02917: Advanced Topics
in Embedded Systems

Martin Franzle

Carl von Ossietzky Universitat
Dpt. of Computing Science
Res. Group Hybrid Systems

Oldenburg, Germany

02917: Introduction — p.1/49

Multiple viewpoints

Requirements Programming

analysis

Validation / verification

02917: Introduction — p.2/49

Formal Methods

* Formal methods are mathematically-based techniques for the
specification, development and verification of software and
hardware systems. [R.W. Butler, 2001]

* Motivated by the expectation that appropriate mathematical
analyses can contribute to the reliability and robustness of a
design. [M. Holloway, 1997]

* Alternative to less exhaustive analyses:

(Cartoon)

02917: Introduction — p.3/49

Embedded computer systems

>
O O
@ 0 Cogito, o)
ergo sum!

Estimates for number of embedded systems in current
use exceed 10'°,

[Rammig 2000, Motorola 2001]

02917: Introduction — p.4/49

Application domains

CD players, TV sets, handheld games, electronic pets, cameras, alarm
clocks, remote controls, dishwashers, microwave ovens, ...

Printers, network controllers, mobile phones, keyboards, CRTs and
flatscreens, ...

A control, programmable heating systems, exhaust control, ...

Cars (body, powertrain, suspension, brakes), signalling devices, balises,
interlocks, autopilots, traffic information, ...

Measurement devices (thermometers, RR’s, X-ray, sonographic imaging,
EEG, ECG ...), treatment devices (perfusors, respirators, microwave
radiation treatment, ...)

Power plants, distribution networks, ...

02917: Introduction — p.5/49

The roles, they are a changing...

® automatic climate control,
® adaptive power steering,
® keyless entry,

® navigation system.

® anti-locking brake,

® electronic stability control,

® electric power steering,

® electronically variable transmission ratio of steering column.

® steer-by-wire,
® brake-by-wire,
® driver-less go (automatic parking, autonomous lane change, .. .).

02917: Introduction — p.6/49

A little mishap...

Beheve us -
3/ we weren't /S
[involved! | "%

® Car geometry:
- center of gravity
- wheelbase

® Reduced component-
count axles

®* Patched with embed-
ded control (“ESP”)

How to validate the patch?

02917: Introduction — p.7/49

Continuity?

Around 1999, the car industry fought for a unification of European
and American crash test scenarios because

ECE test: 5657,
NCAP test: 64km.

02917: Introduction — p.8/49

A Suggestion: Formal Methods

The term refers to a broad set of notations and tools for

Mathematically rigorous documentation of requirements
® |ess ambiguous than prose

® amenable to formal analysis (check for consistency, check for
adherence to well-formedness criteria,...)

Mathematically rigorous models of designs

® rigorous semantics, removes ambiguity of design documentation in
prose, albeit only wrt. the viewpoint focused at

® early availability of abstract, yet concise model of the system under
design

® amenable to formal analysis (check for absence of design flaws, like
deadlock, wrong interfaces,...; check for side-conditions of design
steps,...)

Check of consistency between such
® correctness of a design relative to requirements
® replacability of a design by another one

02917: Introduction — p.9/49

02917: Introduction — p.10/49

Open (contin. time & state) dynamical system

disturbances ("noise")
System

(N\
environmental observable
state

/ 9 internal state é

System boundary

control

* Time is continuous: R,

* internal state is a bunch of real-valued (or complex-val ued)
functions of time: x(.) : Time — R™,

* observable state is a time-invariant function (usually projection)
thereof,

* environment influence is a bunch of real-valued (or
complex-valued) functions of time: 1(.) : Time — R™.

