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Hybrid automata
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Hybrid features are used for

1. formalizing interaction of discrete & continuous components,

2. over-approximating complex differential equations by simple
differential inclusions.

02917: Reachability analysis for hybrid automata – p.2/37



Hybrid Automaton

Def: a hybrid automaton H is a tuple H = (V,X, f, Init, Inv, Jump), where :
• V is a finite set of discrete modes.

The elements of V represent the discrete states.
• X = {x1, . . . , xn} is an (ordered) finite set of continuous variables.

A real-valued valuation z ∈ Rn of x1, . . . , xn represent a continuous
state.

• f ∈ V × Rn → Rn assigns a vector field to each mode.
The dynamics in mode m is d~x

dt = f(m,~x).
• Init ⊆ V × Rn is the initial condition.
Init defines the admissible initial states of H.

• Inv ⊆ V × Rn specifies the mode invariants.
Inv defines the admissible states of H.

• Jump ∈ V × Rn → P (V × Rn) is the jump relation.
Jump defines the possible discrete actions of H. The jump relation may
be non-deterministic and entails both discrete modes and continuous
variables.
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Model-checking through discretization

Idea:
Hybrid automata are mapped to
finite state through overapproxi-
mation, then subjected to finite-
state symbolic model-checking

Problems:

• inexact (“false paths”)
• find appropriate discretiza-

tion (“false negatives”)
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Checking safety

...in a finite Kripke structure:

1. For increasing n, calculate the
set Reach≤n of states reachable
in at most n steps.

2. Chain Reach≤1 ⊆ Reach≤2 ⊆ . . .
has only a finite ascending sub-
chain due to finiteness of state-
space.

⇒ Set
⋃
n∈N Reach≤n of reachable

states can be constructed in
finitely many steps.

3. Check for intersection with set of
unsafe states.

...in a hybrid automaton:
Similar fixpoint construction

InitInitUnsafe InitUnsafe InitUnsafe InitUnsafe InitUnsafe

need not terminate,
but yields an effective pro-
cedure for falsification.
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Making the idea operational: the ingredients

Idea: Iterate transition relation and continuous dynamics until an unsafe state is
hit:

Initial Step 1 Step 2 Step 3 Step 4

unsafe

initial

Result: Terminates iff HA is unsafe.

Requires: Effective representations of transition relation, continuous dynamics, and
initial, intermediate, and unsafe state sets s.t.
1. Calculation of the state set reachable within n ∈ N steps is effective,
2. Emptiness of intersection of unsafe state set with the state set

reachable in n steps is decidable.
(implemented in e.g. HyTech [Henzinger, Ho, Wong-Toi, 1995–])
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From hybrid automata to logic

A: A:

σσ

↼
x= 10∧ x = 0∧ y =

↼
y

2
− 1

x = 0∧ y = 0

∃δt.



x =

↼
x +δt

y =
↼
y +δt

x ≤ 10




x := 0, y := 0

·
y= 1

x = 10→ x := 0, y := y
2
− 1

·
x= 1

x ≤ 10

Convexity of behaviors required, continuity is not FO-expressible!
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Essentials of polynomial HA
• Finite set Σ of discrete states, finite vector ~x of cont. variables
• An activity predicate actσ ∈ FOL(R,=,+,×) defines the possible

continuous evolution while residing in discrete state σ
• A transition predicate transσ→σ ′ ∈ FOL(R,=,+,×) defines guard

and effect of transition from discrete state σ to discrete state σ ′
• An initiation predicate initialσ ∈ FOL(R,=,+,×) defines the

discrete/continuous state pairs the system can start in
• A path is a sequence 〈(σ0,~y0), (σ1,~y1), . . .〉 ∈ (Σ× Rd)?|ω

entailing an alternation of transitions and activities:

• (
↼
~x := ~yi,~x := ~yi+1) |= transσi→σi+1 if i is odd

• (
↼
~x := ~yi,~x := ~yi+1) |= actσi and σi = σi+1 if i is even

• (~x := ~y0) |= initialσ0

Decidability of FOL(R,=,+,×) yields decision procedures for tem-
poral properties of paths of finitely fixed length
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Reachability

of a final discrete state σ ′ from an initial discrete state σ and through
an execution containing n transitions can be formalized through the
inductively defined predicate φnσ→σ ′ , where

φ0σ→σ ′ =

{
false , if σ 6= σ ′ ,

actσ , if σ = σ ′ ,

φn+1
σ→σ ′ =

∨

σ̃∈Σ
∃~x1,~x2 .




