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The problem

• Abstraction is a powerful method for verifying systems

• maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

• simpler model may be amenable to automatic
state-exploratory verification

• but finding the right abstraction is hard
• may be too coarse verification fails
• may be too fine state-space exploration impossible
• may even be too fine in some places and too coarse in others
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The idea

In manual verification, we often add information on demand:
• Upon a failing proof, we analyze the reasons and
• add preconditions as necessary.

Can we do the same within abstraction-based model checking?
• Upon a failing proof, let the model-checker analyze the reasons

and
• refine the abstraction as necessary.
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Abstraction Refinement

Idea:
• conservatively approximate the hybrid system by a finite Kripke

structure (the abstraction)

• if abstraction safe, done
• while abstraction not safe, refine it
• counter-example based: refine to remove a given spurious

counter-example (Clarke et al. 03, Alur et al. 03)
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Basic CEGAR
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Spurious counterexample

Def: Let A � C be an homomorphic abstraction wrt. abstraction
function h. Let φ be an ∀CTL formula and π = (c1, c2 . . .) be an
anchored path of C witnessing violation of φ on C.
Then π is called a counterexample for φ on C.

Furthermore, h(π) = (h(c1), h(c2), . . .) then is an anchored path
of A which violates φ, i.e. a counterexample on A. We do then
call h(π) the abstract counterexample corresponding to π and
we call π the concrete counterexample corresponding to h(π).

Def: If πA is a counterexample on the abstraction A � C which has
no corresponding concrete counterexample on C then we call
πA a spurious counterexample.
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Abstraction Refinement

Def: If C ≺ A ′ ≺ A then A and A ′ are called abstraction of C and
A ′ is called an abstraction refinement of A.

Idea: Whenever there is a spurious counterexample in A, identify an
abstraction refinement A ′ that lacks that particular spurious
counterexample.

02917: CEGAR for HS – p.7/32



Abstraction Refinement

Def: If C ≺ A ′ ≺ A then A and A ′ are called abstraction of C and
A ′ is called an abstraction refinement of A.

Idea: Whenever there is a spurious counterexample in A, identify an
abstraction refinement A ′ that lacks that particular spurious
counterexample.

02917: CEGAR for HS – p.7/32



CEGAR algorithm (simple version: invariants)

To verify C |= AGp do

1. build finite Kripke structure A � C,

2. model-check A |= AGp,

3. if this holds then report C |= AGp and stop,

4. otherwise validate the counterexample on C, i.e., find a
corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report
C 6|= AGp and stop,

6. otherwise use the spurious counterexample to refine A and
restart from 2.
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The crucial ingredients of CEGAR

• Model checking,
• validation/concretization of counterexample,
• guided refinement of abstraction.
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Validation of counterexample

Given: A � C and an abstract counterexample φ = (a1, a2, . . . , an)
on A.

Alg: Provided we can effectively manipulate pre-images of the
abstraction morphism h, proceed as follows:
1. Compute S1 := h−1(a1) ∩ IC, where IC is the set of initial

states of C,
2. For i = 2 to n, compute Si := h−1(ai) ∩ Post(Si−1).

Abort as soon as some Si becomes ∅.
In this case, the counterexample has been shown to be
spurious.

3. In case of proper termination of the loop, the counterexample
is real.

N.B. Assumes that h−1(ai), Post(Si), and their intersections are
computable (in the sense of an effective emptiness test)!
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State splitting
Idea: For a set Ci = h−1(ai) of concrete states represented by an abstract state

ai occurring in the spurious counterexample, split it into
Ci ∩ Post(h−1(ai−1)) and Ci \ Post(h−1(ai−1)), provided both non-empty
(or into C1 ∩ IC and C1 \ IC in case i = 1).

Approach: Replace ai by two states a+
i and a−

i representing
Ci ∩ Post(h−1(ai−1)) and Ci \ Post(h−1(ai−1)), resp.

Technique: Replace the Kripke structure A = (V, E, L, I) by A ′ = (V ′, E ′, L ′, I ′)
with
• V ′ = V \ {ai} ∪ {a+

i , a
−
i }, where the latter are 6∈ V,

• E ′ = E ∩ (V ′ × V ′) ∪ {(a+
i , a

−
i ), (a−

i , a
+
i )} ∪ {(a, a+

i ) | (a, ai) ∈ E}∪
{(a, a−

i ) | (a, ai) ∈ E, a 6= ai−1} ∪ {(a+
i , a), (a−

i , a) | (ai, a) ∈ E}

• L ′(v) =

{
L(v) if v ∈ V,
L(ai) if v ∈ {a+

i , a
−
i },

• I ′ =
{
I if Ci ∩ IC = ∅,
I \ {ai} ∪ {a+

i } otherwise.
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Resulting morphism

h ′(c) =





a+
i if c ∈ Ci ∩ Post(h−1(ai−1)),

a−
i if c ∈ Ci \ Post(h−1(ai−1)),

h(c) otherwise.
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Refining E ′: transition pruning

Observation: Pre- and post-images of h ′−1(a+
i ) or h ′−1(a−

i ) may well
have empty intersections with sets that the pre- or post-set of
h ′−1(ai) did intersect with.
In such cases, E ′ contains spurious edges.

