Symbolic Methods

Symbolic state-space traversal
for finite-state systems

Martin Franzle

Carl von Ossietzky Universitat
Dpt. of CS
Res. Grp. Hybrid Systems
Oldenburg, Germany

02917: Symbolic Methods for Finite State Il —p.1/19

What you’ll learn

* reduced ordered binary decision diagrams

* symbolic methods for state reachability
e SAT-based procedures for bounded state reachability
* full reachability via BDDs

e symbolic CTL model checking

02917: Symbolic Methods for Finite State Il —p.2/19

(RO)BDDs

02917: Symbolic Methods for Finite State Il —p.3/19

Binary decision diagrams

An ordered decision tree for (a & b) A (¢ & d):

@\
O

~_ /@\

AN O LN N
,@\ d
0

& R & R & B
R R R EEEEEER:

Size exponential in number of variables!

02917: Symbolic Methods for Finite State Il — p.4/19

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.

Idea: Combine equivalent sub-cases,
l.e. reduce size of the diagram by

1. omitting nodes that have equivalent left and right sons,
2. sharing common sub-trees:

* remove duplicate terminal nodes; share instead
* remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called
reduced ordered binary decision diagrams (ROBDDs).

May expect good performance if many

substructures are equivalent!

02917: Symbolic Methods for Finite State Il —p.5/19

ROBDDs

An ROBDD for (a & b) A (¢ & d), using node order a < b < ¢ < d:

Note how variable order affects size: Using a < ¢ < b < d would yield a

layer with 4 nodes.
For n-bit comparison, we obtain a layer with 2™ nodes if poor order is
chosen, yet maximum layer width 2 with appropriate order.

02917: Symbolic Methods for Finite State Il —p.6/19

ROBDDS: Some properties

) Given a variable ordering, ROBDDs provide a canonical
representation for Boolean functions

® simple equivalence check, once the ROBDDs have been built:
® linear in size of BDDs

® O(1) if sharing across BDDs is used

©) Applying a connective to two ROBDDs can be done by

simultaneous recursive descent through the two ROBDDs
(+acceleration by dynamic programming)

® (if x then ¢ else ¢p.) A (if x then 1V, else P.) =
(if x then ¢ APy else de AD,)

— efficient
— cahn construct ROBDDs for non-trivial circuits
=y Variable order strongly affects size.

® need reordering heuristics,

® even then, some circuits don’t permit any good order:
e.g., multipliers yield exponentially sized BDDs

02917: Symbolic Methods for Finite State Il —p.7/19

ROBDD operations

Negation:

Operation: Constructs from an ROBDD B an ROBDD not(B)
with {018y = —fg, Where fg is the truth function encoded by
B.

Algorithm: Swap the terminal nodes:
* node 0 is replaced with 1
* node 1 is replaced with 0.

Complexity: O(1).

02917: Symbolic Methods for Finite State Il —p.8/19

ROBDD operations

Boolean junctors:
Operation: Constructs from two ROBDDs B, B, and a Boolean junctor & an

ROBDD apply(@, Bq, Bz) with fapply(@,B1 B,) = fB1 D fBz-
Algorithm: Recursively proceed as follows:

® |f both B; and B, are terminal nodes then yield terminal node
fB] D fBz :

® |f the top nodes of B; and B, agree on their variable v then
1. compute L = apply(®, left(By), left(B2)),
2. compute R = apply(e, right(B;), right(B2)),
3. build the OBDD (v, L, R),

4. reduce it.
® |f the top nodes of B; and B, have different variables v, v, with

v1 < vz in the variable order then

1. compute L = apply(®, left(B1), B,),
2. compute R = apply(4, right(B;), B2),
3. build the OBDD (v, L, R),

4. reduce it.
o

Complexity: O(|B|-|B>|) if memoization is used to save recomputations
which may arise due to sharing of subgraphs.

02917: Symbolic Methods for Finite State Il —p.9/19

ROBDD operations

Quantification:

Operation: Constructs from an ROBDD B and a variable v an
ROBDD exists(v, B) with feist(v.p) = 3v.Ts.

Algorithm:
1. Replace each sub-BDD of B which has a root node n
labeled with v by the ROBDD apply(V, left(n), right(n)).
2. Reduce the resulting BDD.

Complexity: O(|B|?).

Note that BDDs obtained by quantifying multiple variables

may thus grow exponentially in the number of quantified variables.

