Symbolic Methods

Symbolic state-space traversal for finite-state systems

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of CS

Res. Grp. Hybrid Systems

Oldenburg, Germany

What you'll learn

- reduced ordered binary decision diagrams
- symbolic methods for state reachability
 - SAT-based procedures for bounded state reachability
 - full reachability via BDDs
- symbolic CTL model checking

Reduced ordered binary decision diagrams (RO)BDDs

Binary decision diagrams

An ordered decision tree for $(a \Leftrightarrow b) \land (c \Leftrightarrow d)$:

Size exponential in number of variables!

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.

Idea: Combine equivalent sub-cases,

- i.e. reduce size of the diagram by
- 1. omitting nodes that have equivalent left and right sons,
- 2. sharing common sub-trees:
 - remove duplicate terminal nodes; share instead
 - remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called reduced ordered binary decision diagrams (ROBDDs).

May expect good performance if many substructures are equivalent!

ROBDDs

An ROBDD for $(a \Leftrightarrow b) \land (c \Leftrightarrow d)$, using node order a < b < c < d:

Note how variable order affects size: Using $\alpha < c < b < d$ would yield a layer with 4 nodes.

For n-bit comparison, we obtain a layer with 2^n nodes if poor order is chosen, yet maximum layer width 2 with appropriate order.

ROBDDS: Some properties

- Given a variable ordering, ROBDDs provide a canonical representation for Boolean functions
 - simple equivalence check, once the ROBDDs have been built:
 - linear in size of BDDs
 - O(1) if sharing across BDDs is used
- Applying a connective to two ROBDDs can be done by simultaneous recursive descent through the two ROBDDs (+acceleration by dynamic programming)
 - (if x then ϕ_t else ϕ_e) \wedge (if x then ψ_t else ψ_e) \equiv (if x then $\phi_t \wedge \psi_t$ else $\phi_e \wedge \psi_e$)
 - → efficient
 - → can construct ROBDDs for non-trivial circuits
- Variable order strongly affects size.
 - need reordering heuristics,
 - even then, some circuits don't permit any good order:
 e.g., multipliers yield exponentially sized BDDs

ROBDD operations

Negation:

Operation: Constructs from an ROBDD B an ROBDD not(B) with $f_{not(B)} = \neg f_B$, where f_B is the truth function encoded by B.

Algorithm: Swap the terminal nodes:

- node 0 is replaced with 1
- node 1 is replaced with 0.

Complexity: O(1).

ROBDD operations

Boolean junctors:

Operation: Constructs from two ROBDDs B_1, B_2 and a Boolean junctor \oplus an ROBDD $apply(\oplus, B_1, B_2)$ with $f_{apply(\oplus, B_1, B_2)} = f_{B_1} \oplus f_{B_2}$.

Algorithm: Recursively proceed as follows:

- If both B_1 and B_2 are terminal nodes then yield terminal node $f_{B_1} \oplus f_{B_2}$.
- If the top nodes of B_1 and B_2 agree on their variable ν then
 - 1. compute $L = apply(\oplus, left(B_1), left(B_2))$,
 - 2. compute $R = apply(\oplus, right(B_1), right(B_2))$,
 - 3. build the OBDD (v, L, R),
 - 4. reduce it.
- If the top nodes of B_1 and B_2 have different variables ν_1, ν_2 with $\nu_1 < \nu_2$ in the variable order then
 - 1. compute $L = apply(\oplus, left(B_1), B_2)$,
 - 2. compute $R = apply(\oplus, right(B_1), B_2)$,
 - 3. build the OBDD (v, L, R),
 - 4. reduce it.
- •

Complexity: $O(|B_1| \cdot |B_2|)$ if memoization is used to save recomputations which may arise due to sharing of subgraphs.

ROBDD operations

Quantification:

Operation: Constructs from an ROBDD B and a variable ν an ROBDD $exists(\nu, B)$ with $f_{exist(\nu, B)} = \exists \nu. f_B$.

Algorithm:

- 1. Replace each sub-BDD of B which has a root node n labeled with v by the ROBDD apply(\vee , left(n), right(n).
- 2. Reduce the resulting BDD.

Complexity: $O(|B|^2)$.

Note that BDDs obtained by quantifying *multiple* variables may thus grow exponentially in the number of quantified variables.