02917: Introduction — p.11/49

Some state-based models

* Finite automata
* discrete state space, finitely many states
* evolution through discrete transitions

* Differential equations
* continuous state space
* continuous flows

* Hybrid systems
e continuous and discrete state components
* both jumps (= discrete transitions) and continuous flows

02917: Introduction — p.12/49

Finite Automata

02917: Introduction — p.13/49

Finite-state models

arise naturally in
* descriptions of hardware components,

* descriptions of communication protocols,

* descriptions of embedded computer systems,

02917: Introduction — p.14/49

The coffee vending machine — architecture

Financial Brewer
administr. control

02917: Introduction — p.15/49

The coffee vending machine — dynamics

no pay = paid

idle » wait » brew

02917: Introduction — p.16/49

An example run

' .

\d \/ w

(*, canc, cout, * —caf)

» wait = brew

\/4

(*, canc, *, —req, —caf)

02917: Introduction — p.17/49

The coffee vending machine

(—cin, * —cout, * caf)

,

wait

idle brew
paid paid
\ 4
UnreachBilde sitdfes!

02917: Introduction — p.18/49

Embedded systems in-the-large

-anml:l'mﬂll’n

TS il w b i B i
| s, RO i S e |
D.L-"-“ u s M b —HIMH:!\:J” 5- 'i
Py e e LSS =YY o L S e, e e e e Al - i My e T S s pr '-'l. ______________ - . DL
y":ﬂ'- I 3 i = rmi: T : r—ﬂ. g i |__ .\;a.‘:m.
' -,:' "] % e = 5 |_.:| e : 3
A . : - i e e e e .1';-'| ;
i |

‘:&Eﬁ 1 * 1'.I
Iinli-m«- £ -|:__ e — 'i
G e\ R ==t L | O 4 el 1 "L (TS | :
I|':I.|lhanu .—: Mo . i T ;
| e _— a 1 Zpes [= hnhl‘ﬂ-lu] o
q ’ 3 : fﬁ,! 1 8 L1 i I'Ip‘t: [i
Nifs-dmavrs 4 . : r=w F= _ —— ' v
W - . . [
i ’] i RN s rllie wb g |
[1.1 |
:-“'I -up f' '{.‘q “ = Il b E
| e et = e !
i . [T bl PR e
! oW Hawe nan Jart i aharny
|I R R i Wi = -""""l"!
'I i - A .] r
i s
I: Fraimiilar i
q;I
EM"*":N“‘" — : 2 it [1+1 ot
| Hirbgstirg ?
R
& Would you Ilke to draw the automaton®
it —
R — = } bt ach
Fillrusigas et : =] s £=g
flecm dpspaing _ T P

L A i

|

] HE op 1o
= a0y e 4~ gy ey e] 11 |1 o &
R P e BT
. T [rown] g e e S i
3 FRLND IS - = LE
Praso ek s g Pk s MON kbl gngafiise
i A S-S s aﬂj.- il i ;
o & = i G E=
s TR (D i 'Lm:ﬁ? i
=FE4ch H # EEL L - - -

T AN) -Mﬁm bl i ninina v Emmrmn flw

Hert Barpastt
=i N lm-uq-
bl 0 o e

02917: Introduction — p.19/49

Differential equations

02917: Introduction — p.20/49

Open (contin. time & state) dynamical system

disturbances ("noise")
System

(N\
environmental observable
state

/ 9 internal state é

System boundary

control

* Time is continuous: R,

* internal state is a bunch of real-valued (or complex-valued)
functions of time: x(.) : Time — R™,

* observable state is a time-invariant function (usually projection)
thereof,

* environment influence is a bunch of real-valued (or
complex-valued) functions of time: 1(.) : Time — R™.

02917: Introduction — p.21/49

Continuous modeling with DEs

1. Add further, derived state components: the derivatives

x(.),x(.), ... of the state components.

2. Formulate dynamics as equations between x(.), x(.),t(.),...

N.B. Higher-order derivatives x™, n > 1, can always be removed by
1. adding a fresh state variable y(.),

2. adding the equation y(t) = x™(t),

3. replacing every occurrence of x™ by y.

02917: Introduction — p.22/49

Differential equation w/o input / disturbance

The DE describes dynamics of the system by
* providing a state space R™,

* providing a (piecewise) continuous vector field f : R™ — R™
constraining the possible evolutions through the equation

dx
T f
m (x)

The initial value xo € R™ defines the start state of the dynamic
evolution.

