Symbolic Methods

Symbolic state-space traversal for finite-state systems

Martin Fränzle

Carl von Ossietzky Universität
Dpt. of CS
Res. Grp. Hybrid Systems
Oldenburg, Germany

What you'll learn

- reduced ordered binary decision diagrams
- symbolic methods for state reachability
- SAT-based procedures for bounded state reachability
- full reachability via BDDs
- symbolic CTL model checking

Reduced ordered binary decision diagrams

(RO)BDDs

Binary decision diagrams

An ordered decision tree for $(\mathrm{a} \Leftrightarrow \mathrm{b}) \wedge(\mathrm{c} \Leftrightarrow \mathrm{d})$:

Size exponential in number of variables!

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.
Idea: Combine equivalent sub-cases,
i.e. reduce size of the diagram by

1. omitting nodes that have equivalent left and right sons,
2. sharing common sub-trees:

- remove duplicate terminal nodes; share instead
- remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called reduced ordered binary decision diagrams (ROBDDs).

> May expect good performance if many substructures are equivalent!

ROBDDs

An ROBDD for $(\mathrm{a} \Leftrightarrow \mathrm{b}) \wedge(\mathrm{c} \Leftrightarrow \mathrm{d})$, using node order $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$:

Note how variable order affects size: Using $\mathrm{a}<\mathrm{c}<\mathrm{b}<\mathrm{d}$ would yield a layer with 4 nodes.
For n-bit comparison, we obtain a layer with 2^{n} nodes if poor order is chosen, yet maximum layer width 2 with appropriate order.

ROBDDS: Some properties

-) Given a variable ordering, ROBDDs provide a canonical representation for Boolean functions

- simple equivalence check, once the ROBDDs have been built:
- linear in size of BDDs
- $O(1)$ if sharing across BDDs is used
- Applying a connective to two ROBDDs can be done by simultaneous recursive descent through the two ROBDDs
(+acceleration by dynamic programming)
- (if x then ϕ_{t} else $\left.\phi_{e}\right) \wedge\left(\right.$ if x then ψ_{t} else $\left.\psi_{e}\right) \equiv$ (if x then $\phi_{t} \wedge \psi_{t}$ else $\phi_{e} \wedge \psi_{e}$)
\rightarrow efficient
\rightarrow can construct ROBDDs for non-trivial circuits
\because Variable order strongly affects size.
- need reordering heuristics,
- even then, some circuits don't permit any good order: e.g., multipliers yield exponentially sized BDDs

ROBDD operations

Negation:

Operation: Constructs from an ROBDD B an ROBDD not(B) with $f_{\operatorname{not}(B)}=\neg f_{B}$, where f_{B} is the truth function encoded by B.

Algorithm: Swap the terminal nodes:

- node 0 is replaced with 1
- node 1 is replaced with 0 .

Complexity: $\mathrm{O}(1)$.

ROBDD operations

Boolean junctors:
Operation: Constructs from two ROBDDs $\mathrm{B}_{1}, \mathrm{~B}_{2}$ and a Boolean junctor \oplus an
ROBDD apply $\left(\oplus, \mathrm{B}_{1}, \mathrm{~B}_{2}\right)$ with $\mathrm{f}_{\text {apply }\left(\oplus, \mathrm{B}_{1}, \mathrm{~B}_{2}\right)}=\mathrm{f}_{\mathrm{B}_{1}} \oplus \mathrm{f}_{\mathrm{B}_{2}}$.
Algorithm: Recursively proceed as follows:

- If both B_{1} and B_{2} are terminal nodes then yield terminal node $\mathrm{f}_{\mathrm{B}_{1}} \oplus \mathrm{f}_{\mathrm{B}_{2}}$.
- If the top nodes of B_{1} and B_{2} agree on their variable v then

1. compute $L=\operatorname{apply}\left(\oplus, \operatorname{left}\left(B_{1}\right), \operatorname{left}\left(B_{2}\right)\right)$,
2. compute $R=\operatorname{apply}\left(\oplus, \operatorname{right}\left(B_{1}\right), \operatorname{right}\left(B_{2}\right)\right)$,
3. build the OBDD (ν, L, R),
4. reduce it.

- If the top nodes of B_{1} and B_{2} have different variables v_{1}, v_{2} with $v_{1}<v_{2}$ in the variable order then

1. compute $L=\operatorname{apply}\left(\oplus, \operatorname{left}\left(B_{1}\right), B_{2}\right)$,
2. compute $R=\operatorname{apply}\left(\oplus, \operatorname{right}\left(B_{1}\right), B_{2}\right)$,
3. build the OBDD (ν, L, R),
4. reduce it.

Complexity: $\mathrm{O}\left(\left|\mathrm{B}_{1}\right| \cdot\left|\mathrm{B}_{2}\right|\right)$ if memoization is used to save recomputations which may arise due to sharing of subgraphs.

ROBDD operations

Quantification:

Operation: Constructs from an ROBDD B and a variable v an ROBDD exists (v, B) with $f_{\text {exist }(v, B)}=\exists v . \mathrm{f}_{\mathrm{B}}$.
Algorithm:

1. Replace each sub-BDD of B which has a root node n labeled with v by the ROBDD apply $(V$, left $(n), \operatorname{right}(n))$.
2. Reduce the resulting BDD.

Complexity: $\mathrm{O}\left(|\mathrm{B}|^{2}\right)$.

Note that BDDs obtained by quantifying multiple variables may thus grow exponentially in the number of quantified variables.