φnσ→σ̃[~x1/~x]∧

transσ̃→σ ′ [~x1,~x2/
↼
~x,~x]∧

actσ ′ [~x2/
↼
~x ]




02917: Reachability analysis for hybrid automata – p.9/37



Safety of hybrid automata

⇒ An unsafe state is reachable within n steps iff

unsafen =
∨

σ ′∈Σ
Reach≤nσ ′ ∧ ¬safeσ ′

is satisfiable, where

Reach≤nσ ′ =
∨

i∈N≤n

∨

σ∈Σ
φiσ→σ ′ ∧ initialσ[

↼
~x /~x]

characterizes the continuous states reachable in at most n steps
within discrete state σ ′.

⇒ An unsafe state is reachable iff there is some n ∈ N for which
unsafen is satisfiable.
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The semi-decision procedure

1. FOL(R,=,+,×) is decidable. [Tarski 1948]

2. unsafen is a formula of FOL(R,=,+,×).

⇒ For arbitrary n ∈ N it is decidable whether an unsafe state is
reachable within n steps.

3. By successively testing increasing n, this yields a semi-decision
procedure for reachability of unsafe states:

(a) Select some n ∈ N,
(b) check unsafen.
(c) If this yields true then an unsafe state is reachable.

Report this and terminate.
(d) Otherwise select strictly larger n ∈ N and redo from step (b).
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The semi-decision procedure — contd.

Note that in general the semi-decision procedure
can only detect being unsafe, yet does not termi-
nate iff the HA is safe. Hence, it

can be used for falsifying HA,

but not for verifying them.

However, there are cases where Reach≤n+1
σ ′ ⇒ Reach≤nσ ′ holds for

some n ∈ N s.t. the reachable state set can be calculated in a finite
number of steps.
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Appropriate back-end decision procedures

Type of analysis Falsification Falsific. + verification if
only reach set stabilizes

Property to be unsafe state reachable unsafe state reachable
checked + reach set stabilization
Formal property exists n ∈ N s.t. dito +
to be checked

∨
σ Reach≤nσ ∧ ¬safeσ

∧
σ ′ Reach≤n+1

σ ′ ⇒ Reach≤nσ ′
is satisfiable is valid

Formula class existential FOL(R,=,+,×) FOL(R,=,+,×) with one
quantifier alternation
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Abstraction in Modeling &
Model Chcecking
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An insight

• What you model in model-based analysis and design need not
be an exact image of the system you have or anticipate to build.

• It may well be an approximation,
• provided validity of properties evaluated on the approximation

wrt. the real system can be guaranteed.
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Motivation

• High-level modeling can provide an executable prototype of the
ES and its environment.
But what if there is no computable representation of the
environment dynamics?

• High-level modeling supports automatic verification through
model checking and automatic test case generation.
But what if the model checking /test generation problem
• is computationally intractable due to very large state spaces?
• is not mechanizable due to undecidability, e.g. due to

undecidable arithmetic problems involved?

Can we still take advantage of the above-mentioned
mechanic procedures?

02917: Reachability analysis for hybrid automata – p.16/37



What you’ll learn

1. That abstraction can solve the problem
• can reduce very large state spaces while still allowing to

safely deduce properties that do also hold for the full system
• can provide decidable problem representation whose validity

implies validity of the original problem (soundness) but not
necessarily vice versa (incompleteness)

2. The formal notion of abstraction of a Kripke structure

3. The relation between abstraction types and properties preserved
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Abstraction: basic idea

• Up to now, we assumed the model to be a faithful representation
of our system (ES and its environment).

• Now, we are prepared to eliminate or modify detail that is
irrelevant to our problem
• eliminate state variables
• eliminate difficult operations on variables

• We are willing to accept a loss of precision iff we have clear
criteria for whether an analysis result is an artifact of the
abstraction or not

02917: Reachability analysis for hybrid automata – p.18/37



Basic forms of state abstraction
1. Remove detail about the update of (some) state variables

• size of state space remains unchanged!
• yet still helpful:
• undecidable arithmetic problems may disappear because

of removal of the corresponding updates,
• descriptional complexity of the model may be reduced

substantially.