A solution in the sense of Carathéodory is a time-dependent signal
x : 10, a) — R™ such that

* x IS piecewise differentiable,
e Vte [0,a)ex(t) =xo+ f;f(x(s))ds.

Then X(t) = f(x(t)) for almost all t € [0, a).

02917: Introduction — p.23/49

Differential equation with input

The DE describes dynamics of the system by
* providing a state space R™,
* providing an input space R™,
* providing a (piecewise) contin. vector field f : R™™ — R™
constraining the possible evolutions through the equation

= = fixu)

The initial value xo € R™ defines the start state of the dynamic
evolution.

A solution wrt. a (piecewise) continuous input u: [0,a) — R™is a
time-dependent signal x : [0, a) — R™ such that

* x IS piecewise differentiable,
e Vt€[0,a) e x(t) =xo+ [f(x(s),uls))ds.
Then () = f(x(t),u(t)) for almost all t € [0, a).

02917: Introduction — p.24/49

Example: spring-mass system w. disturbance

L,

v

® Basic model:

y(t) = W
Fit) = k(l(t) —1o)
Wt) = u(t)—y(t)

® Replace higher-order derivatives:

Add v(t) =V (t).
Gives Y (t)
v (t)

Hybrid systems

02917: Introduction — p.26/49

Hybrid Systems

disturbances ("'noise")

environmental

influence l

control

observable
state

Plant

selection

Continuous
controllers

setpoints

setpoints

Discrete
supervisor

active control law

Conirol

A/D

part of
observable

State

A

A

task selection

02917: Introduction — p.27/49

Hybrid Automata

x =200 Ay =0.0

x=00AYy<0.0/
y' =-08-y

x : vertical position of the ball
y : velocity
y > 0 ball is moving up
Yy < 0 ball is moving down

e e T e e e e e e e e e e e e e e
y e O e e i e s
B N
e R T T e e T
N N e N N N O

