X € B [Jump(s*, X", s,X) A flowg(s, X, y)]

02917: CEGAR for HS — p.30/32

Reachability Constraints

Lemma: For a box B C R¥, mode s, if §j € B is reachable from a
neighboring box over a face F of B and a flow in B then

3x € F [incomingg(s, X) A flowg(s, x,y)],
where incoming(s, x) is of the form
ElX], “e ,Xk[FIOW(S,%, (5(1, “e ,Xk)) /\Xj T O]

where r € {<,>},j €{1,...,k} depends on the face F

y

Xl

for corners etc. a little bit more involved

02917: CEGAR for HS —p.31/32

Using Constraints

After substituting definitions,

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

Using Constraints

After substituting definitions, getting rid of quantifiers,

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

Using Constraints

After substituting definitions, getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not

fulfilling such constraints.

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

Using Constraints

After substituting definitions, getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not

fulfilling such constraints.

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

Using Constraints

After substituting definitions, getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not

fulfilling such constraints.

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

Using Constraints

After substituting definitions, getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not
fulfilling such constraints.

* correct handling of rounding errors
e almost negligible time

* result not necessarily tight (but tight for flowsg(s, X, y) in linear
case)

http://rsolver.sourceforge.net

02917: CEGAR for HS —p.32/32

http://rsolver.sourceforge.net

	The problem
	The idea
	Abstraction Refinement
	
	Spurious counterexample
	Abstraction Refinement
	CEGAR algorithm (simple version: invariants)
	The crucial ingredients of CEGAR
	Validation of counterexample
	State splitting
	Resulting morphism
	Refining E': transition pruning
	CEGAR algorithm (simple version: invariants)
	Application to hybrid systems
	
	Application to hybrid systems
	Computing successors
	Validation of counterexample
	
	Starting Point: Interval Grid Method
	Interval arithmetic
	Is the approximation tight?
	Interval Grid Method II
	Discussion
	Removing Disadvantages
	Reach Set Pruning
	Constraints in Specification
	Reachability Constraints
	Reachability Constraints
	Reachability Constraints
	Using Constraints