Symbolic techniques II:

State reachability in finite-state reactive systems

The general framework

Mapping models to formulae (essence of)

- Each control location s is assigned a proposition p_s ; each symbolic variable v is assigned $\lceil \log_2 | \text{dom } v | \rceil$ propositional variables;
- for describing transitions, propositional variables are duplicated:
 - undecorated version encodes pre-state,
 - primed version encodes post-state,

$$\frac{\mathsf{trans}(\mathsf{x},\mathsf{x}')}{\mathsf{s}} \ \equiv \ \bigwedge_{\mathsf{s} \ \mathsf{state}} \left(\mathsf{p}_{\mathsf{s}} \ \Longrightarrow \ \bigvee_{\mathsf{tr} \ \mathsf{transition} \ \mathsf{from} \ \mathsf{s}} \varphi_{\mathsf{tr}} \right)$$

- similar for describing initial state set, yielding predicate init(x).
 - Translation can be done componentwise, using conjunction for encoding parallel composition.
 - This saves computing the automaton product!

Verification/Falsification

Given: Transition pred. trans(x, x'), initial state pred. init(x), conj. invar. $\phi(x)$.

QBF-based algorithm:

- 1. Start with $R_0(x) = init(x)$.
- 2. Test for satisfiability of $R_i(x) \wedge \neg \phi(x)$. If test succeeds then report violation of goal.
- 3. Else build $R_{i+1}(x) = R_i(x) \vee \exists \tilde{x}. (R_i(\tilde{x}) \wedge trans(\tilde{x}, x))$.
- 4. Test whether $R_{i+1}(x) \implies R_i(x)$. If so then report satisfaction of goal. Otherwise continue from step 2, with i+1 instead of i.

BF-based algorithm:

1. For given $i \in \mathbb{N}$ check for satisfiability of

$$\neg \left(\begin{array}{c} init(x_0) \wedge trans(x_0, x_1) \wedge \ldots \wedge trans(x_{i-1}, x_i) \\ \Rightarrow \phi(x_0) \wedge \ldots \wedge \phi(x_i) \end{array} \right).$$

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

Algorithms by example

Model: VAR $x : \{0 ... 3\}$; INIT x = 0; NEXT x := 3 - x

Conjectured Invar.: ALWAYS x = 0

BF: SAT-based BMC

Comparison

BDD-based model-checking:

 Normalization within each step of graph coloring.

- 1. Keeps size of intermediate representations compact.
- 2. Detects saturation of graph coloring.

Tackles ≈ 500 state bits

SAT-based model-checking:

 Purely syntactic expansion, followed by satisfiability check.

 Size of syntactic expansion grows rapidly. E.g. wrt. number of propositional variables used for characterizing n step reachability:

```
statebits \times (n+1) + auxbits \times n
```

 Tackles ≈ 1.000.000 propositions, most of which are auxiliary.

[Use cases: verification of high-level models w. limited arithmetic.]

Symbolic methods III:

Beyond reachability

The pre operator

Observation: Given

- a predicative encoding S of a state set (with free variables \vec{x}),
- a predicative encoding T of the transition relation (with free variables \vec{x}, \vec{x}'),

the set pre(S) of states that have a successor in (i.e., satisfying) S can be expressed symbolicly using QBF operators:

$$pre(S) = \exists \vec{x}'.T \land S[\vec{x}'/\vec{x}]$$

This can be used for determining all sequential predecessors of a whole set of states in one sweep, thus implementing predecessor colouring "in parallel".

Symbolic CTL model checking

Using the *pre* operator, CTL model checking can be performed by any QBF engine, e.g. by BDDs:

Formula	Algorithm	Result
propos. P	return [P]	Formula fp denoting P-states
ЕΧ ф	return $\textit{pre}(f_{\Phi})$	Formula $f_{EX\Phi}$ denoting all
		states satisfying EX φ
EGφ	Incrementally build	Formula $f_{EG\Phi} = S_n$ denoting
	$S_0 = f_{\Phi}$	all states satisfying EG ϕ
	$S_{i+1} = f_{\Phi} \wedge pre(S_i)$	
	until $(S_n \iff S_{n+1})$ holds	
φΕυψ	Incrementally build	Formula $f_{\phi E U \psi} = S_{\pi}$ denoting
	$S_0 = f_{\psi}$	all states satisfying ϕ EU ψ
	$S_{i+1} = f_{\psi} \lor (f_{\varphi} \land pre(S_i))$	
	until $(S_n \iff S_{n+1})$ holds	

If I characterizes initial states then $I \implies f_{\phi}$ is to be checked finally.