N N N N N N O N N N N
NN D Y N RN N N N NN

~~~ T T T e e T a  a  a a a a a

" " T T e T T T T T T T T T T

Pl s el el e " el " L L "

X

[ [ [ [
5 10 15 20

02917: Introduction — p.28/49




State and Dimension Explosion

Number of continuous variables linear in num-
ber of cars

il * Positions, speeds, accelerations,
® torque, slip, ...

Number of discrete states exponential in num-
ber of cars

® QOperational modes, control modes,
® state of communication subsystem, ...

Symmetry reduction often impossible

® Latency in ctrl. loop depends on number
of cars due to communication subsystem.

®* Hidden channels due to coupled dynam-
ICS.

Need a scalable approach

Trying to achieve this through strictly symbolic methods.

02917: Introduction — p.29/49



“Embedded Systems are Predicates”™
(©E. Hehner)

02917: Introduction — p.30/49



Symbolic transition system

Given a predicate language L, a symbolic transition system STS over
L comprises

e aset V of variable names belonging to L,
plus a sort-preserving renaming operation .” assigning to each
variable in V a “copy” v/ ¢ V,

* an initialization predicate I € L with free (I) C V,

* a (symbolic or predicative) transition relation T € L with
free(T) C VUV’

A run of symb. trans. sys. STS is a (finite or infinite) sequence
r = (07,02, 03,...) of L-interpretations such that

o1 = Iand
oiir1 = I foreach i < len(r), where

Oii1(X) =

o;(x) iff x ¢ V/
oir1(x) iffx eV’

02917: Introduction — p.31/49



Parallel composition

Assume STS; = (V] , I],T]) and STS, = (Vz, Iz,Tz)
* control (i.e., constrain v’) a subset Out; C V; of variables,
* |leave the remaining variables unconstrained.

Synchronous execution: |f then
STS) = (Viu Vo, I AL, i AT)

yields step-synchronous parallel execution.

Asynchronous execution:

STS) = (ViUVo, LAL, (TA A\ vV =v) V (LA A v =v)
ve 0, \Oq veO01\02

N N

framing framing

7

yields (non-fair) interleaving.

02917: Introduction — p.32/49



Symbolic Representation: Principle

® symbolic representation of linear size
® provided ODEs are of appropriate kind.

02917: Introduction — p.33/49



Generalizing the concept: Simulink+Stateflow

@lﬂ[ﬂ@ Sil'llp le_i gni tiOll_OWlln"Ell gine oM Stateflow (cll) pgnition_ovme‘lgnition Control* {0
Fle E8t View Smugion Fomst Tods Help [smejsciy it [=o6[B8A0 B
¥ Al Ignition Gontrol
L # f [ Mark
L Ignite1 N Bk during: POffset := floor(1.0*Setpoint/6);
Gl TOffset := floor(1.0*(Setpaint - 6*POffset)/360/RPM*60¢
Ignitez
; Ignited Minar_hark
In1 Out? =
— Ignited |gniti0n
; Setooin: |« e
- PP 5 J ¢ Cylindert
4 [Angle == (POffset + 120) %% 120]
10 mus |—| |—| =
- clock
50 sin o = D [TOffset> 0]/ / \[TOffset =
Minor_Mark Wait ;= TOffset
—» | e 0.0
= _ |l = ) ‘[-(mﬂe‘_—s (POffset + 120) %% 120)]/
b Major_Mark g =
rew. angle
total crankshaft
rev, angle
\ after(Wait-1,clk)
i % ] Spark .
; Engine._| E /lgnitet = 1
Total 4cyl-dstroke Combustion Enging
rev.s f
7
- ] T Move

02917: Introduction — p.34/49



‘Algebraic’ blocks

input output

* time-invariant transfer function outout(t) = f (input(t))

* made 1st-order by making time implicit: Flow = output = f (input)
* no constraints on initial value: Init = true,

e discontinuous jumps always admissible Jump = true,

All the formulae are elements of a suitably rich

1st-order logics over R.

02917: Introduction — p.35/49



Integrators

input 1/s output
D
init

* integrates its input over time: output(t) = init + f; input(1) du.

* made semi-1st-order by using derivatives: Flow = <2424 — jnpyt

* |nitial value Is rest value: Init = output = init,

* discontinuous jumps don'’t affect output Jump = outout = output,

02917: Introduction — p.36/49



Getting started with STS: NuUSMV

02917: Introduction — p.37/49



Model checking

Device Specification
*(T<=0)

Device Descript.

architecture behaviour
of processor is

process fetch
if halt=0 then
if mem_wait=0 then
nextins <= dport

L .« o )

4 N\

Model Checker

Approval/
Counterexample

L\

02917: Introduction — p.38/49



NuSMV

* NuSMV (A. Cimmati, E. Clarke, F. Giunchiglia, A. Morichetti, M.
Roveri et al.) is an optimized reengineering of the symbolic
model checker SMV (K. McMillan, 1993)

* |tis dedicated to finite state systems, providing
* Booleans, bounded integers, enumerations as data types.

* |t has a structured, symbolic language for describing initial state
sets and transitions:

* either declarative
TRANS
next (output) = !input;
where totality of the transition relation has to be guaranteed
by the user, or
* “Imperative” (single assignment!) providing such guarantee

ASSIGN