Solution: Remove such edges by pruning E ′ to

E ′′ = {(s, t) ∈ E ′ | Post(h ′−1(s)) ∩ h ′−1(t) 6= ∅}
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CEGAR algorithm (simple version: invariants)

To verify C |= AGp do

1. build finite Kripke structure A � C,

2. model-check A |= AGp,

3. if this holds then report C |= AGp and stop,

4. otherwise validate the counterexample on C, i.e., find a
corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report
C 6|= AGp and stop,

6. otherwise use the spurious counterexample to split states in A,

7. perform transition pruning on the resulting refinement A ′,

8. goto 2.

Concrete version is just an example, variants of split/prune rules abound.
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Application to hybrid systems

• Above procedure is effective if h−1(ai), Post(Si), and their
intersections are computable (in the sense of an effective
emptiness test).

• This is in general not true for hybrid systems.

⇒ Need to embed an appropriate form of approximation of the
above sets into CEGAR.
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CEGAR on hybrid states

Conservative approximation of state sets
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Application to hybrid systems
• “Naive” CEGAR procedure is effective if h−1(ai), Post(Si), and

their intersections are computable (in the sense of an effective
emptiness test).

• In general not true for hybrid systems, thus embed an
appropriate form of approximation of the above sets into
CEGAR.

• Main difficulty is computation of successor states: explicit
(jumps) and implicit transitions (flows, defined by ODE)
• Multiple shapes of overapproximation can be used
• various effective representations of subsets of Rn:

rectangular boxes, zonotopes, polyhedra, ellipsoids, . . .,
• multiple techniques for conservatively approximating hybrid

transitions (jumps & flows)
• can be combined to obtain an adaptive CEGAR algorithm
• e.g., proceeds from coarse to fine, investing computational

effort to increase precision when necessary.
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Computing successors

• CEGAR algorithm applies different approximations of successor
computation in sequence,

• proceeds from coarse to fine, investing more computational
effort to increase precision only when necessary,

• hope is that crucial deductions (absence of counterexamples,
non-concretizability of a certain counter-example) can often be
obtained on coarse abstractions,

• CEGAR needs to compute different relative successors
Succ(X, Y) = Post(X) ∩ Y, where X, Y ∈ P (Rn).

• Can approximate these by any operation
SUCC : P (Rn)× P (Rn)→ P (Rn) with
1. Overapproximation: SUCC(X, Y) ⊇ Post(X) ∩ Y,
2. Reasonability: SUCC(X, Y) ⊆ Y.
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Validation of counterexample
Given: A � C and an abstract counterexample φ = (a1, a2, . . . , an)

on A.

Alg: For a sequence of successively tighter overapproximations
(SUCCi)i=1,...,k, proceed as follows:
1. Start with i = 1, i.e., the coarsest approximation.
2. Compute Si1 := overapproxi(h

−1(a1) ∩ IC), where IC is the
set of initial states of C,

3. For j = 2 to n, compute Sij := SUCCi(S
i
j−1, h

−1(ai))

Abort as soon as some Sij becomes ∅.
In this case, the counterexample is spurious.

4. In case of proper termination of the inner loop, restart at 1.
with i := i + 1, i.e., the next finer approximation, if i < k.

5. If the inner loop terminates regularly for i = k, then the
abstract counterexample can’t be refuted by any of the
overapproximations. (Probably is real.)
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HSolver

Overapproximation via Constraint-based Reasoning

Stefan Ratschan, Czech Academy of Sciences
Shikun She, MPII, Saarbrücken
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Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

• put transitions between all neighboring hyperrectangles (boxes),
mark all as initial/unsafe

• remove impossible transitions/marks (interval arithmetic check
on boundaries/boxes)

Result: finite abstraction
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Starting Point: Interval Grid Method
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Interval arithmetic
Is a method for calculating an interval covering the possible values
of a real operator if its arguments range over intervals:

[a,A]
◦
+ [b, B] = [a+ b,A + B]

[a,A]
◦· [b, B] = [min{ab, aB,Ab,AB},max{ab, aB,Ab,AB}]

◦
min ([a,A], [b, B]) = [min{a, b},min{A,B}]

◦
sin ([a,A]) =

[
min{sin x | x ∈ [a,A]},

max{sin x | x ∈ [a,A]}

]

◦
f ([a,A], [b, B], . . .) =

[
min{f(~x) | ~x ∈ [a,A]× [b, B]× . . .},
max{f(~x) | ~x ∈ [a,A]× [b, B]× . . .}

]

Theorem: For each term t with free variables ~v:
{t(~v 7→ ~x) | ~x ∈ [a,A]×[b, B]×. . .} ⊆ ◦

t (v1 7→ [a,A], v2 7→ [b, B], . . .)
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Is the approximation tight?