02917: Symbolic Methods for Finite State Il — p.10/19

State reachability In
finite-state reactive systems

02917: Symbolic Methods for Finite State Il —p.11/19

The general framework

Finite state
model

Translator

k» Logical Conjectured
formulae state invariant
k» Prove engine <J
k» Approval/
error trace

02917: Symbolic Methods for Finite State Il —p.12/19

Mapping models to formulae (essence of)

® Each control location s is assigned a proposition p;
each symbolic variable v is assigned |log, |domv|| propositional variables;

® for describing transitions, propositional variables are duplicated:
- undecorated version encodes pre-state,
- primed version encodes post-state,

g/V;:e> d)t‘r — ps/\ [g] /\[\)/:e]/\pé
N =

proposit. encodings

trans(x,x’) /\ (ps — \/ (I)tr>

S state tr transition from s

® similar for describing initial state set, yielding predicate init(x).

Translation can be done componentwise, using conjunction for
encoding parallel composition.

This saves computing the automaton product!

02917: Symbolic Methods for Finite State Il —p.13/19

Verification/Falsification

Given: Transition pred. trans(x, x’), initial state pred. init(x), conj. invar. ¢(x).

QBF-based algorithm:
1. Start with Ry(x) = init(x).

2. Test for satisfiability of R;(x) A —=d(x). If test succeeds then report violation
of goal.

3. Else build Ri 1(x) = Ri(x) V Ix. (Ri(%) A trans(k, x)).

4. Test whether R;. 1 (x) = Ri(x). lf so then report satisfaction of goal.
Otherwise continue from step 2, with 1 + 1 instead of 1.

BF-based algorithm:

1. For given i € N check for satisfiability of

init(xg) Atrans(xg,x1) A ... Atrans(xi_1,xi)
= Gxo) N A PD(xi)
If test succeeds then report violation of goal.

2. Otherwise repeat with larger 1i.

02917: Symbolic Methods for Finite State Il — p.14/19

Algorithms by example

Model:

Conjectured Invar.:

VAR x:{0...3}); INIT x =0; NEXTx:=3 —x

AILWAYSx = 0

low(x) low(x) @w(x)
-\ 4

hi(x) hi(x) hi(x) hi(x) Gi(x)

RO R] RZ | //‘ ‘l

) o 57 / 9

0 1 0 1 [0 1 ‘ 1 0

loAho A | IoAhy Alj=1gAhi=ho Al ... A...AL=1Ah,=h; A

(Lo V ho) (Lo V ho V 1, Vh) (...V ...V LV h,)

02917: Symbolic Methods for Finite State Il — p.15/19

Comparison

®* Normalization within each step of ® Purely syntactic expansion,
graph coloring. followed by satisfiability check.
1. Keeps size of intermediate ® Size of syntactic expansion grows
representations compact. rapidly. E.g. wrt. number of
2. Detects saturation of graph propositional variables used for
coloring. characterizing n step reachability:

statebits x (n+ 1)
+ auxbits X N

[Use cases: verification of high-level models w. limited arithmetic.]

02917: Symbolic Methods for Finite State Il — p.16/19

Beyond reachability

02917: Symbolic Methods for Finite State Il —p.17/19

The pre operator

Observation: Given
* a predicative encoding - of a (with free variables X),

* a predicative encoding ' of the
(with free variables x, x'),

the set pre(S) of states that have a successor in (i.e., satisfying) S
can be expressed symbolicly using QBF operators:

pre(S) = IX".T A S[X'/X]

This can be used for determining all sequential predecessors of a
whole set of states in one sweep, thus implementing predecessor

colouring “in parallel”.

02917: Symbolic Methods for Finite State Il —p.18/19

Symbolic CTL model checking

Using the pre operator, CTL model checking can be performed by
any QBF engine, e.g. by BDDs:

Formula | Algorithm Result
propos. P | return [P] Formula fp denoting P-states
EX b return pre(fy) Formula fexg, denoting all

states satisfying EX ¢

EGd Incrementally build Formula fegp = Sn denoting
So = fg all states satisfying EG ¢
Siv1 = fo Apre(Si)
until (S,, &< S,.1) holds
b EU Incrementally build Formula f ey = S denoting

So = Ty
Siv1 = Ty V(fgp Apre(Si))
until (S, &< Sn.1) holds

all states satisfying ¢ EUY

If I characterizes initial states then I — f, is to be checked finally.

02917: Symbolic Methods for Finite State Il — p.19/19

	What you'll learn
	
	Binary decision diagrams
	ROBDDs
	ROBDDs
	ROBDDS: Some properties
	ROBDD operations
	ROBDD operations
	ROBDD operations
	
	The general framework
	Mapping models to formulae (essence of)
	Verification/Falsification
	Algorithms by example
	Comparison
	
	The {it pre} operator
	Symbolic CTL model checking

