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Multiple viewpoints

Requirements Programming

analysis

Validation / verification
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Formal Methods

* Formal methods are mathematically-based techniques for the
specification, development and verification of software and
hardware systems. [R.W. Butler, 2001]

* Motivated by the expectation that appropriate mathematical
analyses can contribute to the reliability and robustness of a
design. [M. Holloway, 1997]

* Alternative to less exhaustive analyses:

(Cartoon)

02917: Introduction — p.3/49



Embedded computer systems

>
O O
@ 0 Cogito, o)
ergo sum!

Estimates for number of embedded systems in current
use exceed 10'°,

[Rammig 2000, Motorola 2001]
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Application domains

CD players, TV sets, handheld games, electronic pets, cameras, alarm
clocks, remote controls, dishwashers, microwave ovens, ...

Printers, network controllers, mobile phones, keyboards, CRTs and
flatscreens, ...

A control, programmable heating systems, exhaust control, ...

Cars (body, powertrain, suspension, brakes), signalling devices, balises,
interlocks, autopilots, traffic information, ...

Measurement devices (thermometers, RR’s, X-ray, sonographic imaging,
EEG, ECG ...), treatment devices (perfusors, respirators, microwave
radiation treatment, ...)

Power plants, distribution networks, ...
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The roles, they are a changing...

® automatic climate control,
® adaptive power steering,
® keyless entry,

® navigation system.

® anti-locking brake,

® electronic stability control,

® electric power steering,

® electronically variable transmission ratio of steering column.

® steer-by-wire,
® brake-by-wire,
® driver-less go (automatic parking, autonomous lane change, .. .).
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A little mishap...

Beheve us -
3/ we weren't /S
[ involved! | "%

® Car geometry:
- center of gravity
- wheelbase

® Reduced component-
count axles

®* Patched with embed-
ded control (“ESP”)

How to validate the patch?
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Continuity?

Around 1999, the car industry fought for a unification of European
and American crash test scenarios because

ECE test: 5657,
NCAP test: 64km.
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A Suggestion: Formal Methods

The term refers to a broad set of notations and tools for

Mathematically rigorous documentation of requirements
® |ess ambiguous than prose

® amenable to formal analysis (check for consistency, check for
adherence to well-formedness criteria,...)

Mathematically rigorous models of designs

® rigorous semantics, removes ambiguity of design documentation in
prose, albeit only wrt. the viewpoint focused at

® early availability of abstract, yet concise model of the system under
design

® amenable to formal analysis (check for absence of design flaws, like
deadlock, wrong interfaces,...; check for side-conditions of design
steps,...)

Check of consistency between such
® correctness of a design relative to requirements
® replacability of a design by another one
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Open (contin. time & state) dynamical system

disturbances ("noise")
System

( N\
environmental observable
state

/ 9 internal state é

System boundary

control

* Time is continuous: R,

* internal state is a bunch of real-valued (or complex-val ued)
functions of time: x(.) : Time — R™,

* observable state is a time-invariant function (usually projection)
thereof,

* environment influence is a bunch of real-valued (or
complex-valued) functions of time: 1(.) : Time — R™.
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Some state-based models

* Finite automata
* discrete state space, finitely many states
* evolution through discrete transitions

* Differential equations
* continuous state space
* continuous flows

* Hybrid systems
e continuous and discrete state components
* both jumps (= discrete transitions) and continuous flows
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Finite Automata
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Finite-state models

arise naturally in
* descriptions of hardware components,

* descriptions of communication protocols,

* descriptions of embedded computer systems,
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The coffee vending machine — architecture

Financial Brewer
administr. control
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The coffee vending machine — dynamics

no pay =  paid

idle » wait » brew
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An example run

' .

\d \/ w

(*, canc, cout, * —caf)

» wait = brew

\/4

(*, canc, *, —req, —caf)
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The coffee vending machine

(—cin, * —cout, * caf)

,

wait

idle brew
paid paid
\ 4
UnreachBilde sitdfes!
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Embedded systems in-the-large
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Differential equations
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Open (contin. time & state) dynamical system

disturbances ("noise")
System

( N\
environmental observable
state

/ 9 internal state é

System boundary

control

* Time is continuous: R,

* internal state is a bunch of real-valued (or complex-valued)
functions of time: x(.) : Time — R™,

* observable state is a time-invariant function (usually projection)
thereof,

* environment influence is a bunch of real-valued (or
complex-valued) functions of time: 1(.) : Time — R™.
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Continuous modeling with DEs

1. Add further, derived state components: the derivatives

x(.),x(.), ... of the state components.