1. In the limit: yes!

t(~v 7→ ~x) =
◦
t (v1 7→ [x1, x1], v2 7→ [x2, x2], . . .)

t(~v 7→ ~x) = lim
ε→0

◦
t (v1 7→ [x1 − ε, x1 + ε], v2 7→ [x2 − ε, x2 + ε], . . .)

provided t is uniformly continuous.

2. In general: No! If a < A then

x− x(x 7→ [a,A]) = [a,A]
◦
− [a,A] = [a−A,A − a] 6= [0, 0]

Dependency problem of interval arithmetic:

Tight bounds only if each variable
occurs at most once!
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Interval Grid Method II

Check safety on resulting finite abstraction

if safe: finished, otherwise: refine grid;
continue until success

More modes: separate grid for each mode

Jumps: also check using interval arithmetic
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Discussion

Advantages:

• can deal with constants that are only known up to intervals
• interval tests cheap (e.g., compare to explicit computation of

continuous reach sets, or full decision procedures)

Disadvantages:
• may require a very fine grid to provide an affirmative answer

(curse of dimensionality)
• ignores the continuous behavior within the grid elements

Let’s remove them!
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Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

Method: form constraints that hold on reachable parts of state
space, remove non-solutions by constraint solver
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Reach Set Pruning

A point in a box B can be reachable
• from the initial set via a flow in B
• from a jump via a flow in B
• from a neighboring box via a flow in B

Init

B

formulate corresponding constraints, remove all points from box that
do not fulfill one of these constraints

02917: CEGAR for HS – p.27/32



Reach Set Pruning

A point in a box B can be reachable
• from the initial set via a flow in B
• from a jump via a flow in B
• from a neighboring box via a flow in B

Init

B

formulate corresponding constraints, remove all points from box that
do not fulfill one of these constraints

02917: CEGAR for HS – p.27/32



Constraints in Specification

We specify system using constraints:

• Flow(s,~x, ~̇x) (e.g., s = off→ ẋ = x sin(x) + 1 . . . )
• ˙ purely syntactic!
• even implicit and algebraic!

• Jump(s,~x, s ′,~x ′) (e.g.,
(s = off∧ x ≥ 10) → (s ′ = on∧ x ′ = 0))

• Init(s,~x)
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Reachability Constraints

Lemma (n-dimensional mean value theorem): For a box B,
mode s, if a point (y1, . . . , yn) ∈ B is reachable from a point
(x1, . . . , xn) ∈ B via a flow in B then

∃t ∈ R≥0
∧

1≤i≤n
∃a1, . . . , ak, ȧ1, . . . , ȧk[(a1, . . . , ak) ∈ B∧

Flow(s, (a1, . . . , ak), (ȧ1, . . . , ȧk)) ∧ yi = xi + ȧi · t]

xi

yi

ta
time

0 t

Denote this constraint by flowB(s,~x,~y).
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Reachability Constraints

Lemma: For a box B ⊆ Rk, mode s, if ~y ∈ B is reachable from the
initial set via a flow in B then

∃~x ∈ B [Init(s,~x) ∧ flowB(s,~x,~y)]

Lemma: For a box B ⊆ Rk, mode s, ~y ∈ B, (s,~y) is reachable from
a jump from a box B∗ and mode s∗ via a flow in B then

∃~x∗∈B∗∃~x ∈ B [Jump(s∗,~x∗, s,~x) ∧ flowB(s,~x,~y)]
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Reachability Constraints

Lemma: For a box B ⊆ Rk, mode s, if ~y ∈ B is reachable from a
neighboring box over a face F of B and a flow in B then

∃~x ∈ F [incomingF(s,~x) ∧ flowB(s,~x,~y)] ,

where incoming(s,~x) is of the form

∃ẋ1, . . . , ẋk[Flow(s,~x, (ẋ1, . . . , ẋk)) ∧ ẋj r 0]

where r ∈ {≤,≥}, j ∈ {1, . . . , k} depends on the face F
B

F

~y

~x

for corners etc. a little bit more involved
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Using Constraints

After substituting definitions,

getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not
fulfilling such constraints.

• correct handling of rounding errors
• almost negligible time
• result not necessarily tight (but tight for flowB(s,~x,~y) in linear

case)

http://rsolver.sourceforge.net
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