Symbolic techniques II:

State reachability in finite-state reactive systems

The general framework

Finite state model

Translator

Mapping models to formulae (essence of)

- Each control location s is assigned a proposition p_{s}; each symbolic variable v is assigned $\left\lceil\log _{2}|\operatorname{dom} v|\right\rceil$ propositional variables;
- for describing transitions, propositional variables are duplicated:
- undecorated version encodes pre-state,
- primed version encodes post-state,

$$
\mapsto \quad \phi_{\mathrm{tr}} \equiv p_{\mathrm{s}} \wedge \underbrace{[g]}_{\text {proposit. encodings }} \wedge \underbrace{\left[v^{\prime}=e\right]} \wedge p_{\mathrm{t}}^{\prime}
$$

- similar for describing initial state set, yielding predicate init (x).
- Translation can be done componentwise, using conjunction for encoding parallel composition.
This saves computing the automaton product!

Verification/Falsification

Given: Transition pred. $\operatorname{trans}\left(x, x^{\prime}\right)$, initial state pred. $\operatorname{init}(x)$, conj. invar. $\phi(x)$.

QBF-based algorithm:

1. Start with $R_{0}(x)=\operatorname{init}(x)$.
2. Test for satisfiability of $R_{i}(x) \wedge \neg \phi(x)$. If test succeeds then report violation of goal.
3. Else build $R_{i+1}(x)=R_{i}(x) \vee \exists \tilde{x}$. $\left(R_{i}(\tilde{x}) \wedge \operatorname{trans}(\tilde{x}, x)\right)$.
4. Test whether $R_{i+1}(x) \Longrightarrow R_{i}(x)$. If so then report satisfaction of goal. Otherwise continue from step 2 , with $i+1$ instead of i.

BF-based algorithm:

1. For given $i \in \mathbb{N}$ check for satisfiability of

$$
\left(\begin{array}{ll}
& \operatorname{init}\left(x_{0}\right) \wedge \operatorname{trans}\left(x_{0}, x_{1}\right) \wedge \ldots \wedge \operatorname{trans}\left(x_{i-1}, x_{i}\right) \\
\Rightarrow & \phi\left(x_{0}\right) \wedge \ldots \wedge \phi\left(x_{i}\right)
\end{array}\right) .
$$

If test succeeds then report violation of goal.
2. Otherwise repeat with larger i.

Algorithms by example

Model:
VAR $x:\{0 \ldots 3\}$; INIT $x=0$; NEXT $x:=3-x$
Conjectured Invar.: ALWAYS $x=0$

QBF: BDD-based MC			
$\begin{aligned} & \overline{l_{0}} \wedge \overline{h_{0}} \wedge \\ & \left(l_{0} \vee h_{0}\right) \end{aligned}$	$\begin{aligned} & \overline{l_{0}} \wedge \overline{h_{0}} \wedge l_{1}=\overline{l_{0}} \wedge h_{1}=\overline{h_{0}} \wedge \\ & \left(l_{0} \vee h_{0} \vee \quad \overline{l_{1}} \vee h_{1}\right) \end{aligned}$	$\begin{aligned} & \ldots \wedge \ldots \wedge l_{2} \\ & (\ldots \vee \ldots \vee \end{aligned}$	$\begin{aligned} & \wedge h_{2}=\overline{h_{1}} \wedge \\ & \left.\vee h_{2}\right) \end{aligned}$

BF: SAT-based BMC

Comparison

BDD-based model-checking:

- Normalization within each step of graph coloring.

1. Keeps size of intermediate representations compact.
2. Detects saturation of graph coloring.

SAT-based model-checking:

- Purely syntactic expansion, followed by satisfiability check.

- Size of syntactic expansion grows rapidly. E.g. wrt. number of propositional variables used for characterizing n step reachability:

- Tackles ≈ 500 state bits
- Tackles $\approx 1.000 .000$ propositions, most of which are auxiliary.
[Use cases: verification of high-level models w. limited arithmetic.]

Symbolic methods III:

Beyond reachability

The pre operator

Observation: Given

- a predicative encoding S of a state set (with free variables \vec{x}),
- a predicative encoding \top of the transition relation (with free variables $\vec{x}, \vec{x}^{\prime}$),
the set pre(S) of states that have a successor in (i.e., satisfying) S can be expressed symbolicly using QBF operators:

$$
\operatorname{pre}(S)=\exists \vec{x}^{\prime} \cdot T \wedge S\left[\vec{x}^{\prime} / \vec{x}\right]
$$

This can be used for determining all sequential predecessors of a whole set of states in one sweep, thus implementing predecessor colouring "in parallel".

Symbolic CTL model checking

Using the pre operator, CTL model checking can be performed by any QBF engine, e.g. by BDDs:

Formula	Algorithm	Result
propos. P	return [P]	Formula f_{P} denoting P-states
EX ϕ	return pre (f_{ϕ})	Formula $f_{\text {EX } \phi}$ denoting all states satisfying EX ϕ
EG ϕ	Incrementally build $\begin{aligned} S_{0} & =f_{\phi} \\ S_{i+1} & =f_{\phi} \wedge \text { pre }\left(S_{i}\right) \\ \text { until }\left(S_{n}\right. & \left.\Longleftrightarrow S_{n+1}\right) \text { holds } \end{aligned}$	Formula $\mathrm{f}_{\text {EG } \phi}=S_{\mathrm{n}}$ denoting all states satisfying EG ϕ
$\phi E \cup \psi$	Incrementally build $\begin{aligned} & S_{0}=f_{\psi} \\ & S_{i+1}=f_{\psi} \vee\left(f_{\phi} \wedge \operatorname{pre}\left(S_{i}\right)\right) \end{aligned}$ until ($S_{n} \Longleftrightarrow S_{n+1}$) holds	Formula $f_{\phi E U \psi}=S_{n}$ denoting all states satisfying $\phi \mathrm{EU} \psi$

If I characterizes initial states then $I \Longrightarrow f_{\phi}$ is to be checked finally.