2. Formulate dynamics as equations between x(.), x(.),t(.),...

N.B. Higher-order derivatives x™, n > 1, can always be removed by
1. adding a fresh state variable y(.),

2. adding the equation y(t) = x™(t),

3. replacing every occurrence of x™ by y.
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Differential equation w/o input / disturbance

The DE describes dynamics of the system by
* providing a state space R™,

* providing a (piecewise) continuous vector field f : R™ — R™
constraining the possible evolutions through the equation

dx
T f
m (x)

The initial value xo € R™ defines the start state of the dynamic
evolution.

A solution in the sense of Carathéodory is a time-dependent signal
x : 10, a) — R™ such that

* x IS piecewise differentiable,
e Vte [0,a)ex(t) =xo+ f;f(x(s))ds.

Then X(t) = f(x(t)) for almost all t € [0, a).
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Differential equation with input

The DE describes dynamics of the system by
* providing a state space R™,
* providing an input space R™,
* providing a (piecewise) contin. vector field f : R™™ — R™
constraining the possible evolutions through the equation

= = fixu)

The initial value xo € R™ defines the start state of the dynamic
evolution.

A solution wrt. a (piecewise) continuous input u: [0,a) — R™is a
time-dependent signal x : [0, a) — R™ such that

* x IS piecewise differentiable,
e Vt€[0,a) e x(t) =xo+ [f(x(s),uls))ds.
Then () = f(x(t),u(t)) for almost all t € [0, a).
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Example: spring-mass system w. disturbance

L,

v

® Basic model:

y(t) = W
Fit) = k(l(t) —1o)
Wt) = u(t)—y(t)

® Replace higher-order derivatives:

Add v(t) =V (t).
Gives Y (t)
v (t)




Hybrid systems
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Hybrid Systems

disturbances ("'noise")

environmental

influence l

control

observable
state

Plant

selection

Continuous
controllers

setpoints

setpoints

Discrete
supervisor

active control law

Conirol

A/D

part of
observable

State

A

A

task selection
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Hybrid Automata

x =200 Ay =0.0

x=00AYy<0.0/
y' =-08-y

x : vertical position of the ball
y : velocity
y > 0 ball is moving up
Yy < 0 ball is moving down
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State and Dimension Explosion

Number of continuous variables linear in num-
ber of cars

il * Positions, speeds, accelerations,
® torque, slip, ...

Number of discrete states exponential in num-
ber of cars

® QOperational modes, control modes,
® state of communication subsystem, ...

Symmetry reduction often impossible

® Latency in ctrl. loop depends on number
of cars due to communication subsystem.

®* Hidden channels due to coupled dynam-
ICS.

Need a scalable approach

Trying to achieve this through strictly symbolic methods.
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“Embedded Systems are Predicates”™
(©E. Hehner)
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Symbolic transition system

Given a predicate language L, a symbolic transition system STS over
L comprises

e aset V of variable names belonging to L,
plus a sort-preserving renaming operation .” assigning to each
variable in V a “copy” v/ ¢ V,

* an initialization predicate I € L with free (I) C V,

* a (symbolic or predicative) transition relation T € L with
free(T) C VUV’

A run of symb. trans. sys. STS is a (finite or infinite) sequence
r = (07,02, 03,...) of L-interpretations such that

o1 = Iand
oiir1 = I foreach i < len(r), where

Oii1(X) =

o;(x) iff x ¢ V/
oir1(x) iffx eV’
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Parallel composition

Assume STS; = (V] , I],T]) and STS, = (Vz, Iz,Tz)
* control (i.e., constrain v’) a subset Out; C V; of variables,
* |leave the remaining variables unconstrained.

Synchronous execution: |f then
STS) = (Viu Vo, I AL, i AT)

yields step-synchronous parallel execution.

Asynchronous execution:

STS) = (ViUVo, LAL, (TA A\ vV =v) V (LA A v =v)
ve 0, \Oq veO01\02

N N

framing framing

7

yields (non-fair) interleaving.
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Symbolic Representation: Principle

® symbolic representation of linear size
® provided ODEs are of appropriate kind.
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Generalizing the concept: Simulink+Stateflow
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‘Algebraic’ blocks

input output

* time-invariant transfer function outout(t) = f (input(t))

* made 1st-order by making time implicit: Flow = output = f (input)
* no constraints on initial value: Init = true,

e discontinuous jumps always admissible Jump = true,

All the formulae are elements of a suitably rich

1st-order logics over R.
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Integrators

input 1/s output
D
init

* integrates its input over time: output(t) = init + f; input(1) du.