2. Replace the domains of some state variables (or even the whole
state space) by smaller domains
• size of state space shrinks:
• usually yields speedup of state-exploratory methods

(model checking, test vector generation, ...)
• can replace infinite state spaces by finite ones
• can replace undecidable infinite-state problems by

decidable infinite-state problems (e.g., hybrid automata→
timed automata)

02917: Reachability analysis for hybrid automata – p.19/37



Example 1: Replacing operations

• Replace all occurrences of variable x ∈ Z in terms by a
non-deterministic value:

y := abs(x)  y := one of abs(Z)

N.B. This does essentially remove state variable x.

• or replace all assignments to x ∈ Z by a fully non-deterministic
assignment:

x := abs(y)  x := one of Z

Both versions:
Original program halts if replacement halts,
but not necessarily vice versa.
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Example 2: From infinite state to finite state

• Replace state variables x ∈ Z by x̃ ∈ {+, 0,−}.
• Replace updates of x in program/model by updates of x̃ s.t.

x > 0 if x̃ = +

x = 0 if x̃ = 0

x < 0 if x̃ = −

holds for corresponding places in a run
• Thus, replace
• x := 3 by x̃ := +,
• x := 0 by x̃ := 0,
• y := abs(x) by ỹ := if x̃ = 0 then 0 else +

• x := x− 1 by ỹ := if x̃ ∈ {−, 0} then − else one of {0,+}
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• this replaces a deterministic program by a non-deterministic one,
• replaces an infinite-state program by a program over finite state,
• replaces an undecidable halting problem by a decidable one
• halting of a program operating over integers is in general

undecidable,
• halting of non-deterministic programs operating over finitely

many variables ranging over finite domain is decidable.

What is the relation between the two halting problems?
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Over- & Underapproximation

State-Space-Preserving Case

02917: Reachability analysis for hybrid automata – p.23/37



Overapproximation
Def.: Given a Kripke structure K = (V, E, L, I), a state-preserving

overapproximation is a Kripke structure K ′ = (V, E ′, L, I) with
E ′ ⊃ E.

Lemma: All paths of K are also paths of K ′.

Cor.: If K ′ satisfies an LTL formula φ then so does K.

Def.: ∀CTL denotes the set of CTL formulae where universal path
quantifiers occur in positive context only and existential path
quantifiers occur in negative context only (i.e., the negation
normal form contains only universal path quantifiers).

Cor.: If K ′ satisfies an ∀CTL formula φ then so does K.

The reverse implications of the corollaries are i.g. not true!

Error paths of K ′ which are not error paths of K are called
spurious counterexamples.
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Underapproximation

Def.: Given Kripke structures K and K ′, K ′ is a state-preserving
underapproximation of K iff K is a state-preserving
overapproximation of K ′.

Lemma: All paths of K ′ are also paths of K.

Cor.: Only if K ′ satisfies an LTL formula φ then so does K.

Def.: ∃CTL denotes the set of CTL formulae where universal path
quantifiers occur in negative context only and existential path
quantifiers occur in positive context only (i.e., the negation
normal form contains only existential path quantifiers).

Cor.: If K ′ satisfies an ∃CTL formula φ then so does K.

The reverse implications of the corollaries are i.g. not true!
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Can it help?

• Direct approximation does not change the state space,
hence, no size benefit.

• Yet it may help, in particular with symbolic MC:
• Symbolic state-exploration problem may be rdeuced to

decidable fragments of the underlying logics due to removal
of “undecidable operations”.

• Predicative encodings of state sets can become more
compact.

• Extreme case: If E ′ is the universal relation then AXφ is
either satisfied by all states or by no state of K ′, thus yielding
trivial predicative representations.
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Simulations

Approximations between different state spaces
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Simulations
Def.: Given two Kripke structure K = (V, E, L, I) and

K ′ = (V ′, E ′, L ′, I ′) and a relation R ⊆ V × V ′, we call R a
simulation relation between K and K ′ iff (s, s ′) ∈ R implies
1. L(s) = L ′(s ′),
2. ∀t ∈ V • [(s, t) ∈ E =⇒ ∃t ′ ∈ V ′ • (s ′, t ′) ∈ E ′ ∧ (t, t ′) ∈ R],
and
3. ∀s ∈ I • ∃s ′ ∈ I ′ • (s, s ′) ∈ R.

Def.: We say that K ′ simulates K, denoted K � K ′ iff there exists a
simulation relation between K and K ′.