next (output) := !lnput;

02917: Introduction — p.39/49



The imperative syntax

An inverter taking one step delay:
MODULE main

VAR

input : boolean;

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

Note that input is unconstrained!

02917: Introduction — p.40/49



The imperative syntax

An inverter taking arbitrary delay (and missing transient inputs):
MODULE main

VAR
input : boolean;
output : boolean;
ASSIGN
init (output) := 0;
next (output) := (!input) union output;

Note that output has a non-deterministic assignment!

02917: Introduction — p.41/49



The imperative syntax

MODULE 1nverter (1nput)

VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

MODULE main

VAR
gatel : 1nverter (gate3.output);
gateZ2 : 1nverter (gatel.output);
gate3 : 1nverter (gateZ.output);

This is synchronous execution, while...

02917: Introduction — p.42/49



The imperative syntax

MODULE 1nverter (1nput)

VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;

MODULE main

VAR
gatel : process 1nverter (gate3.output);
gate2 : process 1nverter (gatel.output);
gate3 : process 1nverter (gateZ.output);

this Is asynchronous execution, and...

02917: Introduction — p.43/49



The imperative syntax

MODULE 1nverter (1nput)
VAR

output : boolean;
ASSIGN

init (output) := 0;

next (output) := !input;
FAIRNESS

running;

MODULE main

VAR
gatel : process 1nverter (gate3.output);
gate2 : process 1nverter (gatel.output);
gate3 : process 1nverter (gateZ.output);

IS fair asynchronous execution.

02917: Introduction — p.44/49



Rules governing the “imperative” fragment

In order to ensure totality of the transition relation, there is a

single assignment rule: For each variable, there is at most one
assignment (which may contain case distictions).

next (abr) :=
case forget = 0 : ab;
forget = 1 : abr;
esac;

Note that assignments to both v and next(v) do also constitute
multiple assignments to v!

non-circular dependencies rule: Circular dependencies are to be
broken by “delays”, i.e. a variable may only depend on older
values of itself.

02917: Introduction — p.45/49



Specification patterns for the exercises

You'll need the following types of CTL (computation tree logic
formulae):

¢ holds invariably: AG ¢
* On all computation paths, ¢ holds generally.

¢ leads to : AG (p->AF))

* On all computation paths, it holds generally that if ¢ holds

then necessarily (= on all computation paths), {» holds
eventually.

Tutorial available at

http://nusmv.irst.itc.it/NuSMV/tutorial/v24/tutorial.pdf

02917: Introduction — p.46/49



(this week)

02917: Introduction — p.47/49



Schedule

4 Slots a day, 2 in the morning, 2 in the afternoon.

Introductory lecture
Exercise class: State-exploratory verification using NuSMV
Lecture: CTL and CTL model checking

Lecture: Checking Circuit Equivalence
Exercise class: dito
Lecture: Satisfiability solving of large propositional formulae

02917: Introduction — p.48/49



Schedule (cntd.)

Lecture: Symbolic methods for finite-state model checking
Exercise class: Circuit equivalence (cntd.)
Lecture: Symbolic methods for real-time

Lecture: Arithmetic satisfiability solving
Exercise class: Using arith. SAT solving for scheduling
Lecture: Hybrid state-space exploration |

Lecture: Hybrid state-space exploration Il

Exercise class: Introduction to the projects,
time to continue with previous exercises

Lecture: Game-theoretic synthesis

02917: Introduction — p.49/49



	Multiple viewpoints
	Formal Methods
	Embedded computer systems
	Application domains
	The roles, they are a changing...
	A little mishap...
	Continuity?
	A Suggestion: Formal Methods
	
	Open (contin. time & state)
dynamical system
	Some state-based models
	
	Finite-state models
	The coffee vending machine --- architecture
	The coffee vending machine --- dynamics
	An example run
	The coffee vending machine
	Embedded systems in-the-large
	
	Open (contin. time & state)
dynamical system
	Continuous modeling with DEs
	Differential equation w/o input / disturbance
	Differential equation with input
	Example: spring-mass system w. disturbance
	
	Hybrid Systems
	Hybrid Automata
	State and Dimension Explosion
	
	Symbolic transition system
	Parallel composition
	Symbolic Representation: Principle
	Generalizing the concept: Simulink+Stateflow
	`Algebraic' blocks
	Integrators
	
	Model checking
	NuSMV
	The imperative syntax
	The imperative syntax
	The imperative syntax
	The imperative syntax
	The imperative syntax
	Rules governing the ``imperative'' fragment
	Specification patterns for the exercises
	
	Schedule
	Schedule (cntd.)