* made semi-1st-order by using derivatives: Flow = <2424 — jnpyt

* |nitial value Is rest value: Init = output = init,

* discontinuous jumps don'’t affect output Jump = outout = output,
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Getting started with STS: NuUSMV
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Model checking

Device Specification
*(T<=0)

Device Descript.

architecture behaviour
of processor is

process fetch
if halt=0 then
if mem_wait=0 then
nextins <= dport

L .« o )

4 N\

Model Checker

Approval/
Counterexample

L\
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NuSMV

* NuSMV (A. Cimmati, E. Clarke, F. Giunchiglia, A. Morichetti, M.
Roveri et al.) is an optimized reengineering of the symbolic
model checker SMV (K. McMillan, 1993)

* |tis dedicated to finite state systems, providing
* Booleans, bounded integers, enumerations as data types.

* |t has a structured, symbolic language for describing initial state
sets and transitions:

* either declarative
TRANS
next (output) = !input;
where totality of the transition relation has to be guaranteed
by the user, or
* “Imperative” (single assignment!) providing such guarantee

ASSIGN
next (output) := !lnput;
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The imperative syntax

An inverter taking one step delay:
MODULE main

VAR

input : boolean;

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

Note that input is unconstrained!
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The imperative syntax

An inverter taking arbitrary delay (and missing transient inputs):
MODULE main

VAR
input : boolean;
output : boolean;
ASSIGN
init (output) := 0;
next (output) := (!input) union output;

Note that output has a non-deterministic assignment!
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The imperative syntax

MODULE 1nverter (1nput)

VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

MODULE main

VAR
gatel : 1nverter (gate3.output);
gateZ2 : 1nverter (gatel.output);
gate3 : 1nverter (gateZ.output);

This is synchronous execution, while...
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The imperative syntax

MODULE 1nverter (1nput)

VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

MODULE main

VAR
gatel : process 1nverter (gate3.output);
gate2 : process 1nverter (gatel.output);
gate3 : process 1nverter (gateZ.output);

this Is asynchronous execution, and...
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The imperative syntax

MODULE 1nverter (1nput)
VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;
FAIRNESS

running;

MODULE main

VAR
gatel : process 1nverter (gate3.output);
gate2 : process 1nverter (gatel.output);
gate3 : process 1nverter (gateZ.output);

IS fair asynchronous execution.
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Rules governing the “imperative” fragment

In order to ensure totality of the transition relation, there is a

single assignment rule: For each variable, there is at most one
assignment (which may contain case distictions).

next (abr) :=
case forget = 0 : ab;
forget = 1 : abr;
esac;

Note that assignments to both v and next(v) do also constitute
multiple assignments to v!

non-circular dependencies rule: Circular dependencies are to be
broken by “delays”, i.e. a variable may only depend on older
values of itself.
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Specification patterns for the exercises

You'll need the following types of CTL (computation tree logic
formulae):

¢ holds invariably: AG ¢
* On all computation paths, ¢ holds generally.

¢ leads to : AG (p->AF))

* On all computation paths, it holds generally that if ¢ holds

then necessarily (= on all computation paths), {» holds
eventually.

Tutorial available at

http://nusmv.irst.itc.it/NuSMV/tutorial/v24/tutorial.pdf
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(this week)
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Schedule

4 Slots a day, 2 in the morning, 2 in the afternoon.

Introductory lecture
Exercise class: State-exploratory verification using NuSMV
Lecture: CTL and CTL model checking

Lecture: Checking Circuit Equivalence
Exercise class: dito
Lecture: Satisfiability solving of large propositional formulae

02917: Introduction — p.48/49



Schedule (cntd.)

Lecture: Symbolic methods for finite-state model checking
Exercise class: Circuit equivalence (cntd.)
Lecture: Symbolic methods for real-time

Lecture: Arithmetic satisfiability solving
Exercise class: Using arith. SAT solving for scheduling
Lecture: Hybrid state-space exploration |

Lecture: Hybrid state-space exploration Il

Exercise class: Introduction to the projects,
time to continue with previous exercises

Lecture: Game-theoretic synthesis
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