Lemma: If K � K ′ then for each anchored path π of K (i.e., for each
path with π0 ∈ I) there exists an anchored path π ′ of K ′ s.t.
L(π) = L ′(π ′).

Cor.: If K ′ satisfies an LTL or ∀CTL formula φ then so does K.
The reverse implication is in general not true!
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Computing Abstractions

State morphisms
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Abstraction by state morphims
[Clarke e.a., 1994,2000]

Given the concrete Kripke structure K = (V, E, L, I),

1. select an abstract state space S ′,

2. define a total abstraction function h : V → V ′ (state morphism)
• if h(s) = h(t) then the abstraction doesn’t distinguish s and t,
• h(s) = h(t) has to imply L(s) = L(t),
• induces a partition on V of cardinality |codom (h)|,

3. compute the abstract transitions E ′ and the abstract labeling
function L ′.
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Computing E ′: exist. and univ. abstraction

Existential abstraction: Existence of a transition / initial state in the
pre-image sufficient for generating the image under h:
1. E ′ = {(s ′, t ′) ∈ V ′ × V ′ | ∃(s, t) ∈ E • h(s) = s ′ ∧ h(t) = t ′},
2. I ′ = {s ′ ∈ V ′ | ∃s ∈ I • h(s) = s ′},
3. L ′ = L ◦ h−1.

Lemma: h∃(K) = (codom (h), E ′, L ′, I ′) simulates K.

Universal abstraction: All pre-images of the source state have to have
a matching transition:
1. E ′′ = {(s ′, t ′) ∈ V ′×V ′ | ∀s ∈ h−1(s ′)∃t ∈ h−1(t ′)• (s, t) ∈ E},
2. ...
3. ...

Lemma: K simulates h∀(K) = (codom (h), E ′′, L ′, I ′).
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Projection

• Usually, the concrete state space is a Cartesian product
V = Πn1Vi spanned by multiple state variables.

• Then, any projection, e.g. h(v1, . . . , vn) = (v3, v4, v7, v9, . . . , vn)
is a state homomorphism

• provided L(s) = L(s ′) for all s, s ′ with h(s) = h(s ′)!

This is the most frequently used type of abstraction function!
It is often applied despite violation of the labeling cond.!
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Soundness

Observation: Labels not referenced by the formula don’t affect its
satisfaction.

Conseq.: K ′ need not actually simulate K in order to have
preservation (K ′ |= φ) =⇒ (K |= φ) of the model property.
It suffices that

K|F
def.
= (V, E, v 7→ L(v) ∩ F, I) � K ′|F def.

= (V ′, E ′, v ′ 7→ L ′(v ′) ∩ F, I ′)

where F is the set of atomic propositions used in φ.

Conseq.: If the atomic propositions are predicates over state
variables (as usual) then we can safely project to any superset
of the variables referenced in the atomic propositions in φ, thus
removing arbitrarily many unreferenced variables:
• (K ′ |= φ) =⇒ (K |= φ) holds, i.e. no false positives.
• False negatives may, however, arise.
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Combinations

Many practical abstractions can be understood as

1. first pursuing a homomorphic existential abstraction wrt. a
partial inverse of a projection, i.e. a function h : V → V ′ such
that there is a projection p : V ′ → V with p ◦ h = id
• introduces additional state components due to inverse projection,
• provides a simulation of the original Kripke structure due to existential

abstraction
— despite the larger state space delivered;

2. then performing a homomorphic existential abstraction wrt. a
projection
• removes part of the state space (if done reasonably then not of the

freshly introduced one),
• provides a simulation of the previous and thus of the original Kripke

structure due to existential abstraction.
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Example
V = {0, . . . , 7}2 I = {(0, 0)}

E =

{
((x, y), (x ′, y ′))

∣∣∣∣∣
odd(x+ y) ⇐⇒ odd(x ′ + y ′)

∧|x− x ′| ≤ 1∧ |y− y ′| ≤ 1

}

L(x, y) =

{
{red} x = y = 7

∅ otherwise.
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Example: inverse projection
V = {0, . . . , 7}2

V ′ = {0, . . . , 7}2 × {black,white}

h(x, y) =

{
(x, y, black) if x+ y is odd,
(x, y,white) otherwise.
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Example: projection
V ′ = {0, . . . , 7}2 × {black,white}

V ′′ = {black,white}

h(x, y, c) = c

h→
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